1
|
Choi DH, Lee KE, Park J, Park YJ, Lee JY, Park YS. Cell-Permeable Oct4 Gene Delivery Enhances Stem Cell-like Properties of Mouse Embryonic Fibroblasts. Int J Mol Sci 2021; 22:9357. [PMID: 34502264 PMCID: PMC8430778 DOI: 10.3390/ijms22179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Direct conversion of one cell type into another is a trans-differentiation process. Recent advances in fibroblast research revealed that epithelial cells can give rise to fibroblasts by epithelial-mesenchymal transition. Conversely, fibroblasts can also give rise to epithelia by undergoing a mesenchymal to epithelial transition. To elicit stem cell-like properties in fibroblasts, the Oct4 transcription factor acts as a master transcriptional regulator for reprogramming somatic cells. Notably, the production of gene complexes with cell-permeable peptides, such as low-molecular-weight protamine (LMWP), was proposed to induce reprogramming without cytotoxicity and genomic mutation. We designed a complex with non-cytotoxic LMWP to prevent the degradation of Oct4 and revealed that the positively charged cell-permeable LMWP helped condense the size of the Oct4-LMWP complexes (1:5 N:P ratio). When the Oct4-LMWP complex was delivered into mouse embryonic fibroblasts (MEFs), stemness-related gene expression increased while fibroblast intrinsic properties decreased. We believe that the Oct4-LMWP complex developed in this study can be used to reprogram terminally differentiated somatic cells or convert them into stem cell-like cells without risk of cell death, improving the stemness level and stability of existing direct conversion techniques.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.P.)
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.P.)
| | - Jiwon Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.P.)
| | - Yoon Jeong Park
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Jue-Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.P.)
| |
Collapse
|
2
|
Najafi H, Jafari M, Farahavar G, Abolmaali SS, Azarpira N, Borandeh S, Ravanfar R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes Manuf 2021; 4:735-756. [PMID: 34306798 PMCID: PMC8294290 DOI: 10.1007/s42242-021-00149-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Abstract The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance, especially in societies with a large elderly population. Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility, tunable mechanical stability, injectability, trigger capability, lack of immunogenic reactions, and the ability to load cells and active pharmaceutical agents for tissue regeneration. Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals, which can mimic the extracellular matrix. Thus, peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods. This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration, including ionic self-complementary peptides, amphiphilic (surfactant-like) peptides, and triple-helix (collagen-like) peptides. Special attention is given to the main bioactive peptides, the role and importance of self-assembled peptide hydrogels, and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration. Graphic abstract
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, 7193711351 Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Polymer Technology Research Group, Department of Chemical and Metallurgical Engineering, Aalto University, 02152 Espoo, Finland
| | - Raheleh Ravanfar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
3
|
Aljohani H, Stains JP, Majumdar S, Srinivasan D, Senbanjo L, Chellaiah MA. Peptidomimetic inhibitor of L-plastin reduces osteoclastic bone resorption in aging female mice. Bone Res 2021; 9:22. [PMID: 33837180 PMCID: PMC8035201 DOI: 10.1038/s41413-020-00135-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
L-plastin (LPL) was identified as a potential regulator of the actin-bundling process involved in forming nascent sealing zones (NSZs), which are precursor zones for mature sealing zones. TAT-fused cell-penetrating small molecular weight LPL peptide (TAT- MARGSVSDEE, denoted as an inhibitory LPL peptide) attenuated the formation of NSZs and impaired bone resorption in vitro in osteoclasts. Also, the genetic deletion of LPL in mice demonstrated decreased eroded perimeters and increased trabecular bone density. In the present study, we hypothesized that targeting LPL with the inhibitory LPL peptide in vivo could reduce osteoclast function and increase bone density in a mice model of low bone mass. We injected aging C57BL/6 female mice (36 weeks old) subcutaneously with the inhibitory and scrambled peptides of LPL for 14 weeks. Micro-CT and histomorphometry analyses demonstrated an increase in trabecular bone density of femoral and tibial bones with no change in cortical thickness in mice injected with the inhibitory LPL peptide. A reduction in the serum levels of CTX-1 peptide suggests that the increase in bone density is associated with a decrease in osteoclast function. No changes in bone formation rate and mineral apposition rate, and the serum levels of P1NP indicate that the inhibitory LPL peptide does not affect osteoblast function. Our study shows that the inhibitory LPL peptide can block osteoclast function without impairing the function of osteoblasts. LPL peptide could be developed as a prospective therapeutic agent to treat osteoporosis.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Oral Medicine and Diagnostics Sciences, King Saud University, School of Dentistry, Riyadh, Kingdom of Saudi Arabia
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Deepa Srinivasan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Linda Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
4
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Levingstone TJ, Herbaj S, Redmond J, McCarthy HO, Dunne NJ. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E146. [PMID: 31947548 PMCID: PMC7023416 DOI: 10.3390/nano10010146] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, 2 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, 2 Dublin, Ireland
| |
Collapse
|
6
|
Thiagarajan L, Abu‐Awwad HAM, Dixon JE. Osteogenic Programming of Human Mesenchymal Stem Cells with Highly Efficient Intracellular Delivery of RUNX2. Stem Cells Transl Med 2017; 6:2146-2159. [PMID: 29090533 PMCID: PMC5702512 DOI: 10.1002/sctm.17-0137] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being exploited in regenerative medicine due to their tri-lineage differentiation and immunomodulation activity. Currently, there are two major challenges when directing the differentiation of MSCs for therapeutic applications. First, chemical and growth factor strategies to direct osteogenesis in vivo lack specificity for targeted delivery with desired effects. Second, MSC differentiation by gene therapy is difficult as transfection with existing approaches is clinically impractical (viral transfection) or have low efficacy (lipid-mediated transfection). These challenges can be avoided by directly delivering nonvirally derived recombinant protein transcription factors with the glycosaminoglycan-binding enhanced transduction (GET) delivery system (P21 and 8R peptides). We used the osteogenic master regulator, RUNX2 as a programming factor due to its stage-specific role in osteochondral differentiation pathways. Herein, we engineered GET-fusion proteins and compared sequential osteogenic changes in MSCs, induced by exposure to GET fusion proteins or conventional stimulation methods (dexamethasone and Bone morphogenetic protein 2). By assessing loss of stem cell-surface markers, upregulation of osteogenic genes and matrix mineralization, we demonstrate that GET-RUNX2 efficiently transduces MSCs and triggers osteogenesis by enhancing target gene expression directly. The high transduction efficiency of GET system holds great promise for stem cell therapies by allowing reproducible transcriptional control in stem cells, potentially bypassing problems observed with high-concentration growth-factor or pleiotropic steroid therapies. Stem Cells Translational Medicine 2017;6:2146-2159.
Collapse
Affiliation(s)
- Lalitha Thiagarajan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of PharmacyUniversity of NottinghamNottinghamUnited Kingdom
| | - Hosam Al‐Deen M. Abu‐Awwad
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of PharmacyUniversity of NottinghamNottinghamUnited Kingdom
| | - James E. Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of PharmacyUniversity of NottinghamNottinghamUnited Kingdom
| |
Collapse
|
7
|
Wang C, Liu Y, Fan Y, Li X. The use of bioactive peptides to modify materials for bone tissue repair. Regen Biomater 2017; 4:191-206. [PMID: 28596916 PMCID: PMC5458541 DOI: 10.1093/rb/rbx011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
It has been well recognized that the modification of biomaterials with appropriate bioactive peptides could further enhance their functions. Especially, it has been shown that peptide-modified bone repair materials could promote new bone formation more efficiently compared with conventional ones. The purpose of this article is to give a general review of recent studies on bioactive peptide-modified materials for bone tissue repair. Firstly, the main peptides for inducing bone regeneration and commonly used methods to prepare peptide-modified bone repair materials are introduced. Then, current in vitro and in vivo research progress of peptide-modified composites used as potential bone repair materials are reviewed and discussed. Generally speaking, the recent related studies have fully suggested that the modification of bone repair materials with osteogenic-related peptides provide promising strategies for the development of bioactive materials and substrates for enhanced bone regeneration and the therapy of bone tissue diseases. Furthermore, we have proposed some research trends in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Ibrahim A, Bulstrode NW, Whitaker IS, Eastwood DM, Dunaway D, Ferretti P. Nanotechnology for Stimulating Osteoprogenitor Differentiation. Open Orthop J 2016; 10:849-861. [PMID: 28217210 PMCID: PMC5299582 DOI: 10.2174/1874325001610010849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation. Methods: Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions. Results: Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone. Conclusion: There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this.
Collapse
Affiliation(s)
- A Ibrahim
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK; Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK; European Centre of Nano Health, Swansea University Medical School, Swansea, UK
| | - N W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| | - I S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK; European Centre of Nano Health, Swansea University Medical School, Swansea, UK
| | - D M Eastwood
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - D Dunaway
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| | - P Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| |
Collapse
|
9
|
Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med 2016; 14:103. [PMID: 27400961 PMCID: PMC4940902 DOI: 10.1186/s12916-016-0646-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. METHODS A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. RESULTS Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. CONCLUSION Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Michalis Panteli
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Elena Jones
- Unit of Musculoskeletal Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital, University of Leeds, LS9 7TF, Leeds, UK
| | - Giorgio Maria Calori
- Department of Trauma & Orthopaedics, School of Medicine, ISTITUTO ORTOPEDICO GAETANO PINI, Milan, Italy
| | - Peter V Giannoudis
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, LS7 4SA Leeds, West Yorkshire, Leeds, UK.
| |
Collapse
|
10
|
Intracellular delivery of messenger RNA by recombinant PP7 virus-like particles carrying low molecular weight protamine. BMC Biotechnol 2016; 16:46. [PMID: 27233770 PMCID: PMC4884372 DOI: 10.1186/s12896-016-0274-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) have been widely used as carriers to transport different molecules into living cells, whereas messenger RNAs (mRNAs) have been utilized as target molecules for the prevention and treatment of various diseases. However, the instability of CPPs and mRNAs has limited their application. Bacteriophage PP7 virus-like particles (VLPs) may protect peptides and RNAs from degradation through displaying foreign peptides on their surface and encapsidating RNA linked with the pac site. RESULTS In this study, the cDNA of the PP7 coat protein single-chain dimer carrying low molecular weight protamine (LMWP) and the cDNA of green fluorescent protein (GFP) were inserted into two multiple cloning sites of pETDuet-1, respectively. PP7 VLPs carrying the LMWP peptide and GFP mRNA were subsequently expressed in Escherichia coli BL21 (DE3) with high yield and thermal stability, and were easily purified. The VLPs were also non-replicative, non-infectious, and non-toxic. Moreover, they penetrated the mouse prostate cancer cells RM-1 after 24 h incubation. Last, PP7 VLPs carrying the LMWP could encapsidate the GFP mRNA, which was translated into mature protein in mammalian cells. CONCLUSIONS Recombinant PP7 VLPs can be used simultaneously as a targeted delivery vector for both peptides and mRNA due to their abilities to package RNA and display peptides.
Collapse
|
11
|
George NM, Boerner BP, Mir SUR, Guinn Z, Sarvetnick NE. Exploiting Expression of Hippo Effector, Yap, for Expansion of Functional Islet Mass. Mol Endocrinol 2015; 29:1594-607. [PMID: 26378466 DOI: 10.1210/me.2014-1375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of pancreas β-cell function is the precipitating factor in all forms of diabetes. Cell replacement therapies, such as islet transplantation, remain the best hope for a cure; however, widespread implementation of this method is hampered by availability of donor tissue. Thus, strategies that expand functional β-cell mass are crucial for widespread usage in diabetes cell replacement therapy. Here, we investigate the regulation of the Hippo-target protein, Yes-associated protein (Yap), during development of the endocrine pancreas and its function after reactivation in human cadaveric islets. Our results demonstrate that Yap expression is extinguished at the mRNA level after neurogenin-3-dependent specification of the pancreas endocrine lineage, correlating with proliferation decreases in these cells. Interestingly, when a constitutively active form of Yap was expressed in human cadaver islets robust increases in proliferation were noted within insulin-producing β-cells. Importantly, proliferation in these cells occurs without negatively affecting β-cell differentiation or functional status. Finally, we show that the proproliferative mammalian target of rapamycin pathway is activated after Yap expression, providing at least one explanation for the observed increases in β-cell proliferation. Together, these results provide a foundation for manipulating Yap activity as a novel approach to expand functional islet mass for diabetes regenerative therapy.
Collapse
Affiliation(s)
- Nicholas M George
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brian P Boerner
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shakeel U R Mir
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Zachary Guinn
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Nora E Sarvetnick
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|