1
|
Weng X, Ho CT, Lu M. Biological fate, functional properties, and design strategies for oral delivery systems for cinnamaldehyde. Food Funct 2024; 15:6217-6231. [PMID: 38767618 DOI: 10.1039/d4fo00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.
Collapse
Affiliation(s)
- Xiaolan Weng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Rivera-Mancilla E, Al-Hassany L, Marynissen H, Bamps D, Garrelds IM, Cornette J, Danser AHJ, Villalón CM, de Hoon JN, MaassenVanDenBrink A. Functional Analysis of TRPA1, TRPM3, and TRPV1 Channels in Human Dermal Arteries and Their Role in Vascular Modulation. Pharmaceuticals (Basel) 2024; 17:156. [PMID: 38399371 PMCID: PMC10892635 DOI: 10.3390/ph17020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Transient receptor potential (TRP) channels are pivotal in modulating vascular functions. In fact, topical application of cinnamaldehyde or capsaicin (TRPA1 and TRPV1 channel agonists, respectively) induces "local" changes in blood flow by releasing vasodilator neuropeptides. We investigated TRP channels' contributions and the pharmacological mechanisms driving vasodilation in human isolated dermal arteries. Ex vivo studies assessed the vascular function of artery segments and analyzed the effects of different compounds. Concentration-response curves to cinnamaldehyde, pregnenolone sulfate (PregS, TRPM3 agonist), and capsaicin were constructed to evaluate the effect of the antagonists HC030031 (TRPA1); isosakuranetin (TRPM3); and capsazepine (TRPV1). Additionally, the antagonists/inhibitors olcegepant (CGRP receptor); L-NAME (nitric oxide synthase); indomethacin (cyclooxygenase); TRAM-34 plus apamin (K+ channels); and MK-801 (NMDA receptors, only for PregS) were used. Moreover, CGRP release was assessed in the organ bath fluid post-agonist-exposure. In dermal arteries, cinnamaldehyde- and capsaicin-induced relaxation remained unchanged after the aforementioned antagonists, while PregS-induced relaxation was significantly inhibited by isosakuranetin, L-NAME and MK-801. Furthermore, there was a significant increase in CGRP levels post-agonist-exposure. In our experimental model, TRPA1 and TRPV1 channels seem not to be involved in cinnamaldehyde- or capsaicin-induced relaxation, respectively, whereas TRPM3 channels contribute to PregS-induced relaxation, possibly via CGRP-independent mechanisms.
Collapse
Affiliation(s)
- Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Heleen Marynissen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, 300 Leuven, Belgium; (H.M.); (D.B.); (J.N.d.H.)
| | - Dorien Bamps
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, 300 Leuven, Belgium; (H.M.); (D.B.); (J.N.d.H.)
| | - Ingrid M. Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Jérôme Cornette
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Carlos M. Villalón
- Department of Pharmacobiology, Cinvestav-Coapa, Mexico City C.P. 14330, Mexico;
| | - Jan N. de Hoon
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, 300 Leuven, Belgium; (H.M.); (D.B.); (J.N.d.H.)
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| |
Collapse
|
3
|
Zhang G, Li T, Liu J, Wu X, Yi H. Cinnamaldehyde-Contained Polymers and Their Biomedical Applications. Polymers (Basel) 2023; 15:polym15061517. [PMID: 36987298 PMCID: PMC10051895 DOI: 10.3390/polym15061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cinnamaldehyde, a natural product that can be extracted from a variety of plants of the genus Cinnamomum, exhibits excellent biological activities including antibacterial, antifungal, anti-inflammatory, and anticancer properties. To overcome the disadvantages (e.g., poor water solubility and sensitivity to light) or enhance the advantages (e.g., high reactivity and promoting cellular reactive oxygen species production) of cinnamaldehyde, cinnamaldehyde can be loaded into or conjugated with polymers for sustained or controlled release, thereby prolonging the effective action time of its biological activities. Moreover, when cinnamaldehyde is conjugated with a polymer, it can also introduce environmental responsiveness to the polymer through the form of stimuli-sensitive linkages between its aldehyde group and various functional groups of polymers. The environmental responsiveness provides the great potential of cinnamaldehyde-conjugated polymers for applications in the biomedical field. In this review, the strategies for preparing cinnamaldehyde-contained polymers are summarized and their biomedical applications are also reviewed.
Collapse
Affiliation(s)
- Guangyan Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
- Correspondence: (G.Z.); (J.L.)
| | - Tianlong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jia Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Z.); (J.L.)
| | - Xinran Wu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hui Yi
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Chen L, Xu R, Ding Y, Wang C, Zhang S, Sun Z, Chen Y, Mi Y, Gao M, Ma X, Li L. Intelligent triggering of nanomicelles based on a ROS-activated anticancer prodrug and photodynamic therapy (PDT)-synergistic therapy for lung cancers. Eur J Med Chem 2022; 241:114622. [PMID: 35952401 DOI: 10.1016/j.ejmech.2022.114622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
The intelligent triggering of drug release at targeted sites is essential for the safety and efficacy of cancer therapies. This study aimed to design and synthesize a novel prodrug (DHA-S-CA) using a reactive oxygen species (ROS)-responsive moiety, thioacetal, to bridge cinnamaldehyde (CA) and dihydroartemisinin (DHA). As ROS are highly expressed in tumor tissues, the design uses the ROS-responsive moiety as an effective target for the nanodrug delivery system. Furthermore, the near-infrared dye IR808 and the prodrug were adopted to prepare co-loaded Soluplus®/TPGS nanomicelles (IR808/DHA-S-CA NMs). The photosensitized agent IR808 exhibited both tumor accumulation and cancer imaging properties while generating ROS during laser irradiation. Intracellular ROS detection indicated that the prodrug DHA-S-CA could degrade via the high concentration of ROS in cancer cells induced by laser irradiation, and the released CA stimulated mitochondria to regenerate additional ROS to further improve the antitumor effect of DHA. Combined with photodynamic therapy (PDT), IR808/DHA-S-CA (+) NMs outperformed free DHA, DHA NMs, and IR808/DHA-S-CA (-) in a comparison of their pharmacokinetic profiles because it had a longer circulation time and a greater area under the curve (AUC). Compared with other DHA groups, the ROS-responsive IR808/DHA-S-CA (+) micelles had comparable cytotoxic activity. Furthermore, the ROS-responsive IR808/DHA-S-CA (+) micelles exhibited markedly higher anticancer efficiency on lung cancer cells than the other DHA groups. Overall, these results indicated that the therapeutic strategy of our novel small-molecule prodrug combined with PDT has great potential for the treatment of tumors.
Collapse
Affiliation(s)
- Lixue Chen
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Ruping Xu
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Yanfang Ding
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Changyuan Wang
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Sitong Zhang
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Zhenya Sun
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Yali Chen
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Yunfeng Mi
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Meng Gao
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China
| | - Xiaodong Ma
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China.
| | - Lei Li
- School of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
5
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Das G, Gonçalves S, Basilio Heredia J, Romano A, Jiménez-Ortega LA, Gutiérrez-Grijalva EP, Shin HS, Patra JK. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, Xiang M, Shen Z, Xin L, Lu Y, Gao J, Cui X. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct 2021; 12:12194-12220. [PMID: 34752593 DOI: 10.1039/d1fo01935j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) and diabetes are the leading causes of death worldwide, which underlines the urgent necessity to develop new pharmacotherapies. Cinnamon has been an eminent component of spice and traditional Chinese medicine for thousands of years. Numerous lines of findings have elucidated that cinnamon has beneficial effects against CVDs in various ways, including endothelium protection, regulation of immune response, lowering blood lipids, antioxidative properties, anti-inflammatory properties, suppression of vascular smooth muscle cell (VSMC) growth and mobilization, repression of platelet activity and thrombosis and inhibition of angiogenesis. Furthermore, emerging evidence has established that cinnamon improves diabetes, a crucial risk factor for CVDs, by enhancing insulin sensitivity and insulin secretion; regulating the enzyme activity involved in glucose; regulating glucose metabolism in the liver, adipose tissue and muscle; ameliorating oxidative stress and inflammation to protect islet cells; and improving diabetes complications. In this review, we summarized the mechanisms by which cinnamon regulates CVDs and diabetes in order to provide a theoretical basis for the further clinical application of cinnamon.
Collapse
Affiliation(s)
- Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongchen Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuqin Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhilin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yi Qu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
9
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021; 26:molecules26123506. [PMID: 34207498 PMCID: PMC8227493 DOI: 10.3390/molecules26123506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a global health burden that greatly impact patient quality of life and account for a huge number of deaths worldwide. Despite current therapies, several side effects have been reported that compromise patient adherence; thus, affecting therapeutic benefits. In this context, plant metabolites, namely volatile extracts and compounds, have emerged as promising therapeutic agents. Indeed, these compounds, in addition to having beneficial bioactivities, are generally more amenable and present less side effects, allowing better patient tolerance. The present review is an updated compilation of the studies carried out in the last 20 years on the beneficial potential of essential oils, and their compounds, against major risk factors of CVDs. Overall, these metabolites show beneficial potential through a direct effect on these risk factors, namely hypertension, dyslipidemia and diabetes, or by acting on related targets, or exerting general cellular protection. In general, monoterpenic compounds are the most studied regarding hypotensive and anti-dyslipidemic/antidiabetic properties, whereas phenylpropanoids are very effective at avoiding platelet aggregation. Despite the number of studies performed, clinical trials are sparse and several aspects related to essential oil’s features, namely volatility and chemical variability, need to be considered in order to guarantee their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
10
|
Hosni A, El-Twab SA, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, Beemster GTS. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res 2021; 165:105426. [PMID: 33453370 DOI: 10.1016/j.phrs.2021.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Gestational diabetes mellitus (GDM) is a major pregnancy-related disorder with an increasing prevalence worldwide. GDM is associated with altered placental vascular functions and has severe consequences for fetal growth. There is no commonly accepted medication for GDM due to safety considerations. Actions of the currently limited therapeutic options focus exclusively on lowering the blood glucose level without paying attention to the altered placental vascular reactivity and remodelling. We used the fat-sucrose diet/streptozotocin (FSD/STZ) rat model of GDM to explore the efficacy of cinnamaldehyde (Ci; 20 mg/kg/day), a promising antidiabetic agent for GDM, and glyburide/metformin-HCl (Gly/Met; 0.6 + 100 mg/kg/day), as a reference drug for treatment of GDM, on the placenta structure and function at term pregnancy after their oral intake one week before mating onward. Through genome-wide transcriptome, biochemical, metabolome, metal analysis and histopathology we obtained an integrated understanding of their effects. GDM resulted in maternal and fetal hyperglycemia, fetal hyperinsulinemia and placental dysfunction with subsequent fetal anemia, hepatic iron deficiency and high serum erythropoietin level, reflecting fetal hypoxia. Differentially-regulated genes were overrepresented for pathways of angiogenesis, metabolic transporters and oxidative stress. Despite Ci and Gly/Met effectively alleviated the maternal and fetal glycemia, only Ci offered substantial protection from GDM-associated placental vasculopathy and prevented the fetal hypoxia. This was explained by Ci's impact on the molecular regulation of placental angiogenesis, metabolic activity and redox signaling. In conclusion, Ci provides a dual impact for the treatment of GDM at both maternal and fetal levels through its antidiabetic effect and the direct placental vasoprotective action. Lack of Gly/Met effectiveness to restore it's impaired functionality demonstrates the vital role of the placenta in developing efficient medications for GDM.
Collapse
Affiliation(s)
- Ahmed Hosni
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt; Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Sanaa Abd El-Twab
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Histology and Cytology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Els Prinsen
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium; Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| |
Collapse
|
11
|
Arbati A, Maham M, Dalir-Naghadeh B. The effect of cinnamaldehyde on the contractility of bovine isolated gastrointestinal smooth muscle preparations. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:313-318. [PMID: 34815842 PMCID: PMC8576164 DOI: 10.30466/vrf.2020.112185.2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022]
Abstract
Gastrointestinal motility disorders can occur as either increased or decreased movements. Studies have shown that herbal ingredients such as essential oils can modify the increase and decrease of gastrointestinal movements of ruminants. Cinnamaldehyde at room temperature is an oily yellow liquid which is obtained from the steam distillation of the oil of cinnamon bark. It bears carminative activity and gastrointestinal, antimicrobial, and vasodilatory effects. This study examined the effects of cinnamaldehyde on the contraction of circular smooth muscles of abomasal fundus and the antrum, duodenum, and ileum of healthy cows using an in vitro approach. The results indicated that cinnamaldehyde had relaxant effects on the basal tonus and contractions caused by barium chloride (BaCl2) and carbachol (CCh) in these tissues dependent upon concentration and the origin of the smooth muscle. These effects were more prominent in the ileal smooth muscle preparations than in other tissues. This substance in the smooth muscle preparations of the abomasal fundus not only had no significant effect on the basal tonus, but also significantly increased the contractions caused by barium chloride at low concentrations. Study of the mechanism of action showed that, similar to verapamil, cinnamaldehyde applied its relaxation effect by blocking the calcium channels. The results showed that cinnamaldehyde possessed a spasmolytic effect mediated through blockage of the calcium channels, which may provide a pharmacological base to its medicinal use for diarrhea and spasms.
Collapse
Affiliation(s)
- Alireza Arbati
- DVSc Candidate, Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; ,Correspondence Alireza Arbati. DVM, DVSc Candidate, Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail:
| | - Masoud Maham
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahram Dalir-Naghadeh
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
12
|
Zareie A, Sahebkar A, Khorvash F, Bagherniya M, Hasanzadeh A, Askari G. Effect of cinnamon on migraine attacks and inflammatory markers: A randomized double-blind placebo-controlled trial. Phytother Res 2020; 34:2945-2952. [PMID: 32638445 DOI: 10.1002/ptr.6721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023]
Abstract
Migraine is the most common type of primary headaches. Increased levels of interleukin-6 (IL-6), calcitonin-gene-related peptide (CGRP) and nitric oxide (NO) lead to inflammation and neurogenic pain. Cinnamon has anti-inflammatory and neuroprotective properties. Thus, the aim of this study was to assess the effect of cinnamon on migraine attacks and inflammatory status. Fifty patients with migraine were randomized to receive either cinnamon powder (three capsules/day each containing 600 mg of cinnamon) or three placebo capsules/day each containing 100 mg of corn starch (control group) for 2 months. Serum levels of IL-6, CGRP and NO were measured at baseline and at the end of the study. The frequency, severity and duration of pain attacks were also recorded using questionnaire. Serum concentrations of IL-6 and NO were significantly reduced in the cinnamon group compared with the control group (p < .05). However, serum levels of CGRP remained unchanged in both groups. The frequency, severity and duration of migraine attacks were significantly decreased in the cinnamon group compared with the control group. Cinnamon supplementation reduced inflammation as well as frequency, severity and duration of headache in patients with migraine. Cinnamon could be regarded as a safe supplement to relieve pain and other complications of migraine.
Collapse
Affiliation(s)
- Azadeh Zareie
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hasanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Gürer B, Kertmen H, Kuru Bektaşoğlu P, Öztürk ÖÇ, Bozkurt H, Karakoç A, Arıkök AT, Çelikoğlu E. The effects of Cinnamaldehyde on early brain injury and cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Metab Brain Dis 2019; 34:1737-1746. [PMID: 31444631 DOI: 10.1007/s11011-019-00480-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022]
Abstract
The neuroprotective and vasodilatory effects of cinnamaldehyde have been widely studied and documented. On the basis of these findings, we hypothesized that cinnamaldehyde exhibits therapeutic effects on subarachnoid hemorrhage-induced early brain injury and cerebral vasospasm. Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits: control, subarachnoid hemorrhage, subarachnoid hemorrhage + vehicle, and subarachnoid hemorrhage + cinnamaldehyde. An intraperitoneal dose of 50 mg/kg cinnamaldehyde was administered 5 min following an intracisternal blood injection, followed by three further daily injections at identical doses. The animals were sacrificed 72 h after subarachnoid hemorrhage was induced. The cross-sectional areas and arterial wall thicknesses of the basilar artery were measured and hippocampal degeneration scores were evaluated. Treatment with cinnamaldehyde was effective in providing neuroprotection and attenuating cerebral vasospasm after subarachnoid hemorrhage in rabbits. It effectively increased the cross-sectional areas of the basilar artery and reduced the arterial wall thickness; in addition, hippocampal degeneration scores were lower in the cinnamaldehyde group. The findings of this study showed, for the first time to our knowledge, that cinnamaldehyde exhibits neuroprotective activity against subarachnoid hemorrhage-induced early brain injury and that it can prevent vasospasm. Potential mechanisms underlying the neuroprotection and vasodilation were discussed. Cinnamaldehyde could play a role in subarachnoid hemorrhage treatment.
Collapse
Affiliation(s)
- Bora Gürer
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey.
| | - Hayri Kertmen
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Ankara, Turkey
| | - Pınar Kuru Bektaşoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özden Çağlar Öztürk
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Ata Türker Arıkök
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Pathology, University of Health Sciences, Ankara, Turkey
| | - Erhan Çelikoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| |
Collapse
|
14
|
Alves-Silva JM, Zuzarte M, Marques C, Girão H, Salgueiro L. Protective Effects of Phenylpropanoids and Phenylpropanoid-rich Essential Oils on the Cardiovascular System. Mini Rev Med Chem 2019; 19:1459-1471. [PMID: 31218957 DOI: 10.2174/1389557519666190620091915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of global mortality with a tendency to increase due to population ageing as well as an increase in associated risk factors. Although current therapies improve survival rates, they are associated with several side effects, thus justifying the development of novel preventive and/or therapeutic approaches. In this way, plant metabolites such as essential oils have emerged as promising agents due to their biological effects. OBJECTIVE Bearing in mind that several essential oils are characterized by high amounts of phenylpropanoids, which may play a crucial role in the activity of these volatile extracts, a comprehensive and systematic review focusing on the cardiovascular effects of phenylpropanoid-rich essential oils is presented. METHODS Popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted and papers from 2000 onwards were selected. Non-volatile phenylpropanoids were not considered in this review. RESULTS A compilation of the current knowledge on this thematic pointed out beneficial effects for volatile phenylpropanoids namely hypotensive, vasorelaxant, antiplatelet aggregation, antidyslipidaemic and antidiabetic, as well as protective properties against ischemia/reperfusion injury and heart hypertrophy. CONCLUSION A better understanding of the protective effects of phenylpropanoids on the cardiovascular system is presented, thus paving the way towards future research on plant-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal.,CIEPQPF and Faculty of Pharmacy, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Mónica Zuzarte
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Carla Marques
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Henrique Girão
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Lígia Salgueiro
- CIEPQPF and Faculty of Pharmacy, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| |
Collapse
|
15
|
Onder A, Yilmaz-Oral D, Jerkovic I, Akdemir AO, Gur S. Evaluation of relaxant responses properties of cinnamon essential oil and its major component, cinnamaldehyde on human and rat corpus cavernosum. Int Braz J Urol 2019; 45:1033-1042. [PMID: 31408283 PMCID: PMC6844336 DOI: 10.1590/s1677-5538.ibju.2019.0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023] Open
Abstract
Cinnamomum cassia (Cinnamon) is a well-known traditional medicine with therapeutic benefits for centuries. We evaluated the effects of cinnamon essential oil (CEO) and its main component cinnamaldehyde (CA) on human corpus cavernosum (HCC) and rat CC. The essential oil of cinnamon was analyzed for the confirmation of the oil profile. HCC specimens from patients undergoing penile prosthesis surgery (age 48-69 years) were utilized for functional studies. In addition, erectile responses in anesthetized control and diabetic rats were evaluated in vivo after intracavernosal injection of CEO and CA, and rat CC strips were placed in organ baths. After precontraction with phenylephrine (10μM), relaxant responses to CEO and CA were investigated. CA (96.9%) was found as the major component. The maximum relaxation responses to CEO and CA were 96.4±3.5% and 96.0±5.0% in HCC and 97.5±5.5% and 96.8±4.8% in rat CC, respectively. There was no difference between control and diabetic rats in relaxation responses to CEO and CA. The relaxant responses obtained with essential oil and CA were not attenuated in the presence of nitric oxide synthase (NOS) inhibitor, and soluble guanylate cyclase inhibitor (sGS) in CC. In vivo, erectile responses in diabetic rats were lower than in control rats, which was restored after intracavernosal injection of CEO and CA. CEO and CA improved erectile function and relaxation of isolated strips of rat CC and HCC by a NO/cGMP-independent mechanism. Further investigations are warranted to fully elucidate the restorative effects of CEO and CA on diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Igor Jerkovic
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Alp Ozgur Akdemir
- Department of Urology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
17
|
Wölkart G, Kollau A, Stessel H, Russwurm M, Koesling D, Schrammel A, Schmidt K, Mayer B. Effects of flavoring compounds used in electronic cigarette refill liquids on endothelial and vascular function. PLoS One 2019; 14:e0222152. [PMID: 31498828 PMCID: PMC6733504 DOI: 10.1371/journal.pone.0222152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/18/2019] [Indexed: 12/26/2022] Open
Abstract
Electronic cigarette refill liquids are commercially provided with a wide variety of flavoring agents. A recent study suggested that several common flavors may scavenge nitric oxide (NO) and cause endothelial dysfunction. It was the aim of the present study to investigate the effects of these flavors on NO/cyclic GMP-mediated signaling and vascular relaxation. We tested the flavoring agents for effects on Ca2+-induced cGMP accumulation and NO synthase activation in cultured endothelial cells. NO scavenging was studied with NO-activated soluble guanylate cyclase and as NO release from a NO donor, measured with a NO electrode. Blood vessel function was studied with precontracted rat aortic rings in the absence and presence of acetylcholine or a NO donor. Cinnamaldehyde inhibited Ca2+-stimulated endothelial cGMP accumulation and NO synthase activation at ≥0.3 mM. Cinnamaldehyde and diacetyl inhibited NO-activated soluble guanylate cyclase with IC50 values of 0.56 (0.54–0.58) and 0.29 (0.24–0.36) mM, respectively, and caused moderate NO scavenging at 1 mM that was not mediated by superoxide anions. The other compounds did not scavenge NO at 1 mM. None of the flavorings interfered with acetylcholine-induced vascular relaxation, but they caused relaxation of pre-contracted aortas. The most potent compounds were eugenol and cinnamaldehyde with EC50 values of ~0.5 mM. Since the flavors did not affect endothelium-dependent vascular relaxation, NO scavenging by cinnamaldehyde and diacetyl does not result in impaired blood vessel function. Although not studied in vivo, the low potency of the compounds renders it unlikely that the observed effects are relevant to humans inhaling flavored vapor from electronic cigarettes.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Michael Russwurm
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, Bochum, Germany
| | - Doris Koesling
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, Bochum, Germany
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Kurt Schmidt
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
18
|
Tarkhan MM, Balamsh KS, El-Bassossy HM. Cinnamaldehyde protects from methylglyoxal-induced vascular damage: Effect on nitric oxide and advanced glycation end products. J Food Biochem 2019; 43:e12907. [PMID: 31353699 DOI: 10.1111/jfbc.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
The protective effect and mechanism(s) of action of cinnamaldehyde on the highly reactive secondary sugar derivative, methylglyoxal, induced vascular damage were investigated using isolated rat thoracic aorta. Aorta was incubated with methylglyoxal and cinnamaldehyde where vascular reactivity was assessed through phenylephrine- and acetylcholine-induced contraction and relaxation, respectively. Cinnamaldehyde's antioxidant activity, ability to induce aortic nitric oxide release, and effect on advanced glycation end products formation (AGEs) was also studied. Results showed that cinnamaldehyde significantly alleviated the exaggerated contraction and improved the attenuated dilation of the aorta secondary to incubation with methylglyoxal. Furthermore, cinnamaldehyde stimulated aortic nitric oxide production from isolated aorta giving levels similar to acetylcholine and significantly reduced both methylglyoxal-induced AGEs and protein oxidation products formation. In conclusion, cinnamaldehyde protects from methyglyoxal-induced vascular damage mainly by improving the vasodilation in addition to endothelial nitric oxide production and reducing the detrimental AGE-inflicted vascular damage. PRACTICAL APPLICATIONS: The use of naturally occurring products to alleviate various disease-related complications is highly attractive due to their easy availability, relatively affordable prices compared to pharmaceutical products, and their favorable safety profile. In the case of cinnamaldehyde, its excessive and highly reputable consumption in the food industry facilitates promoting a daily intake of the natural compound with the purpose of counteracting the destructive effect that elevated blood glucose has on vascular function. According to findings obtained from this study, frequent cinnamaldehyde intake will improve vascular reactivity by acting on vasodilatory mechanisms and inhibiting glycation reactions, hence improving the hyperglycemia associated hypertensive state. The study also paves the way for future research to determine the clinical efficacy of cinnamaldehyde having established its competence in protecting vascular function in a lab setting.
Collapse
Affiliation(s)
- Mayada Mohammed Tarkhan
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah Saeed Balamsh
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hany Mohammed El-Bassossy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmacology, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
21
|
de Andrade TU, Brasil GA, Endringer DC, da Nóbrega FR, de Sousa DP. Cardiovascular Activity of the Chemical Constituents of Essential Oils. Molecules 2017; 22:E1539. [PMID: 28926969 PMCID: PMC6151533 DOI: 10.3390/molecules22091539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death in developed and developing countries and decrease the quality of life, which has enormous social and economic consequences for the population. Recent studies on essential oils have attracted attention and encouraged continued research of this group of natural products because of their effects on the cardiovascular system. The pharmacological data indicate a therapeutic potential for essential oils for use in the treatment of cardiovascular diseases. Therefore, this review reports the current studies of essential oils chemical constituents with cardiovascular activity, including a description of their mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Flávio Rogério da Nóbrega
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa PB 58051-970, Brazil.
| | - Damião Pergentino de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa PB 58051-970, Brazil.
| |
Collapse
|
22
|
Sun L, Liu LN, Li JC, Lv YZ, Zong SB, Zhou J, Wang ZZ, Kou JP, Xiao W. The essential oil from the twigs of Cinnamomum cassia Presl inhibits oxytocin-induced uterine contraction in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:107-114. [PMID: 28532683 DOI: 10.1016/j.jep.2017.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The twigs and bark of Cinnamomum cassia Presl (Lauraceae) are widely used in traditional Chinese medicine in the treatment of tumor, abdominal pain, dysmenorrhea, digestive system disease and inflammatory diseases. The aim of this study was to determine the inhibitory effect of the essential oil from the twigs of Cinnamomum cassia Presl (EOCC) on uterine contraction in vitro and in vivo. MATERIALS AND METHODS The Institute of Cancer Research (ICR) mouse uterine contraction was induced by oxytocin (OT) exposure following estradiol benzoate pretreatment. Mice were given the EOCC (60, 30, and 15mg/kg) by gavage. The level of prostaglandin F2α (PGF2α) in uterine tissue were determined according to specification of enzyme linked immunosorbent assay (ELISA) kit. Uterine tissue was collected for histopathological analysis (H&E). Myosin light chain 20 (MLC20), phosphorylation of myosin light chain 20 (p-MLC20) and cyclooxygenase-2 (COX-2) proteins in uterine tissue were assessed by Western Blot. Mouse isolated uterus strips were mounted in tissue organ baths containing Locke's solution. The contractile responses were recorded with Power Lab recording system. The effect of the EOCC on uterine contraction induced by OT, PGF2α, and acetylcholine (Ach) was observed. Myometrial cells were exposed to OT (7μM) to induce Ca2+ release, and the effect of the EOCC (100, 50, and 25μg/ml) on intracellular Ca2+ was analysed with fluorometry imaging. RESULTS In vivo study demonstrated that the EOCC significantly reduced OT-induced writhing responses with a maximal inhibition of 66.5%. It also decreased the level of PGF2α in OT-induced mice uterine tissue. Moreover, Western blot analysis showed that COX-2 and p-MLC20 expressions in uterine tissue of dysmenorrhea mice were significantly reduced. EOCC inhibited spontaneous uterus contractions in a dose-dependent manner, and the concentration of the EOCC giving 50% of maximal contraction (IC50) value was 61.3μg/ml. The IC50 values of the EOCC on OT, PGF2α, and Ach-induced contractions were 113.0μg/ml, 94.7μg/ml, and 61.5μg/ml, respectively. Further in vitro studies indicated that the EOCC could restrain intracellular Ca2+ levels in favour of uterine relaxation. CONCLUSION Both in vivo and in vitro results suggest that the EOCC possesses significant spasmolytic effect on uterine contraction. Thus, the EOCC yields a possible therapeutic choice for the prevention and treatment of primary dysmenorrhea.
Collapse
Affiliation(s)
- Lan Sun
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China; State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China.
| | - Li-Na Liu
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China
| | - Jia-Chun Li
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China
| | - Yao-Zhong Lv
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China
| | - Shao-Bo Zong
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China
| | - Jun Zhou
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China
| | - Zheng-Zhong Wang
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Wei Xiao
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, PR China.
| |
Collapse
|
23
|
Ye XF, Xue Y, Ling T, Wang Y, Yu XN, Cheng C, Feng G, Hu L, Shi Z, Chen J. Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Molecules 2016; 22:E15. [PMID: 28029133 PMCID: PMC6155710 DOI: 10.3390/molecules22010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl₂ at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H₂S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H₂S scavenger hypotaurine (HT) or potent H₂S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H₂S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H₂S level with NaHS (H₂S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H₂S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H₂S in physiological modulations.
Collapse
Affiliation(s)
- Xie-Feng Ye
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanfeng Xue
- Nanjing Yangzi Modern Agriculture Investment and Development Co. Ltd., Nanjing 211899, China.
| | - Tianxiao Ling
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yong Wang
- Chongqing Tobacco Corporation, Chongqing 400023, China.
| | - Xiao-Na Yu
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Changxin Cheng
- Hongyun Honghe Tobacco Group Co. Ltd., Kunming 650231, China.
| | - Guosheng Feng
- Henan Tobacco Corporation Queshan Branch, Queshan 463200, China.
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| |
Collapse
|
24
|
Saleh Al-Shehabi T, Iratni R, Eid AH. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1068-1081. [PMID: 26776961 DOI: 10.1016/j.phymed.2015.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. PURPOSE Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. CONCLUSION Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy.
Collapse
Affiliation(s)
- Tuqa Saleh Al-Shehabi
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon ; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
25
|
Lauw SJ, Zhong C, Webster RD. Studies on the electrochemical reduction and coupled homogeneous reactions of cinnamaldehyde in acetonitrile. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Akour A, Kasabri V, Afifi FU, Bulatova N. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: a review of folkloric practice vs. evidence-based pharmacology. PHARMACEUTICAL BIOLOGY 2016; 54:1901-1918. [PMID: 26911517 DOI: 10.3109/13880209.2015.1113994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Context National statistical reports in Jordan indicate a decrease in the total fertility rate along with a parallel increase in contraceptive use. The folkloric use of medicinal herbs in gynecological disorders has been growing in Jordan, despite of deficient reports on the evidence-based safety and efficacy of these practices. Objective The aim of this comprehensive article is to review medicinal plants with claimed ethnonpharmacological usage in various gynecological and pregnancy-related issues in Jordan, and to assess their evidence-based pharmacological studies as well as their phytochemistry. Methods The published literature was surveyed using Google Scholar entering the terms "ethnopharmacology AND Jordan AND infertility AND gynecology OR gestation". We included ethnopharmacological surveys in Jordan with available full-text. Results Twelve articles were reviewed. Plant species which are commonly used for female gynecological issues such as Artemisia monosperma Del. and A. herba-alba Asso. (Asteraceae) have been found to exert an antifertility effect. Ricinus communis L. (Euphorbiaceae) and Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) had antifertility effects in male rats, but Nigella sativa oil L. (Ranunculaceae) and Cinnamon zeylanicum J. Presl (Lauraceae) were found to enhance it. Conclusion Using plants for gynecological disorders is a common practice in Jordan. Many of them, whether utilised for gynecological or non-gynecological conditions equally, were found to have detrimental effects on female or male fertility. Thus, couples planning pregnancy should be discouraged from the consumption of these herbs. Further local studies are warranted to confirm the appreciable beneficial pharmacological effects and safety of these plants.
Collapse
MESH Headings
- Animals
- Ethnopharmacology
- Evidence-Based Medicine
- Female
- Fertility/drug effects
- Folklore
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/epidemiology
- Humans
- Infertility, Female/chemically induced
- Infertility, Female/epidemiology
- Infertility, Female/physiopathology
- Infertility, Male/chemically induced
- Infertility, Male/epidemiology
- Infertility, Male/physiopathology
- Jordan/epidemiology
- Male
- Medicine, Traditional
- Phytotherapy
- Plant Preparations/adverse effects
- Plant Preparations/therapeutic use
- Plants, Medicinal
- Pregnancy
- Pregnancy Complications/drug therapy
- Pregnancy Complications/epidemiology
- Risk Assessment
- Risk Factors
Collapse
Affiliation(s)
- Amal Akour
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Violet Kasabri
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Fatma U Afifi
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Nailya Bulatova
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| |
Collapse
|
27
|
Xue YF, Zhang M, Qi ZQ, Li YQ, Shi Z, Chen J. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:909-914. [PMID: 25752512 DOI: 10.1002/jsfa.7164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. RESULTS The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CONCLUSION CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching.
Collapse
Affiliation(s)
- Yan-Feng Xue
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Meng Zhang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Zhong-Qiang Qi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - You-Qin Li
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
28
|
Alotaibi M. The effect of cinnamon extract on isolated rat uterine strips. Reprod Biol 2015; 16:27-33. [PMID: 26952750 DOI: 10.1016/j.repbio.2015.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/24/2015] [Accepted: 12/05/2015] [Indexed: 11/13/2022]
Abstract
Cinnamon is a spice used by some populations as a traditional remedy to control blood pressure and thus hypertension. Cinnamon extract decreases contractility in some smooth muscles, but its effect on uterine smooth muscle is unknown. The aim of this study was to determine the physiological and pharmacological effects of cinnamon extract (CE) on the contractions of isolated rat uterine strips and to investigate its possible mechanism of action. Isolated longitudinal uterine strips were dissected from non-pregnant rats, mounted vertically in an organ bath chamber, and exposed to different concentrations of CE (10-20mg/mL). The effect of CE was investigated in the presence of each of the following solutions: 60mM KCl, 5nM oxytocin, and 1μM Bay K8644. CE significantly decreased the force of uterine contraction in a concentration-dependent manner and significantly attenuated the uterine contractions elicited by KCl and oxytocin. In addition, CE significantly decreased the contractile force elicited when L-type Ca(2+) channels were activated by Bay K8644. CE's major mechanism may be inhibition of L-type Ca(2+) channels, which limits calcium influx. These data demonstrate that CE can be a potent tocolytic that can decrease uterine activity regardless of how the force was produced, even when the uterus was stimulated by agonists. As a result, cinnamon may be used to alleviate menstrual pain associated with dysmenorrhoea or prevent unwanted uterine activity in early pregnancy.
Collapse
Affiliation(s)
- Mohammed Alotaibi
- Department of Physiology, College of Medicine, King Saud University and King Khalid University Hospital, P.O Box 2925, Riyadh 11461, Saudi Arabia.
| |
Collapse
|