1
|
Abdelgalil R, Khattab SN, Ebrahim S, Elkhodairy KA, Teleb M, Bekhit AA, Sallam MA, Elzoghby AO. Engineered Sericin-Tagged Layered Double Hydroxides for Combined Delivery of Pemetrexed and ZnO Quantum Dots as Biocompatible Cancer Nanotheranostics. ACS OMEGA 2023; 8:5655-5671. [PMID: 36816638 PMCID: PMC9933221 DOI: 10.1021/acsomega.2c07128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 05/25/2023]
Abstract
Despite extensive progress in the field of cancer nanotheranostics, clinical development of biocompatible theranostic nanomedicine remains a formidable challenge. Herein, we engineered biocompatible silk-sericin-tagged inorganic nanohybrids for efficient treatment and imaging of cancer cells. The developed nanocarriers are anticipated to overcome the premature release of the chemotherapeutic drug pemetrexed (PMX), enhance the colloidal stability of layered double hydroxides (LDHs), and maintain the luminescence properties of ZnO quantum dots (QDs). Materials and Methods: PMX-intercalated LDHs were modified with sericin and coupled to ZnO QDs for therapy and imaging of breast cancer cells. Results: The optimized nanomedicine demonstrated a sustained release profile of PMX, and high cytotoxicity against MDA-MB-231 cells compared to free PMX. In addition, high cellular uptake of the engineered nanocarriers into MDA-MB-231 breast cancer cells was accomplished. Conclusions: Conclusively, the LDH-sericin nanohybrids loaded with PMX and conjugated to ZnO QDs offered a promising cancer theranostic nanomedicine.
Collapse
Affiliation(s)
- Riham
M. Abdelgalil
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N. Khattab
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Shaker Ebrahim
- Department
of Materials Science, Institute of Graduate Studies and Research, Alexandria 21526, Egypt
| | - Kadria A. Elkhodairy
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Adnan A. Bekhit
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy
Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq 32038, Kingdom of Bahrain
| | - Marwa A. Sallam
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O. Elzoghby
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, Baby R, Hussein MZ. A Novel Para-Amino Salicylic Acid Magnesium Layered Hydroxide Nanocomposite Anti-Tuberculosis Drug Delivery System with Enhanced in vitro Therapeutic and Anti-Inflammatory Properties. Int J Nanomedicine 2021; 16:7035-7050. [PMID: 34703226 PMCID: PMC8526802 DOI: 10.2147/ijn.s297040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS). METHODS The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials. RESULTS The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8. DISCUSSION The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Management Sciences and Technology, The Begum Nusrat Bhutto Women University Sukkur, Sukkur, Sindh, 65170, Pakistan
| | - Palanisamy Arulselvan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Namakkal, Tamil Nadu, 637408, India
| | - Mohamed E El Zowalaty
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Zoonosis Science Center, Department of Microbiology and Immunology, Uppsala University, Uppsala, Sweden
| | - Woan Sean Tan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rabia Baby
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|
4
|
Figueiredo MP, Borrego-Sánchez A, García-Villén F, Miele D, Rossi S, Sandri G, Viseras C, Constantino VRL. Polymer/Iron-Based Layered Double Hydroxides as Multifunctional Wound Dressings. Pharmaceutics 2020; 12:E1130. [PMID: 33238477 PMCID: PMC7700130 DOI: 10.3390/pharmaceutics12111130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH-polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.
Collapse
Affiliation(s)
- Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil;
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Ana Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil;
| |
Collapse
|
5
|
Zomorodbakhsh S, Abbasian Y, Naghinejad M, Sheikhpour M. The Effects Study of Isoniazid Conjugated Multi-Wall Carbon Nanotubes Nanofluid on Mycobacterium tuberculosis. Int J Nanomedicine 2020; 15:5901-5909. [PMID: 32884258 PMCID: PMC7434524 DOI: 10.2147/ijn.s251524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
Background Tuberculosis (TB) has always been recognized as one of the fatal infectious diseases, which is caused by Mycobacterium tuberculosis (M.tb). Isonicotinic acid hydrazide or isoniazid (INH) is one of the most commonly utilized drugs in the treatment of TB. Patients need to take 300 mg daily of INH for 6 months in combination with another anti-TB drug and tolerate several side effects of INH. On the other hand, the emergence of resistant strains of anti-TB antibiotics is one of the major problems in the treatment of this disease. So, antimicrobial drug delivery by nanofluids could improve the efficacy, and reduce the adverse effects of antimicrobial drugs. The purpose of this study was to perform a novel method to synthesize INH-conjugated multi-wall carbon nanotubes (MWCNTs) for more effective drug delivery, as well as, TB treatment. Methods INH-conjugated functionalized MWCNTs were prepared, using a reflux system. The characterization of the obtained nano-drug was performed by the elemental analyses of total nitrogen, hydrogen, carbon and sulfur (CHNS), Raman spectroscopy, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) methods. The nanofluid of nano-drug was prepared by the ultrasonic method, and the related antibacterial effect studies were carried out on the two strains of M.tb. Results The antimicrobial effect of INH-conjugated MWCNTs was found to be much better at low concentrations than the pure drug in all of the strains. Conclusion Since one of the main antimicrobial mechanisms of MWCNTs is through the destruction of the bacterial cell wall, in addition to its antimicrobial effects, it increased the drug delivery of INH at lower doses compared to drug alone. So, the nanofluid, containing INH-conjugated MWCNTs, had a better lethal effect on a variety of M.tb strains than that of the drug alone.
Collapse
Affiliation(s)
- Shahab Zomorodbakhsh
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | - Yasamin Abbasian
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naghinejad
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Shen T, Zhang X, Lin KYA, Tong S. Solid base Mg-doped ZnO for heterogeneous catalytic ozonation of isoniazid: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134983. [PMID: 31726301 DOI: 10.1016/j.scitotenv.2019.134983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Magnesium-doped ZnO (denoted as x-MgZnO where x represented the molar ratio of Mg to the sum of Mg and Zn) powders synthesized by the traditional thermal decomposition were used as catalysts for ozonation of isoniazid (20 mg/L) at the initial pH of 7.2. Magnesium substituted zinc in wurtzite structure and the Zn-O-Mg bond was formed in Mg-doped ZnO on the basis of the results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The removal efficiencies of isoniazid were enhanced in Mg-doped ZnO catalytic ozonation processes (57.7% by 0.05-MgZnO and 76.3% by 0.10-MgZnO in 9 min), compared with ozonation alone (50.5%) and ZnO catalytic ozonation (49.5%). The removal efficiencies of total organic carbon (TOC) were also improved in Mg-doped ZnO catalytic ozonation processes. When the initial pH of 7.2 was lower than the pHPZC (point of zero charge) of Mg-doped ZnO, surface hydroxyl groups of the catalysts were protonated and the solution pH gradually increased during Mg-doped ZnO catalytic ozonation. The increase in the solution pH value mainly induced ozone decomposition into superoxide radical (O2-). Furthermore, protonated surface hydroxyl groups (S-OH2+) on Mg-doped ZnO also contributed a little to ozone decomposition. The 0.10-MgZnO powder showed high stability after continuous use in the process. Additionally, we proposed a possible degradation pathway for the oxidation of isoniazid in Mg-doped ZnO catalytic ozonation on the basis of intermediates detected. This work provides an insight into the mechanism for basic sites of solid base in heterogeneous catalytic ozonation.
Collapse
Affiliation(s)
- Tongdong Shen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaofang Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Shaoping Tong
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
7
|
Ebadi M, Saifullah B, Buskaran K, Hussein MZ, Fakurazi S. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine 2019; 14:6661-6678. [PMID: 31695362 PMCID: PMC6707435 DOI: 10.2147/ijn.s214923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer treatments are being continually developed. Increasingly more effective and better-targeted treatments are available. As treatment has developed, the outcomes have improved. PURPOSE In this work, polyethylene glycol (PEG), layered double hydroxide (LDH) and 5-fluorouracil (5-FU) were used as a stabilizing agent, a carrier and an anticancer active agent, respectively. CHARACTERIZATION AND METHODS Magnetite nanoparticles (Fe3O4) coated with polyethylene glycol (PEG) and co-coated with 5-fluorouracil/Mg/Al- or Zn/Al-layered double hydroxide were synthesized by co-precipitation technique. Structural, magnetic properties, particle shape, particle size and drug loading percentage of the magnetic nanoparticles were investigated by XRD, TGA, FTIR, DLS, FESEM, TEM, VSM, UV-vis spectroscopy and HPLC techniques. RESULTS XRD, TGA and FTIR studies confirmed the formation of Fe3O4 phase and the presence of iron oxide nanoparticles, polyethylene glycol, LDH and the drug for all the synthesized samples. The size of the nanoparticles co-coated with Mg/Al-LDH is about 27 nm compared to 40 nm when they were co-coated with Zn/Al-LDH, with both showings near uniform spherical shape. The iron oxide nanoparticles retain their superparamagnetic property when they were coated with polyethylene glycol, polyethylene glycol co-coated with Mg/Al-LDH and polyethylene glycol co-coated with Zn/Al-LDH with magnetic saturation value of 56, 40 and 27 emu/g, respectively. The cytotoxicity study reveals that the anticancer nanodelivery system has better anticancer activity than the free drug, 5-FU against liver cancer HepG2 cells and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells. CONCLUSION These are unique core-shell nanoparticles synthesized with the presence of multiple functionalities are hoped can be used as a multifunctional nanocarrier with the capability of targeted delivery using an external magnetic field and can also be exploited as hypothermia for cancer cells in addition to the chemotherapy property.
Collapse
Affiliation(s)
- Mona Ebadi
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Kalaivani Buskaran
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
8
|
Graphene Oxide⁻PEG⁻Protocatechuic Acid Nanocomposite Formulation with Improved Anticancer Properties. NANOMATERIALS 2018; 8:nano8100820. [PMID: 30314340 PMCID: PMC6215288 DOI: 10.3390/nano8100820] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/06/2018] [Accepted: 10/06/2018] [Indexed: 01/17/2023]
Abstract
The treatment of cancer through chemotherapy is limited by its toxicity to healthy tissues and organs, and its inability to target the cancer site. In this study, we have designed an anticancer nanocomposite delivery system for protocatechuic acid (PCA) using graphene oxide–polyethylene glycol as the nanocarrier, and coated with folic acid (GO–PEG–PCA–FA) for targeting the cancer cells. The designed anticancer delivery system was found to show much better anticancer activity than the free drug PCA against liver cancer HEP-G2 cells and human colon cancer HT-29 cells; at same time, it was found to be less toxic to normal fibroblast 3T3 cells. The folate-coated anticancer delivery system was found to show better activity then the free drug and the uncoated anticancer delivery system. The in vitro release of the PCA was found to be sustained in human physiological pHs, i.e., blood pH 7.4 and intracellular lysosomal pH 4.8. These in vitro findings are highly encouraging for further in vivo evaluation studies.
Collapse
|
9
|
Jaya Seema DM, Saifullah B, Selvanayagam M, Gothai S, Hussein MZ, Subbiah SK, Mohd Esa N, Arulselvan P. Designing of the Anticancer Nanocomposite with Sustained Release Properties by Using Graphene Oxide Nanocarrier with Phenethyl Isothiocyanate as Anticancer Agent. Pharmaceutics 2018; 10:pharmaceutics10030109. [PMID: 30071575 PMCID: PMC6161199 DOI: 10.3390/pharmaceutics10030109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 02/03/2023] Open
Abstract
In this study anticancer nanocomposite was designed using graphene oxide (GO) as nanocarrier and Phenethyl isothiocyanate (PEITC) as anticancer agent. The designed formulation was characterized in detailed with XRD, Raman, UV/Vis, FTIR, DLS and TEM etc. The designed anticancer nanocomposite showed much better anticancer activity against liver cancer HepG2 cells compared to the free drug PEITC and was also found to be nontoxic to the normal 3T3 cells. In vitro release of the drug from the anticancer nanocomposite formulation was found to be sustained in human body simulated phosphate buffer saline (PBS) solution of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). This study suggests that GO could be developed as an efficient drug carrier to conjugate with PEITC for pharmaceutical applications in cancer chemotherapies.
Collapse
Affiliation(s)
- Dasan Mary Jaya Seema
- Department of Advanced Zoology and Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600034, India.
| | - Bullo Saifullah
- Material Synthesis and characterization laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Henan-Macquarie Universities Joint Center for Biomedical Innovation, School of life Sciences, University of Henan Jin Ming Avenue, Kaifeng 475004, China.
| | - Mariadoss Selvanayagam
- Department of Advanced Zoology and Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600034, India.
- Loyola-ICAM college of engineering and Technology (LICET), Loyola Campus, Chennai 600034, India.
| | - Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Mohd Zobir Hussein
- Material Synthesis and characterization laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu 637408, India.
- Scigen Research and Innovation, Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, Tamilnadu 613403, India.
| |
Collapse
|
10
|
Fahim HA, Rouby WMAE, El-Gendy AO, Khairalla AS, Naguib IA, Farghali AA. Enhancement of the productivity of the potent bacteriocin avicin A and improvement of its stability using nanotechnology approaches. Sci Rep 2017; 7:10604. [PMID: 28878272 PMCID: PMC5587769 DOI: 10.1038/s41598-017-10157-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
Herein, enhancements of the yield and antimicrobial activity duration of the bacteriocin avicin A were accomplished using fractional factorial design (FFD) and layered double hydroxide (LDH) nanoparticles. Firstly, potential factors affecting bacteriocin production were selected for preliminary study. By a 25-1 FFD, high pH was shown to have a positive effect on avicin A yield, while temperature and duration of incubation, as well as peptone nitrogen sources all had negative effects. The highest bacteriocin production and activity (2560 BU/ml) were observed after 30 h of incubation at 30 °C, with pH adjustment at 7, and in the presence of 2 g mannitol as carbon source and 2.2 g peptone as nitrogen source. Secondly, avicin A nanocomposites with different LDH precursors were tested. Only avicin A-ZnAl-CO3 LDH demonstrated a potent antimicrobial activity against Lactobacillus sakei LMGT 2313 that lasted for at least 24 days, as compared to the values of 6 and 15 days observed with the free avicin A that has been stored at room temperature and at 4 °C, respectively. In conclusion, avicin A production and stability can be improved by manipulating the growth conditions and media composition, together with conjugation to LDHs.
Collapse
Affiliation(s)
- Hazem A Fahim
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Ahmed S Khairalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Ibrahim A Naguib
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Saifullah B, Hussein MZB. Inorganic nanolayers: structure, preparation, and biomedical applications. Int J Nanomedicine 2015; 10:5609-33. [PMID: 26366081 PMCID: PMC4562743 DOI: 10.2147/ijn.s72330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Zobir B Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|