1
|
Mendoza Villicana A, Gochi Ponce Y, Grande D, José Manuel CB, Zizumbo López A, González Joaquín MC, Chávez Santoscoy RA, Paz González JA, Bogdanchikova N, Pérez González GL, Villarreal-Gómez LJ. Evaluation of strategies to incorporate silver nanoparticles into electrospun microfibers for the preparation of wound dressings and their antimicrobial activity. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2181703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Anayanci Mendoza Villicana
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Yadira Gochi Ponce
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Daniel Grande
- Département Chimie Moléculaire et Matériaux Macromoléculaires (C3M), Institut de Chimie et des Matériaux Paris-Est, Paris, France
| | | | - Arturo Zizumbo López
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Marlon César González Joaquín
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | | | - Juan Antonio Paz González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotenología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, México
| | - Graciela Lizeth Pérez González
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| |
Collapse
|
2
|
Tahir R, Albargi HB, Ahmad A, Qadir MB, Khaliq Z, Nazir A, Khalid T, Batool M, Arshad SN, Jalalah M, Alsareii SA, Harraz FA. Development of Sustainable Hydrophilic Azadirachta indica Loaded PVA Nanomembranes for Cosmetic Facemask Applications. MEMBRANES 2023; 13:156. [PMID: 36837659 PMCID: PMC9959350 DOI: 10.3390/membranes13020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application.
Collapse
Affiliation(s)
- Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Tanzeela Khalid
- Department of Dermatology, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
3
|
Li H, Xu M, Shi R, Zhang A, Zhang J. Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules 2022; 27:5548. [PMID: 36080317 PMCID: PMC9458223 DOI: 10.3390/molecules27175548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the metal-based nanocrystal (NC) hierarchical structure requirements in many real applications, starting from basic synthesis principles of electrostatic spinning technology, the formation of functionalized fibrous materials with inorganic metallic and semiconductor nanocrystalline materials by electrostatic spinning synthesis technology in recent years was reviewed. Several typical electrostatic spinning synthesis methods for nanocrystalline materials in polymers are presented. Finally, the specific applications and perspectives of such electrostatic spun nanofibers in the biomedical field are reviewed in terms of antimicrobial fibers, biosensing and so on.
Collapse
Affiliation(s)
- Haojun Li
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Xu
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Shi
- Jishuitan Hospital, Beijing 100035, China
| | - Aiying Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Mayilswamy N, Jaya Prakash N, Kandasubramanian B. Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2021.2021905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Neelaambhigai Mayilswamy
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| | - Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| |
Collapse
|
5
|
Versatile nanofibrous filters against fine particulates and bioaerosols containing tuberculosis and virus: Multifunctions and scalable processing. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Lee SY, Huh TH, Jeong HR, Kwark YJ. In situ fabrication of silver/polyimide composite films with enhanced heat dissipation. RSC Adv 2021; 11:26546-26553. [PMID: 35480005 PMCID: PMC9037336 DOI: 10.1039/d1ra02380b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, silver/polyimide (Ag/PI) composite films with enhanced heat dissipation properties were prepared. Ag was formed in situ by reducing AgNO3 at various locations according to the reduction method. Two different types of soluble PIs capable of solution processing were used, namely Matrimid and hydroxy polyimide (HPI). Unlike Matrimid with bulky substituents, HPI with polar hydroxy groups formed ion-dipole interactions with Ag ions to form Ag particles with uniform size distribution. The location and distribution of Ag particles affect the heat emission characteristics of the composite films, resulting in better heat dissipation properties with the thermally and photochemically reduced Ag/HPI films having more Ag particles distributed inside of the films than the chemically reduced films.
Collapse
Affiliation(s)
- So Yoon Lee
- Department of Information Communication, Materials Engineering, Chemistry Convergence Technology, Soongsil University Seoul 06978 Republic of Korea
| | - Tae-Hwan Huh
- Department of Organic Materials and Fiber Engineering, Soongsil University Seoul 06978 Republic of Korea
| | - Hye Rim Jeong
- Department of Organic Materials and Fiber Engineering, Soongsil University Seoul 06978 Republic of Korea
| | - Young-Je Kwark
- Department of Organic Materials and Fiber Engineering, Soongsil University Seoul 06978 Republic of Korea
| |
Collapse
|
7
|
Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021; 13:pharmaceutics13070964. [PMID: 34206857 PMCID: PMC8308981 DOI: 10.3390/pharmaceutics13070964] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The treatment of wounds is expensive and challenging. Most of the available wound dressings are not effective and suffer from limitations such as poor antimicrobial activity, toxicity, inability to provide suitable moisture to the wound and poor mechanical performance. The use of inappropriate wound dressings can result in a delayed wound healing process. Nanosize range scaffolds have triggered great attention because of their attractive properties, which include their capability to deliver bioactive agents, high surface area, improved mechanical properties, mimic the extracellular matrix (ECM), and high porosity. Nanofibrous materials can be further encapsulated/loaded with metal-based nanoparticles to enhance their therapeutic outcomes in wound healing applications. The widely studied metal-based nanoparticles, silver nanoparticles exhibit good properties such as outstanding antibacterial activity, display antioxidant, and anti-inflammatory properties, support cell growth, making it an essential bioactive agent in wound dressings. This review article reports the biological (in vivo and in vitro) and mechanical outcomes of nanofibrous scaffolds loaded with silver nanoparticles on wound healing.
Collapse
|
8
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Controlled release of monodisperse silver nanoparticles via in situ cross-linked polyvinyl alcohol as benign and antibacterial electrospun nanofibers. Colloids Surf B Biointerfaces 2020; 197:111370. [PMID: 33049661 DOI: 10.1016/j.colsurfb.2020.111370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
A facile methodology was explored by using glutaraldehyde as a cross-linking reagent for in situ modification of polyvinyl alcohol (PVA) electrospun nanofibers doped with monodisperse silver nanoparticles (AgNPs) via the one-pot reactions. The hydroxyl groups along the PVA molecule chains can serve as both the reactive sites and stabilizers for AgNPs. Meanwhile, the cross-linking degree can be easily tuned by controlling the charged amounts of glutaraldehyde to obtain either partial or cured cross-linked PVA nanofibrous mats doped with AgNPs. It was revealed that such different cross-linking degrees could effectively control the release contents and rates of the embedded Ag to the surrounding aqueous solution. Furthermore, such release behavior was also found to be pH-responsive and acid-labile due to the formation of acetal groups during the cross-linking reactions. Besides both the partial and cured cross-linked PVA doped with Ag nanoparticles can still bear good antibacterial efficacy against S. aureus while have low cytotoxicity against mouse embryo fibroblasts (NIH3T3), human embryonic kidney cells (293T) and human histiocytic lymphoma cells (U937).
Collapse
|
10
|
Yeo JH, Kim M, Lee H, Cho J, Park J. Facile and Novel Eco-Friendly Poly(Vinyl Alcohol) Nanofilters Using the Photocatalytic Property of Titanium Dioxide. ACS OMEGA 2020; 5:5026-5033. [PMID: 32201788 PMCID: PMC7081405 DOI: 10.1021/acsomega.9b03944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
This study aimed to develop a highly efficient nanofilter for capturing fine particles using electrostatic forces. Poly(vinyl alcohol) (PVA), a water-soluble synthetic polymer, was selected as the main component of the filter because it can be easily fabricated by electrospinning. Titanium dioxide (TiO2) nanopowder with an anatase structure was applied to the nanofilters as it has the highest photocatalytic activity among the existing photocatalysts. PVA nanofilters fabricated by electrospinning could still be dissolved in water by hydrolysis. Therefore, heat treatment was performed to make the nanofilters stable, thereby forming C=O bonds by keto-enol tautomerization. Structural changes in the PVA nanofilter before and after heat treatment were investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis. As the TiO2 concentration increased, the fiber diameter of the PVA nanofilter decreased and a homogeneous fiber was obtained. The filtration efficiency and pressure drop also improved significantly, compared to those of the PVA-only nanofilter. Moreover, we observed eco-friendly decomposition of the PVA/TiO2 nanofilter into water and carbon dioxide by a photocatalytic reaction under UV irradiation.
Collapse
Affiliation(s)
- Ji Hyun Yeo
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Myounguk Kim
- Fibrous Ceramics & Aerospace Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea
| | - Hakjun Lee
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jihyun Cho
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jongshin Park
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
- Research Industry of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- . Tel: +82-2-880-4623. Fax: +82-2-880-4628
| |
Collapse
|
11
|
Salandari-Jolge N, Ensafi AA, Rezaei B. A novel three-dimensional network of CuCr 2O 4/CuO nanofibers for voltammetric determination of anticancer drug methotrexate. Anal Bioanal Chem 2020; 412:2443-2453. [PMID: 32025770 DOI: 10.1007/s00216-020-02461-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023]
Abstract
Considering the importance of measuring anticancer drugs, a carbon paste electrode (CPE) modified with CuCr2O4/CuO nanofibers in the presence of hydrophobic ionic liquid (IL) was fabricated for methotrexate (MTX) sensing. CuCr2O4/CuO nanofibers were prepared by electrospinning method. Then, the morphology and structure of the nanofibers were studied by scanning electron microscopy, thermal analysis, X-ray diffraction, energy-dispersive X-ray, map analysis, and FT-IR spectroscopy. The electrochemical behavior of MTX at CuCr2O4/CuO/IL/CPE surface was studied using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. After optimization of the experimental parameters, the prepared sensor showed a low detection limit of 25 nM MTX, based on signal-to-noise (S/N = 3), and it can determine in a wide range of 0.1-300 μM in Britton-Robinson buffer solution at pH 2.5. The modified electrode was used to determine MTX concentration in blood and urine samples with good recoveries of 94.1-104.3. This sensor has several advantages such as low cost, easy preparation, high-performance speed and high sensitivity, selectivity, stability, and repeatability. Graphical abstract Scheme of preparation of CuCr2O4/CuO nanofibers by electrospinning method and design of a carbon past electrode using prepared nanofibers (CuCr2O4/CuO/IL/CPE). This electrode was used for methotrexate determination in plasma and urine samples using differential pulse voltammetry.
Collapse
Affiliation(s)
- N Salandari-Jolge
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
12
|
Osanloo M, Arish J, Sereshti H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03042-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Rodríguez-Tobías H, Morales G, Grande D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:306-322. [DOI: 10.1016/j.msec.2019.03.099] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
|
14
|
Aktürk A, Erol Taygun M, Karbancıoğlu Güler F, Goller G, Küçükbayrak S. Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2015.11.015] [Citation(s) in RCA: 804] [Impact Index Per Article: 114.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
16
|
Chen M, Xiao C, Wang C, Liu H, Huang H, Yan D. Fabrication of tubular braid reinforced PMIA nanofiber membrane with mussel-inspired Ag nanoparticles and its superior performance for the reduction of 4-nitrophenol. NANOSCALE 2018; 10:19835-19845. [PMID: 30334561 DOI: 10.1039/c8nr06398b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel tubular braid reinforced (TBR) PMIA/CA-PEI/Ag nanofiber membrane for application in dynamic catalysis was introduced in this study. The preparation method of the TBR PMIA/CA-PEI/Ag nanofiber membrane was facile and efficient. The TBR PMIA/CA-PEI/Ag nanofiber membrane was characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The mechanical properties were evaluated by a universal material testing machine. The tensile strength of TBR nanofiber membrane exceeded 500 MPa, whereas that of the nanofiber membrane without reinforcement was merely 10 MPa. Besides, the compressive strength of the TBR nanofiber membrane was also reinforced, which indicated that the TBR nanofiber membrane could withstand a higher operating pressure. The reduction of 4-NP to 4-AP was selected as the model reaction to evaluate the catalytic property of TBR PMIA/CA-PEI/Ag nanofiber membrane. The apparent rate constant of dynamic catalysis was 34.58 times higher than that of static catalysis. After 10 cycles, the conversion of 4-NP was still higher than 95.3%. This indicated that the TBR PMIA/CA-PEI/Ag nanofiber membrane had superior stability and recyclability. Besides, the TBR PMIA/CA-PEI/Ag nanofiber membrane also showed superior catalytic performance when it was used for catalyzing other environmental pollutants.
Collapse
Affiliation(s)
- Mingxing Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, No. 399 Binshui West Road, Tianjin, 300387, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Deproteinised natural rubber latex grafted poly(dimethylaminoethyl methacrylate) - poly(vinyl alcohol) blend membranes: Synthesis, properties and application. Int J Biol Macromol 2017; 107:1821-1834. [PMID: 29032213 DOI: 10.1016/j.ijbiomac.2017.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/20/2023]
Abstract
Natural rubber latex was initially deproteinised (DNRL) and then subjected to physicochemical modifications to make high functional membranes for drug delivery applications. Initially, DNRL was prepared by incubating with urea, sodiumdodecylsulphate and acetone followed by centrifugation. The deproteinisation was confirmed by CHN analysis. The DNRL was then chemically modified by grafting (dimethylaminoethyl methacrylate) onto NR particles by using a redox initiator system viz; cumene hydroperoxide/tetraethylenepentamine, followed by dialysis for purification. The grafting was confirmed by dynamic light scattering, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The grafted system was blended with a hydrophilic adhesive polymer PVA and casted into membranes. The membranes after blending showed enhanced mechanical properties with a threshold concentration of PVA. The moisture uptake, swelling and water contact angle experiments indicated an increased hydrophilicity with an increased PVA content in the blend membranes. The grafted DNRL possessed significant antibacterial property which has been found to be retained in the blended form. A notable decrease in cytotoxicity was observed for the modified DNRL membranes than the bare DNRL membranes. The in-vitro drug release studies using rhodamine B as a model drug, confirmed the utility of the prepared membranes to function as a drug delivery matrix.
Collapse
|
18
|
Du L, Xu HZ, Li T, Zhang Y, Zou FY. Fabrication of ascorbyl palmitate loaded poly(caprolactone)/silver nanoparticle embedded poly(vinyl alcohol) hybrid nanofibre mats as active wound dressings via dual-spinneret electrospinning. RSC Adv 2017. [DOI: 10.1039/c7ra03193a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AP loaded PCL/AgNP embedded PVA hybrid nanofibre mats were prepared through dual-spinneret electrospinning, which altogether contributed to wound healing.
Collapse
Affiliation(s)
- L. Du
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Provincial Research Center of Clothing Engineering Technology
| | - H. Z. Xu
- Department of Bio-based Materials Science
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - T. Li
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Y. Zhang
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Provincial Research Center of Clothing Engineering Technology
| | - F. Y. Zou
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Provincial Research Center of Clothing Engineering Technology
| |
Collapse
|
19
|
Meng Y. A Sustainable Approach to Fabricating Ag Nanoparticles/PVA Hybrid Nanofiber and Its Catalytic Activity. NANOMATERIALS 2015; 5:1124-1135. [PMID: 28347055 PMCID: PMC5312901 DOI: 10.3390/nano5021124] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/01/2022]
Abstract
Ag nanoparticles were synthesized by using Ficus altissimaBlume leaf extract as a reducing agent at room temperature. The resulting Ag nanoparticles/PVA mixture was employed to create Ag nanoparticles/PVA (polyvinyl alcohol) hybrid nanofibers via an electrospinning technique. The obtained nanofibers were confirmed by means of UV-Vis spectroscopy, The X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and then tested to catalyze KBH4 reduction of methylene blue (MB). The catalytic results demonstrate that the MB can be reduced completely within 15 min. In addition, the Ag nanoparticles/PVA hybrid nanofibers show reusability for three cycles with no obvious losses in degradation ratio of the MB.
Collapse
Affiliation(s)
- Yongde Meng
- Department of Chemistry, Hanshan Normal University, Chaozhou 521041, China.
| |
Collapse
|
20
|
Wang R, Wang Z, Lin S, Deng C, Li F, Chen Z, He H. Green fabrication of antibacterial polymer/silver nanoparticle nanohybrids by dual-spinneret electrospinning. RSC Adv 2015. [DOI: 10.1039/c5ra03288a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanohybrids from waterborne polyurethane, poly(vinyl alcohol) and silver nanoparticles of ultrasmall sizes (5.1 ± 0.6 nm) are facilely obtained by directly one-step dual-spinneret electrospinning fabrication in water without additional chemicals.
Collapse
Affiliation(s)
- Runze Wang
- National Bio-Protection Engineering Center
- Tianjin
- People's Republic of China
- Institute of Medical Equipment
- Academy of Military Medical Sciences
| | - Zheng Wang
- National Bio-Protection Engineering Center
- Tianjin
- People's Republic of China
- Institute of Medical Equipment
- Academy of Military Medical Sciences
| | - Song Lin
- National Bio-Protection Engineering Center
- Tianjin
- People's Republic of China
- Institute of Medical Equipment
- Academy of Military Medical Sciences
| | - Cheng Deng
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin
- People's Republic of China
| | - Fan Li
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin
- People's Republic of China
| | - Zhijian Chen
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- People's Republic of China
| | - Hua He
- Department of Neurosurgery
- Changzheng Hospital
- Second Affiliated Hospital of Second Military Medical University
- Shanghai
- People's Republic of China
| |
Collapse
|