1
|
Qiu B, Wu D, Xue M, Ou L, Zheng Y, Xu F, Jin H, Gao Q, Zhuang J, Cen J, Lin B, Su YC, Chen S, Sun D. 3D Aligned Nanofiber Scaffold Fabrication with Trench-Guided Electrospinning for Cardiac Tissue Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4709-4718. [PMID: 38388349 DOI: 10.1021/acs.langmuir.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Constructing three-dimensional (3D) aligned nanofiber scaffolds is significant for the development of cardiac tissue engineering, which is promising in the field of drug discovery and disease mechanism study. However, the current nanofiber scaffold preparation strategy, which mainly includes manual assembly and hybrid 3D printing, faces the challenge of integrated fabrication of morphology-controllable nanofibers due to its cross-scale structural feature. In this research, a trench-guided electrospinning (ES) strategy was proposed to directly fabricate 3D aligned nanofiber scaffolds with alternative ES and a direct ink writing (DIW) process. The electric field effect of DIW poly(dimethylsiloxane) (PDMS) side walls on guiding whipping ES nanofibers was investigated to construct trench design rules. It was found that the width/height ratio of trenches greatly affected the nanofiber alignment, and the trench width/height ratio of 1.5 provided the nanofiber alignment degree over 60%. As a proof of principle, 3D nanofiber scaffolds with controllable porosity (60-80%) and alignment (30-60%) were fabricated. The effect of the scaffolds was verified by culturing human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in the uniform 3D distribution of aligned hiPSC-CMs with ∼1000 μm thickness. Therefore, this printing strategy shows great potential for the efficient engineered tissue construction.
Collapse
Affiliation(s)
- Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Dongyang Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yanfei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Qiang Gao
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jian Zhuang
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jianzheng Cen
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co. Ltd., Foshan 528231, Guangdong, China
| | - Yu-Chuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Schmitt PR, Dwyer KD, Coulombe KLK. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2461-2480. [PMID: 35623101 DOI: 10.1021/acsabm.2c00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.
Collapse
Affiliation(s)
- Phillip R Schmitt
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kiera D Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Dikici S, Aldemir Dikici B, MacNeil S, Claeyssens F. Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomater Sci 2021; 9:7297-7310. [PMID: 34617526 PMCID: PMC8547328 DOI: 10.1039/d1bm01262b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing involves a complex series of events where cell–cell and cell-extracellular matrix (ECM) interactions play a key role. Wounding can be simple, such as the loss of the epithelial integrity, or deeper and more complex, reaching to subcutaneous tissues, including blood vessels, muscles and nerves. Rapid neovascularisation of the wounded area is crucial for wound healing as it has a key role in supplying oxygen and nutrients during the highly demanding proliferative phase and transmigration of inflammatory cells to the wound area. One approach to circumvent delayed neovascularisation is the exogenous use of pro-angiogenic factors, which is expensive, highly dose-dependent, and the delivery of them requires a very well-controlled system to avoid leaky, highly permeable and haemorrhagic blood vessel formation. In this study, we decorated polycaprolactone (PCL)-based polymerised high internal phase emulsion (PolyHIPE) scaffolds with fibroblast-derived ECM to assess fibroblast, endothelial cell and keratinocyte activity in vitro and angiogenesis in ex ovo chick chorioallantoic membrane (CAM) assays. Our results showed that the inclusion of ECM in the scaffolds increased the metabolic activity of three types of cells that play a key role in wound healing and stimulated angiogenesis in ex ovo CAM assays over 7 days. Herein, we demonstrated that fibroblast-ECM functionalised PCL PolyHIPE scaffolds appear to have great potential to be used as an active wound dressing to promote angiogenesis and wound healing. Decellularisation of in vitro generated extracellular matrix (ECM) provides an effective way to stimulate angiogenesis and wound healing.![]()
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey. .,Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey. .,Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| |
Collapse
|
4
|
Jirkovec R, Holec P, Hauzerova S, Samkova A, Kalous T, Chvojka J. Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning. ACS OMEGA 2021; 6:9234-9242. [PMID: 33842792 PMCID: PMC8028135 DOI: 10.1021/acsomega.1c00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 05/12/2023]
Abstract
This research involved the production of polycaprolactone fiber layers via the alternating current electrospinning method. To construct the micro/nanofiber scaffold, mixtures of two molecular weight solutions, M n 45 000 and M n 80 000, were spun in differing proportions in a solvent system containing acetic acid, formic acid, and acetone in a ratio of 1:1:1. The composite fiber materials with hydroxyapatite particles were prepared from a solution that combined the different molecular weight solutions at a ratio of 1:3. The study resulted in the preparation of fiber layers containing 0, 5, 10, and 15% (wt) hydroxyapatite particles from the dry mass of the polycaprolactone. The strength, wettability, and surface energy of the composite materials were examined, and the results demonstrated that hydroxyapatite affects the fiber diameters, strength, and surface energy and, thus, the wettability of the fiber layers. The fibrous layers produced were further tested for cytotoxicity and cell viability and proliferation. The results obtained thus strongly indicate that the resulting bulky micro/nanofiber layers are suitable for further testing with a view to their eventual application in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Radek Jirkovec
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 460 01 Liberec, Czech Republic
| | - Pavel Holec
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 460 01 Liberec, Czech Republic
| | - Sarka Hauzerova
- Department
of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 460 01 Liberec, Czech Republic
| | - Alzbeta Samkova
- Department
of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 460 01 Liberec, Czech Republic
| | - Tomas Kalous
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 460 01 Liberec, Czech Republic
| | - Jiri Chvojka
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 460 01 Liberec, Czech Republic
| |
Collapse
|
5
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
6
|
Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P. Angiogenesis in Tissue Engineering: As Nature Intended? Front Bioeng Biotechnol 2020; 8:188. [PMID: 32266227 PMCID: PMC7099606 DOI: 10.3389/fbioe.2020.00188] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the steady increase in the number of studies focusing on the development of tissue engineered constructs, solutions delivered to the clinic are still limited. Specifically, the lack of mature and functional vasculature greatly limits the size and complexity of vascular scaffold models. If tissue engineering aims to replace large portions of tissue with the intention of repairing significant defects, a more thorough understanding of the mechanisms and players regulating the angiogenic process is required in the field. This review will present the current material and technological advancements addressing the imperfect formation of mature blood vessels within tissue engineered structures.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - William Cathery
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Paola Campagnolo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
7
|
Santillán J, Dwomoh EA, Rodríguez-Avilés YG, Bello SA, Nicolau E. Fabrication and Evaluation of Polycaprolactone Beads-on-String Membranes for Applications in Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:1031-1040. [DOI: 10.1021/acsabm.8b00628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jaime Santillán
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Emmanuel A. Dwomoh
- Department of Biology, City University of New York, City College, New York, New York 10031, United States
| | - Yaiel G. Rodríguez-Avilés
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
| | - Samir A. Bello
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
8
|
Paim Á, Tessaro IC, Cardozo NSM, Pranke P. Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. J Biol Phys 2018; 44:245-271. [PMID: 29508186 PMCID: PMC6082795 DOI: 10.1007/s10867-018-9482-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering is a multidisciplinary field of research in which the cells, biomaterials, and processes can be optimized to develop a tissue substitute. Three-dimensional (3D) architectural features from electrospun scaffolds, such as porosity, tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolality, temperature, nutrient, and metabolite concentrations dictate cell viability inside the constructs. The effect of different electrospun scaffold properties, bioreactor designs, mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can be studied individually or combined with phenomenological modeling techniques. This work reviews the main culture and scaffold factors that affect tissue development in vitro regarding the culture of cells inside 3D matrices. The mathematical modeling of the relationship between these factors and cell behavior inside 3D constructs has also been critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.
Collapse
Affiliation(s)
- Ágata Paim
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil.
| | - Isabel C Tessaro
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil
| | - Nilo S M Cardozo
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil
| | - Patricia Pranke
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, 90020-010, Brazil
| |
Collapse
|
9
|
Hu S, Chen H, Zhou X, Chen G, Hu K, Cheng Y, Wang L, Zhang F. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core-shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells. Int J Nanomedicine 2018; 13:4145-4155. [PMID: 30046239 PMCID: PMC6054293 DOI: 10.2147/ijn.s167035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Scaffold structure plays a vital role in cell behaviors. Compared with two-dimensional structure, 3D scaffolds can mimic natural extracellular matrix (ECM) and promote cell–cell and cell–matrix interactions. The combination of osteoconductive scaffolds and osteoinductive growth factors is considered to have synergistic effects on bone regeneration. Materials and methods In this study, core–shell poly(lactide-co-glycolide) (PLGA)/polycaprolactone (PCL)–BMP-2 (PP–B) fibrous scaffolds were prepared through coaxial electrospinning. Next, we fabricated 3D scaffolds based on PP–B fibers with thermally induced self-agglomeration (TISA) method and compared with conventional PLGA/PCL scaffolds in terms of scaffold morphology and BMP-2 release behaviors. Then, rat adipose-derived stem cells (rADSCs) were seeded on the scaffolds, and the effects on cell proliferation, cell morphology, and osteogenic differentiation of rADSCs were detected. Results The results demonstrated that 3D scaffold incorporated with BMP-2 significantly increased proliferation and osteogenic differentiation of rADSCs, followed by PP–B group. Conclusion Our findings indicate that scaffolds with 3D structure and osteoinductive growth factors have great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gang Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Basic Medical Science, Nanjing Medical University, Nanjing 210000, China
| | - Yi Cheng
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Lili Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| |
Collapse
|
10
|
Dashnyam K, El-Fiqi A, Buitrago JO, Perez RA, Knowles JC, Kim HW. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J Tissue Eng 2017; 8:2041731417707339. [PMID: 28560015 PMCID: PMC5435366 DOI: 10.1177/2041731417707339] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is considered an important issue in the development of biomaterials for the successful regeneration of tissues including bone. While growth factors are commonly used with biomaterials to promote angiogenesis, some ions released from biomaterials can also contribute to angiogenic events. Many silica-based biomaterials have been widely used for the repair and regeneration of tissues, mainly hard tissues such as bone and tooth structure. They have shown excellent performance in bone formation by stimulating angiogenesis. The release of silicate and others (Co and Cu ions) has therefore been implicated to play critical roles in the angiogenesis process. In this short review, we highlight the in vitro and in vivo findings of angiogenesis (and the related bone formation) stimulated by the various types of silicon-containing biomaterials where silicate ions released might play essential roles. We discuss further the possible molecular mechanisms underlying in the ion-induced angiogenic events.
Collapse
Affiliation(s)
- Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
11
|
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2015. [PMID: 26091616 DOI: 10.1007/s10616-015-9895-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
|
12
|
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2015; 68:355-69. [PMID: 26091616 DOI: 10.1007/s10616-015-9895-4] [Citation(s) in RCA: 425] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
|