1
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2024:10.1007/s10787-024-01581-1. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
2
|
Ali R, Qamar W, Kalam MA, Binkhathlan Z. Soluplus-TPGS Mixed Micelles as a Delivery System for Brigatinib: Characterization and In Vitro Evaluation. ACS OMEGA 2024; 9:41830-41840. [PMID: 39398132 PMCID: PMC11465523 DOI: 10.1021/acsomega.4c06264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Lung cancer is a major public health concern, with a high incidence and fatality rate. Its treatment is very difficult, as it is mostly diagnosed in advanced stages. Non-small cell lung carcinoma (NSCLC) is the major form of lung carcinoma that persists. Brigatinib (BGT), a powerful small-molecule tyrosine kinase inhibitor, has demonstrated significant therapeutic potential in the treatment of NSCLC with anaplastic lymphoma kinase (ALK) mutations. However, the therapeutic applicability of BGT is hampered by its low solubility and bioavailability. In this study, we developed a mixed micelle system comprising Soluplus and TPGS loaded with BGT. BGT was encapsulated into the mixed micelles using various combinations of Soluplus and TPGS, with encapsulation efficiency (EE%) ranging from 52.43 ± 1.07 to 97.88 ± 2.25%. The dynamic light scattering data showed that the mixed micelles ranged in size from 75.7 ± 0.46 to 204.3 ± 5.40 nm. The selected mixed micelles (F6) showed approximately 38% BGT release in the first 2 h, and subsequently, within 72 h, the release was 94.50 ± 5.90%. The NMR experiment confirmed the formation of micelles. Additionally, the mixed micelles showed significantly higher cellular uptake (p < 0.05) and increased cytotoxicity (p < 0.05) as compared to the free BGT. Specifically, the obtained IC50 values for BGT-loaded Soluplus-TPGS mixed micelles and free BGT were 22.59 ± 6.07 and 61.45 ± 6.35 μg/mL, respectively. The results of the in vitro stability experiment showed that the selected mixed micelle (F6) was stable at both room temperature and 4 °C, with only minor changes in size and PDI. Our results indicate great potential for the developed Soluplus-TPGS mixed micelles as a delivery system for BGT.
Collapse
Affiliation(s)
- Raisuddin Ali
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad Binkhathlan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Binkhathlan Z, Yusuf O, Ali R, Alomrani AH, Alshamsan A, Alshememry AK, Almomen A, Alkholief M, Aljuffali IA, Alqahtani F, Alobid S, Ali EA, Lavasanifar A. Polycaprolactone - Vitamin E TPGS micelles for delivery of paclitaxel: In vitro and in vivo evaluation. Int J Pharm X 2024; 7:100253. [PMID: 38845681 PMCID: PMC11152975 DOI: 10.1016/j.ijpx.2024.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to present findings on a paclitaxel (PTX)-loaded polymeric micellar formulation based on polycaprolactone-vitamin E TPGS (PCL-TPGS) and evaluate its in vitro anticancer activity as well as its in vivo pharmacokinetic profile in healthy mice in comparison to a marketed formulation. Micelles were prepared by a co-solvent evaporation method. The micelle's average diameter and polydispersity were determined using dynamic light scattering (DLS) technique. Drug encapsulation efficiency was assessed using an HPLC assay. The in vitro cytotoxicity was performed on human breast cancer cells (MCF-7 and MDA-MB-231) using MTT assay. The in vivo pharmacokinetic profile was characterized following a single intravenous dose of 4 mg/kg to healthy mice. The mean diameters of the prepared micelles were ≤ 100 nm. Moreover, these micelles increased the aqueous solubility of PTX from ∼0.3 μg/mL to reach nearly 1 mg/mL. While the PTX-loaded micelles showed an in vitro cytotoxicity comparable to the marketed formulation (Ebetaxel), drug-free PCL-TPGS micelles did not show any cytotoxic effects on both types of breast cancer cells (∼100% viability). Pharmacokinetics of PTX as part of PCL-TPGS showed a significant increase in its volume of distribution compared to PTX conventional formulation, Ebetaxel, which is in line with what was reported for clinical nano formulations of PTX, i.e., Abraxane, Genexol-PM, or Apealea. The findings of our studies indicate a significant potential for PCL-TPGS micelles to act as an effective system for solubilization and delivery of PTX.
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
4
|
Bansal K, Singh V, Mishra S, Bajpai M. Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives. Curr Pharm Biotechnol 2024; 25:807-824. [PMID: 38902930 DOI: 10.2174/0113892010265344230919170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 06/22/2024]
Abstract
Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
5
|
Nanodelivery of Dietary Polyphenols for Therapeutic Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248706. [PMID: 36557841 PMCID: PMC9784807 DOI: 10.3390/molecules27248706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Advancement in nanotechnology has unleashed the therapeutic potentials of dietary polyphenols by enhancing bioavailability, improving biological half-life, and allowing site-specific drug delivery. In this review, through citation of relevant literature reports, we discuss the application of nano-pharmaceutical formulations, such as solid lipid nanoparticles, nano-emulsions, nano-crystals, nano-polymersomes, liposomes, ethosomes, phytosomes, and invasomes for dietary polyphenols. Following this, we highlight important studies concerning different combinations of nano formulations with dietary polyphenols (also known as nanophytopolyphenols). We also provide nano-formulation paradigms for enhancing the physicochemical properties of dietary polyphenols. Finally, we highlight the latest patents that were granted on nano-formulations of dietary polyphenols. Based on our review, we observe that nanosized delivery of herbal constituents, spices, and dietary supplements have the ability to improve biological processes and address issues connected with herbal treatments.
Collapse
|
6
|
Utilization of gold nanoparticles for the detection of squamous cell carcinoma of the tongue based on laser-induced fluorescence and diffuse reflectance characteristics: an in vitro study. Lasers Med Sci 2022; 37:3551-3560. [PMID: 36001244 DOI: 10.1007/s10103-022-03634-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Squamous cell carcinoma is a very common type of oral cancer that affects the health of people with an unacceptably high mortality rate attributed to the difficulties in detecting the disease at an early stage. Therefore, effective techniques for early diagnosis and effective therapy of oral cancer are necessary. In the present study, we exploit the ability of gold nanoparticles (AuNPs) to undergo coupled surface plasmon resonance when closely spaced to improve diagnosing squamous cell carcinoma of the tongue. The prepared AuNPs are characterized by UV-VIS spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and transmission electron microscopy. The size of the prepared AuNPs is 12 ± 2 nm with narrow size distributions and exhibited high stability with a zeta potential of - 16.5 mV. The light fluorescence of the normal and cancer cells is recorded before and after NP addition using a spectrometer upon excitation by 405-nm laser irradiation. Furthermore, the light reflectance of the examined samples is measured at different laser wavelengths (red to NIR region). The obtained results show that the cancer cells mixed with AuNPs produce a higher fluorescence peak at 489.2 nm than the cancer cells without AuNPs. Moreover, the optical diffuse reflectance analyses reveal that the addition of AuNPs enhances cancer detection especially at the 635-nm irradiation with sensitivity (94%), specificity (87%), and overall accuracy (91%).
Collapse
|
7
|
Rajagopal M, Paul AK, Lee MT, Joykin AR, Por CS, Mahboob T, Salibay CC, Torres MS, Guiang MMM, Rahmatullah M, Jahan R, Jannat K, Wilairatana P, de Lourdes Pereira M, Lim CL, Nissapatorn V. Phytochemicals and Nano-Phytopharmaceuticals Use in Skin, Urogenital and Locomotor Disorders: Are We There? PLANTS 2022; 11:plants11091265. [PMID: 35567266 PMCID: PMC9099949 DOI: 10.3390/plants11091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/02/2022]
Abstract
Nanomedicines emerged from nanotechnology and have been introduced to bring advancements in treating multiple diseases. Nano-phytomedicines are synthesized from active phytoconstituents or plant extracts. Advancements in nanotechnology also help in the diagnosis, monitoring, control, and prevention of various diseases. The field of nanomedicine and the improvements of nanoparticles has been of keen interest in multiple industries, including pharmaceutics, diagnostics, electronics, communications, and cosmetics. In herbal medicines, these nanoparticles have several attractive properties that have brought them to the forefront in searching for novel drug delivery systems by enhancing efficacy, bioavailability, and target specificity. The current review investigated various therapeutic applications of different nano-phytopharmaceuticals in locomotor, dermal, reproductive, and urinary tract disorders to enhance bioavailability and efficacy of phytochemicals and herbal extracts in preclinical and in vitro studies. There is a lack of clinical and extensive preclinical studies. The research in this field is expanding but strong evidence on the efficacy of these nano-phytopharmaceuticals for human use is still limited. The long-term efficacy and safety of nano-phytopharmaceuticals must be ensured with priority before these materials emerge as common human therapeutics. Overall, this review provides up-to-date information on related contemporary research on nano-phytopharmaceuticals and nano-extracts in the fields of dermatological, urogenital, and locomotor disorders.
Collapse
Affiliation(s)
- Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Ming-Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Anabelle Rose Joykin
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Choo-Shiuan Por
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Tooba Mahboob
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Cristina C. Salibay
- Biologica Sciences Department, College of Science and Computer Studies, De La Salle University, Dasmarinas 4114, Philippines; (C.C.S.); (M.S.T.)
| | - Mario S. Torres
- Biologica Sciences Department, College of Science and Computer Studies, De La Salle University, Dasmarinas 4114, Philippines; (C.C.S.); (M.S.T.)
| | - Maria Melanie M. Guiang
- Department of Biology, College of Arts and Sciences, Central Mindanao University, Bukidnon 8710, Philippines;
- Center of Biodiversity Research and Extension in Mindanao (CEBREM), Central Mindanao University, Bukidnon 8710, Philippines
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Maria de Lourdes Pereira
- CICECO—Aveiro Institute of Materials, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
8
|
Ferreira M, Costa D, Sousa Â. Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering (Basel) 2022; 9:197. [PMID: 35621475 PMCID: PMC9137930 DOI: 10.3390/bioengineering9050197] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.
Collapse
Affiliation(s)
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
9
|
Jahan A, Akhtar J, Badruddeen, Jaiswal N, Ali A, Ahmad U. Recapitulate genistein for topical applications including nanotechnology delivery. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Afroz Jahan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Neha Jaiswal
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
10
|
Genistein, a Potential Phytochemical against Breast Cancer Treatment-Insight into the Molecular Mechanisms. Processes (Basel) 2022. [DOI: 10.3390/pr10020415] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignancies in women. Although widespread successful synthetic drugs are available, natural compounds can also be considered as significant anticancer agents for treating BC. Some natural compounds have similar effects as synthetic drugs with fewer side effects on normal cells. Therefore, we aimed to unravel and analyze several molecular mechanisms of genistein (GNT) against BC. GNT is a type of dietary phytoestrogen included in the flavonoid group with a similar structure to estrogen that might provide a strong alternative and complementary medicine to existing chemotherapeutic drugs. Previous research reported that GNT could target the estrogen receptor (ER) human epidermal growth factor receptor-2 (HER2) and several signaling molecules against multiple BC cell lines and sensitize cancer cell lines to this compound when used at an optimal inhibitory concentration. More specifically, GNT mediates the anticancer mechanism through apoptosis induction, arresting the cell cycle, inhibiting angiogenesis and metastasis, mammosphere formation, and targeting and suppressing tumor growth factors. Furthermore, it acts via upregulating tumor suppressor genes and downregulating oncogenes in vitro and animal model studies. In addition, this phytochemical synergistically reverses the resistance mechanism of standard chemotherapeutic drugs, increasing their efficacy against BC. Overall, in this review, we discuss several molecular interactions of GNT with numerous cellular targets in the BC model and show its anticancer activities alone and synergistically. We conclude that GNT can have favorable therapeutic advantages when standard drugs are not available in the pharma markets.
Collapse
|
11
|
Preparation and Characterization of Silymarin-Conjugated Gold Nanoparticles with Enhanced Anti-Fibrotic Therapeutic Effects against Hepatic Fibrosis in Rats: Role of MicroRNAs as Molecular Targets. Biomedicines 2021; 9:biomedicines9121767. [PMID: 34944582 PMCID: PMC8698929 DOI: 10.3390/biomedicines9121767] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main obstacles of silymarin (SIL) application in liver diseases are its low bioavailability, elevated metabolism, rapid excretion in bile and urine, and inefficient intestinal resorption. The study aimed to synthesize and characterize silymarin-conjugated gold nanoparticles (SGNPs) formulation to improve SIL bioavailability and release for potentiating its antifibrotic action. METHODS Both SGNPs and gold nanoparticles (GNPs) were prepared and characterized using standard characterization techniques. The improved formulation was assessed for in vitro drug release study and in vivo study on rats using CCl4 induced hepatic fibrosis model. SIL, SGNPs, and GNPs were administered by oral gavage daily for 30 days. At the end of the study, rats underwent anesthesia and were sacrificed, serum samples were collected for biochemical analysis. Liver tissues were collected to measure the genes and microRNAs (miRNAs) expressions. Also, histopathological and immunohistochemistry (IHC) examinations of hepatic tissues supported these results. RESULTS The successful formation and conjugation of SGNPs were confirmed by measurements methods. The synthesized nanohybrid SGNPs showed significant antifibrotic therapeutic action against CCl4-induced hepatic damage in rats, and preserved normal body weight, liver weight, liver index values, retained normal hepatic functions, lowered inflammatory markers, declined lipid peroxidation, and activated the antioxidant pathway nuclear factor erythroid-2-related factor 2 (NRF2). The antifibrotic activities of SGNPs mediated through enhancing the hepatic expression of the protective miRNAs; miR-22, miR-29c, and miR-219a which results in suppressed expression of the main fibrosis mediators; TGFβR1, COL3A1, and TGFβR2, respectively. The histopathology and IHC analysis confirmed the anti-fibrotic effects of SGNPs. CONCLUSIONS The successful synthesis of SGNPs with sizes ranging from 16 up to 20 nm and entrapment efficiency and loading capacity 96% and 38.69%, respectively. In vivo studies revealed that the obtained nano-formulation of SIL boosted its anti-fibrotic effects.
Collapse
|
12
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Sadia H, Qadri QR, Raza S, Irshad A, Akbar A, Reiner Ž, Al-Harrasi A, Al-Rawahi A, Satmbekova D, Butnariu M, Bagiu IC, Bagiu RV, Sharifi-Rad J. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int 2021; 21:388. [PMID: 34289845 PMCID: PMC8296701 DOI: 10.1186/s12935-021-02091-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Sajid Naeem
- School of Life Sciences, Lanzhuo University, Lanzhou, 730000, People's Republic of China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan.
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616, Oman
| | - Dinara Satmbekova
- High School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" From Timisoara, Timisoara, Romania.
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania.,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
14
|
Design and Development of D‒α‒Tocopheryl Polyethylene Glycol Succinate‒ block‒Poly(ε-Caprolactone) (TPGS- b-PCL) Nanocarriers for Solubilization and Controlled Release of Paclitaxel. Molecules 2021; 26:molecules26092690. [PMID: 34064416 PMCID: PMC8125698 DOI: 10.3390/molecules26092690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1–5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.
Collapse
|
15
|
Alaswad HA, Mahbub AA, Le Maitre CL, Jordan-Mahy N. Molecular Action of Polyphenols in Leukaemia and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22063085. [PMID: 33802972 PMCID: PMC8002821 DOI: 10.3390/ijms22063085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leukaemia is a malignant disease of the blood. Current treatments for leukaemia are associated with serious side-effects. Plant-derived polyphenols have been identified as potent anti-cancer agents and have been shown to work synergistically with standard chemotherapy agents in leukaemia cell lines. Polyphenols have multiple mechanisms of action and have been reported to decrease cell proliferation, arrest cell cycle and induce apoptosis via the activation of caspase (3, 8 and 9); the loss of mitochondrial membrane potential and the release of cytochrome c. Polyphenols have been shown to suppress activation of transcription factors, including NF-kB and STAT3. Furthermore, polyphenols have pro-oxidant properties, with increasing evidence that polyphenols inhibit the antioxidant activity of glutathione, causing oxidative DNA damage. Polyphenols also induce autophagy-driven cancer cell death and regulate multidrug resistance proteins, and thus may be able to reverse resistance to chemotherapy agents. This review examines the molecular mechanism of action of polyphenols and discusses their potential therapeutic targets. Here, we discuss the pharmacological properties of polyphenols, including their anti-inflammatory, antioxidant, anti-proliferative, and anti-tumour activities, and suggest that polyphenols are potent natural agents that can be useful therapeutically; and discuss why data on bioavailability, toxicity and metabolism are essential to evaluate their clinical use.
Collapse
Affiliation(s)
- Hamza A. Alaswad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Amani A. Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia;
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
- Correspondence: ; Tel.: +44-0114-225-3120
| |
Collapse
|
16
|
Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines 2020; 8:E347. [PMID: 32932737 PMCID: PMC7554840 DOI: 10.3390/biomedicines8090347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nanoscale, which is the scale of nanometers or one billionth of a meter. Nanotechnology encompasses a broad range of technologies, materials, and manufacturing processes that are used to design and/or enhance many products, including medicinal products. This technology has achieved considerable progress in the oncology field in recent years. Most chemotherapeutic agents are not specific to the cancer cells they are intended to treat, and they can harm healthy cells, leading to numerous adverse effects. Due to this non-specific targeting, it is not feasible to administer high doses that may harm healthy cells. Moreover, low doses can cause cancer cells to acquire resistance, thus making them hard to kill. A solution that could potentially enhance drug targeting and delivery lies in understanding the complexity of nanotechnology. Engineering pharmaceutical and natural products into nano-products can enhance the diagnosis and treatment of cancer. Novel nano-formulations such as liposomes, polymeric micelles, dendrimers, quantum dots, nano-suspensions, and gold nanoparticles have been shown to enhance the delivery of drugs. Improved delivery of chemotherapeutic agents targets cancer cells rather than healthy cells, thereby preventing undesirable side effects and decreasing chemotherapeutic drug resistance. Nanotechnology has also revolutionized cancer diagnosis by using nanotechnology-based imaging contrast agents that can specifically target and therefore enhance tumor detection. In addition to the delivery of drugs, nanotechnology can be used to deliver nutraceuticals like phytochemicals that have multiple properties, such as antioxidant activity, that protect cells from oxidative damage and reduce the risk of cancer. There have been multiple advancements and implications for the use of nanotechnology to enhance the delivery of both pharmaceutical and nutraceutical products in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
| | | | | | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (L.S.); (E.R.P.); (T.S.)
| |
Collapse
|
17
|
Dobrzynska M, Napierala M, Florek E. Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules 2020; 10:biom10091268. [PMID: 32887473 PMCID: PMC7564267 DOI: 10.3390/biom10091268] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, a ubiquitous group of naturally occurring polyphenolic compounds, have recently gained importance as anticancer agents. Unfortunately, due to low solubility, absorption, and rapid metabolism of dietary flavonoids, their anticancer potential is not sufficient. Nanocarriers can improve the bioavailability of flavonoids. In this review we aimed to evaluate studies on the anticancer activity of flavonoid nanoparticles. A review of English language articles published until 30 June 2020 was conducted, using PubMed (including MEDLINE), CINAHL Plus, Cochrane, and Web of Science data. Most studies determining the anticancer properties of flavonoid nanoparticles are preclinical. The potential anticancer activity focuses mainly on MCF-7 breast cancer cells, A549 lung cancer cells, HepG2 liver cancer cells, and melanoma cells. The flavonoid nanoparticles can also support the anti-tumour effect of drugs used in cancer therapy by enhancing the anti-tumour effect or reducing the systemic toxicity of drugs.
Collapse
Affiliation(s)
- Malgorzata Dobrzynska
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznan, Poland;
| | - Marta Napierala
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Correspondence: (M.N.); (E.F.); Tel.: +48-61-847-2081 (E.F.)
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Correspondence: (M.N.); (E.F.); Tel.: +48-61-847-2081 (E.F.)
| |
Collapse
|
18
|
Batra N, Sam A, Woldemariam T, Talbott G, de Vere White RW, Ghosh PM, Gaikwad NW, Kotchoni SO, Vinall RL. Genistein Combined Polysaccharide (GCP) Can Inhibit Intracrine Androgen Synthesis in Prostate Cancer Cells. Biomedicines 2020; 8:biomedicines8080282. [PMID: 32796613 PMCID: PMC7460199 DOI: 10.3390/biomedicines8080282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Our group and others have previously shown that genistein combined polysaccharide (GCP), an aglycone isoflavone-rich extract with high bioavailability and low toxicity, can inhibit prostate cancer (CaP) cell growth and survival as well as androgen receptor (AR) activity. We now elucidate the mechanism by which this may occur using LNCaP and PC-346C CaP cell lines; GCP can inhibit intracrine androgen synthesis in CaP cells. UPLC-MS/MS and qPCR analyses demonstrated that GCP can mediate a ~3-fold decrease in testosterone levels (p < 0.001) and cause decreased expression of intracrine androgen synthesis pathway enzymes (~2.5-fold decrease of 3βHSD (p < 0.001), 17βHSD (p < 0.001), CYP17A (p < 0.01), SRB1 (p < 0.0001), and StAR (p < 0.01)), respectively. Reverse-phase HPLC fractionation and bioassay identified three active GCP fractions. Subsequent NMR and LC-MS analysis of the fraction with the highest level of activity, fraction 40, identified genistein as the primary active component of GCP responsible for its anti-proliferative, pro-apoptotic, and anti-AR activity. GCP, fraction 40, and genistein all mediated at least a ~2-fold change in these biological activities relative to vehicle control (p < 0.001). Genistein caused similar decreases in the expression of 17βHSD and CYP17A (2.5-fold (p < 0.001) and 1.5-fold decrease (p < 0.01), respectively) compared to GCP, however it did not cause altered expression of the other intracrine androgen synthesis pathway enzymes; 3βHSD, SRB1, and StAR. Our combined data indicate that GCP and/or genistein may have clinical utility and that further pre-clinical studies are warranted.
Collapse
Affiliation(s)
- Neelu Batra
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (N.B.); (A.S.); (T.W.); (G.T.); (S.O.K.)
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA;
| | - Anhao Sam
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (N.B.); (A.S.); (T.W.); (G.T.); (S.O.K.)
| | - Tibebe Woldemariam
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (N.B.); (A.S.); (T.W.); (G.T.); (S.O.K.)
| | - George Talbott
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (N.B.); (A.S.); (T.W.); (G.T.); (S.O.K.)
| | | | - Paramita M. Ghosh
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA;
- Department of Urological Surgery, UC Davis, Sacramento, CA 95817, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| | | | - Simeon O. Kotchoni
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (N.B.); (A.S.); (T.W.); (G.T.); (S.O.K.)
| | - Ruth L. Vinall
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (N.B.); (A.S.); (T.W.); (G.T.); (S.O.K.)
- Correspondence: ; Tel.: +1-916-686-8532; Fax: +1-916-686-7400
| |
Collapse
|
19
|
Huang C, Chen F, Zhang L, Yang Y, Yang X, Pan W. 99mTc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics: Design, in vitro and in vivo Evaluation. Int J Nanomedicine 2020; 15:2987-2998. [PMID: 32431497 PMCID: PMC7200226 DOI: 10.2147/ijn.s242490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Emerging cancer therapy requires highly sensitive diagnosis in combination with cancer-targeting therapy. In this study, a self-assembled pH-sensitive curcumin (Cur)-loaded nanoparticle of 99mTc radiolabeled hyaluronan-cholesteryl hemisuccinate conjugates (HA-CHEMS) and D-a-tocopheryl polyethylene glycol succinate (TPGS) was prepared for breast cancer synergistic theranostics. Materials and Methods The synthesized amphiphilic HA-CHEMS conjugates and TPGS self-assembled into Cur-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) in an aqueous environment. The physicochemical properties of HA-CHEMS-Cur-TPGS NPs were characterized by transmission electron microscopy (TEM) and dynamic lighter scattering (DLS). The in vitro cytotoxicity of HA-CHEMS-Cur-TPGS NPs against breast cancer cells was evaluated by using the methyl thiazolyl tetrazolium (MTT) assay. Moreover, the in vivo animal experiments of HA-CHEMS-Cur-TPGS NPs including SPECT/CT imaging biodistribution and antitumor efficiency were investigated in 4T1 tumor-bearing BALB/c mice; furthermore, pharmacokinetics were investigated in healthy mice. Results HA-CHEMS-Cur-TPGS NPs exhibited high curcumin loading, uniform particle size distribution, and excellent stability in vitro. In the cytotoxicity assay, HA-CHEMS-Cur-TPGS NPs showed remarkably higher cytotoxicity to 4T1 cells with an IC50 value at 38 μg/mL, compared with free curcumin (77 μg/mL). Moreover, HA-CHEMS-Cur-TPGS NPs could be effectively and stably radiolabeled with 99mTc. The SPECT images showed that 99mTc-HA-CHEMS-Cur-TPGS NPs could target the 4T1 tumor up to 4.85±0.24%ID/g at 4 h post-injection in BALB/c mice. More importantly, the in vivo antitumor efficacy studies showed that HA-CHEMS-Cur-TPGS NPs greatly inhibited the tumor growth without resulting in obvious toxicities to major organs. Conclusion The results indicated that HA-CHEMS-Cur-TPGS NPs with stable 99mTc labeling and high curcumin-loading capacity hold great potential for breast cancer synergistic theranostics.
Collapse
Affiliation(s)
- Chong Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Xinchang 312500, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
20
|
Koulouktsi C, Nanaki S, Barmpalexis P, Kostoglou M, Bikiaris D. Preparation and characterization of Alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100014. [PMID: 31517279 PMCID: PMC6733287 DOI: 10.1016/j.ijpx.2019.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
In the present study, new aledronate (AL) loaded microspheres were prepared with the use of polycaprolactone (PCL)/Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) copolymers. Specifically, PCL-TPGS copolymers, prepared at several PCL to TPGS ratios (namely, 90/10, 80/20, 70/30 and 60/40 w/w) via a ring opening polymerization process, were characterized by intrinsic viscosity, proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and enzymatic hydrolysis. Results showed that as TPGS content increases the intrinsic viscosity of the copolymer (and hence, the viscosity-average molecular weight) is decreasing, while FTIR analysis showed the formation of hydrogen bonds between the —C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O of PCL and the —OH of TPGS. Additionally, XRD analysis indicated that the prepared copolymers were semi-crystalline in nature, while enzymatic hydrolysis studies showed that increasing TGPS content led to increasing copolymer hydrolysis. In the following step, AL drug-loaded microspheres were prepared via single emulsification process. Scanning electron microscopy (SEM) revealed the formation of coarse drug-loaded microspheres with particle size close to 5 μm, while XRD analysis showed that the API was amorphously dispersed only in the cases of high TPGS content. Furthermore, FTIR analysis showed that the API did not interact with the copolymer components, while in vitro drug release studies showed that increasing PCL content led to decreasing API release rate. Finally, analysis of the drug release profiles suggested that the API release mechanism was solely governed by the polymer matrix erosion.
Collapse
Affiliation(s)
- Christina Koulouktsi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| |
Collapse
|
21
|
Rassu G, Porcu EP, Fancello S, Obinu A, Senes N, Galleri G, Migheli R, Gavini E, Giunchedi P. Intranasal Delivery of Genistein-Loaded Nanoparticles as a Potential Preventive System against Neurodegenerative Disorders. Pharmaceutics 2018; 11:pharmaceutics11010008. [PMID: 30597930 PMCID: PMC6359056 DOI: 10.3390/pharmaceutics11010008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Genistein has been reported to have antioxidant and neuroprotective activity. Despite encouraging in vitro and in vivo results, several disadvantages such as poor water solubility, rapid metabolism, and low oral bioavailability limit the clinical application of genistein. The aim of this study was to design and characterize genistein-loaded chitosan nanoparticles for intranasal drug delivery, prepared by the ionic gelation technique by using sodium hexametaphosphate. Nanoparticles were characterized in vitro and their cytotoxicity was tested on PC12 cells. Genistein-loaded nanoparticles were prepared, and sodium hexametaphosphate was used as a valid alternative to well-known cross-linkers. Nanoparticle characteristics as well as their physical stability were affected by formulation composition and manufacturing. Small (mean diameters of 200–300 nm) and homogeneous nanoparticles were obtained and were able to improve genistein penetration through the nasal mucosa as compared to pure genistein. Nanoparticle dispersions showed a pH consistent with the nasal fluid and preserved PC12 cell vitality.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Elena Piera Porcu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Silvia Fancello
- Department of Clinical and Experimental Medicine, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Antonella Obinu
- Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Nina Senes
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Grazia Galleri
- Department of Clinical and Experimental Medicine, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Rossana Migheli
- Department of Clinical and Experimental Medicine, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| |
Collapse
|
22
|
Distribution of Glutathione-Stabilized Gold Nanoparticles in Feline Fibrosarcomas and Their Role as a Drug Delivery System for Doxorubicin-Preclinical Studies in a Murine Model. Int J Mol Sci 2018; 19:ijms19041021. [PMID: 29596317 PMCID: PMC5979397 DOI: 10.3390/ijms19041021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Feline injection site sarcomas (FISS) are malignant skin tumors with high recurrence rates despite the primary treatment of radical surgical resections. Adjunctive radiotherapy or chemotherapy with doxorubicin is mostly ineffective. Cellular and molecular causes of multidrug resistance, specific physio-chemical properties of solid tumors impairing drug transport, and the tumor microenvironment have been indicated for causing standard chemotherapy failure. Gold nanoparticles are promising imaging tools, nanotherapeutics, and drug delivery systems (DDS) for chemotherapeutics, improving drug transport within solid tumors. This study was conducted to assess the distribution of 4-nm glutathione-stabilized gold nanoparticles in FISS and their influence on kidney and liver parameters in nude mice. The role of gold nanoparticles as a doxorubicin DDS in FISS was examined to determine the potential reasons for failure to translate results from in vitro to in vivo studies. Grade III tumors characterized by a large area of necrosis at their core displayed positive immuneexpression of tumor-associated macrophages (TAM) at both the periphery and within the tumor core near the area of necrosis. Gold nanoparticles did not cause necrosis at the injection site and had no negative effect on liver and kidney parameters in nude mice. Gold nanoparticles accumulated in the tumor core and at the periphery and co-internalized with TAM—an important observation and potential therapeutic target warranting further investigation. The large area of necrosis and high immunoexpression of TAM, indicating “pro-tumor macrophages”, may be responsible for FISS tumor progression and therapeutic failure. However, further studies are required to test this hypothesis.
Collapse
|
23
|
Paul P, Chatterjee S, Pramanik A, Karmakar P, Chandra Bhattacharyya S, Kumar GS. Thionine Conjugated Gold Nanoparticles Trigger Apoptotic Activity Toward HepG2 Cancer Cell Line. ACS Biomater Sci Eng 2018; 4:635-646. [DOI: 10.1021/acsbiomaterials.7b00390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Puja Paul
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
- Department
of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sabyasachi Chatterjee
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Arindam Pramanik
- Department
of Life Science and Bio-technology, Jadavpur University, Kolkata 700 032, India
| | - Parimal Karmakar
- Department
of Life Science and Bio-technology, Jadavpur University, Kolkata 700 032, India
| | | | - Gopinatha Suresh Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
24
|
Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, Zhou L, Ge B. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv 2017; 24:681-691. [PMID: 28414557 PMCID: PMC8241003 DOI: 10.1080/10717544.2017.1309475] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area and drug loading content. In vitro drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand-receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.
Collapse
Affiliation(s)
- Yi Wei
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Li Gao
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Lu Wang
- b College of Biotechnology , and
| | - Lin Shi
- c Pharmaceutical College, Guilin Medical University , Guilin , P.R. China
| | - Erdong Wei
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Baotong Zhou
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Li Zhou
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Bo Ge
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| |
Collapse
|
25
|
Sims LB, Huss MK, Frieboes HB, Steinbach-Rankins JM. Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue. J Nanobiotechnology 2017; 15:67. [PMID: 28982361 PMCID: PMC5629750 DOI: 10.1186/s12951-017-0298-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Advanced stage cancer treatments are often invasive and painful-typically comprised of surgery, chemotherapy, and/or radiation treatment. Low transport efficiency during systemic chemotherapy may require high chemotherapeutic doses to effectively target cancerous tissue, resulting in systemic toxicity. Nanotherapeutic platforms have been proposed as an alternative to more safely and effectively deliver therapeutic agents directly to tumor sites. However, cellular internalization and tumor penetration are often diametrically opposed, with limited access to tumor regions distal from vasculature, due to irregular tissue morphologies. To address these transport challenges, nanoparticles (NPs) are often surface-modified with ligands to enhance transport and longevity after localized or systemic administration. Here, we evaluate stealth polyethylene-glycol (PEG), cell-penetrating (MPG), and CPP-stealth (MPG/PEG) poly(lactic-co-glycolic-acid) (PLGA) NP co-treatment strategies in 3D cell culture representing hypo-vascularized tissue. RESULTS Smaller, more regularly-shaped avascular tissue was generated using the hanging drop (HD) method, while more irregularly-shaped masses were formed with the liquid overlay (LO) technique. To compare NP distribution differences within the same type of tissue as a function of different cancer types, we selected HeLa, cervical epithelial adenocarcinoma cells; CaSki, cervical epidermoid carcinoma cells; and SiHa, grade II cervical squamous cell carcinoma cells. In HD tumors, enhanced distribution relative to unmodified NPs was measured for MPG and PEG NPs in HeLa, and for all modified NPs in SiHa spheroids. In LO tumors, the greatest distribution was observed for MPG and MPG/PEG NPs in HeLa, and for PEG and MPG/PEG NPs in SiHa spheroids. CONCLUSIONS Pre-clinical evaluation of PLGA-modified NP distribution into hypo-vascularized tumor tissue may benefit from considering tissue morphology in addition to cancer type.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA
| | - Maya K Huss
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA. .,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA. .,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
26
|
Lei X, Li K, Liu Y, Wang ZY, Ruan BJ, Wang L, Xiang A, Wu D, Lu Z. Co-delivery nanocarriers targeting folate receptor and encapsulating 2-deoxyglucose and α-tocopheryl succinate enhance anti-tumor effect in vivo. Int J Nanomedicine 2017; 12:5701-5715. [PMID: 28848348 PMCID: PMC5557622 DOI: 10.2147/ijn.s135849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A combination administration of chemical agents was highlighted to treat tumors. Recently, tumor cell has been found to be different from normal cell in metabolic manner. Most of cancer cells prefer aerobic glycolysis to mitochondrial oxidative phosphorylation (OXPHOS) to satisfy energy and biomass synthesis requirement to survive, grow and proliferate, which provides novel and potential therapeutic targets for chemotherapy. Here, 2-deoxy-d-glucose (2-DG), a potent inhibitor of glucose metabolism, was used to inhibit glycolysis of tumor cells; α-tocopheryl succinate (α-TOS), a water-insoluble vitamin E derivative, was chosen to suppress OXPHOS. Our data demonstrated that the combination treatment of 2-DG and α-TOS could significantly promote the anti-tumor efficiency in vitro compared with administration of the single drug. In order to maximize therapeutic activity and minimize negative side effects, a co-delivery nanocarrier targeting folate receptor (FR) was developed to encapsulate 2-DG and α-TOS simultaneously based on our previous work. Transmission electron microscope, dynamic light scattering method and UV-visible spectrophotometers were used to investigate morphology, size distribution and loading efficiency of the α-TOS-2-DG-loaded and FR-targeted nanoparticles (TDF NPs). The TDF NPs were found to possess a layer-by-layer shape, and the dynamic size was <100 nm. The final encapsulation efficiencies of α-TOS and 2-DG in TDF NPs were 94.3%±1.3% and 61.7%±7.7% with respect to drug-loading capacities of 8.9%±0.8% and 13.2%±2.6%, respectively. Almost no α-TOS release was found within 80 h, and release of 2-DG was sustained and slow within 72 h. The results of FR binding assay and fluorescence biodistribution revealed that TDF NPs could target FR highly expressed on tumor cell in vitro and in vivo. Further, in vivo anti-tumor experiments showed that TDF NPs had an improved biological function with less toxicity. Thus, our work indicates that the co-delivery TDF NPs have a great potential in tumor therapy.
Collapse
Affiliation(s)
- Xiaoying Lei
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University
| | - Ke Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi.,Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an
| | - Yan Liu
- Genetic Engineering Laboratory of PLA, The Eleventh Institute of Academy of Military Medical Sciences of PLA, Changchun, Jilin, People's Republic of China
| | - Zhen Yu Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University
| | - Ban Jun Ruan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University
| |
Collapse
|
27
|
Ordikhani F, Erdem Arslan M, Marcelo R, Sahin I, Grigsby P, Schwarz JK, Azab AK. Drug Delivery Approaches for the Treatment of Cervical Cancer. Pharmaceutics 2016; 8:E23. [PMID: 27447664 PMCID: PMC5039442 DOI: 10.3390/pharmaceutics8030023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Mustafa Erdem Arslan
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Raymundo Marcelo
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Ilyas Sahin
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA.
| | - Perry Grigsby
- Department of Radiation Oncology, Radiology and Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Julie K Schwarz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Department of Radiation Oncology, Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
28
|
Liao W, Zhang R, Dong C, Yu Z, Ren J. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity. Int J Nanomedicine 2016; 11:1305-21. [PMID: 27143875 PMCID: PMC4841427 DOI: 10.2147/ijn.s92257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer.
Collapse
Affiliation(s)
- Wenzhen Liao
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Rong Zhang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Chenbo Dong
- Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Zhiqiang Yu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiaoyan Ren
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Uifălean A, Schneider S, Ionescu C, Lalk M, Iuga CA. Soy Isoflavones and Breast Cancer Cell Lines: Molecular Mechanisms and Future Perspectives. Molecules 2015; 21:E13. [PMID: 26703550 PMCID: PMC6273223 DOI: 10.3390/molecules21010013] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
The potential benefit of soy isoflavones in breast cancer chemoprevention, as suggested by epidemiological studies, has aroused the interest of numerous scientists for over twenty years. Although intensive work has been done in this field, the preclinical results continue to be controversial and the molecular mechanisms are far from being fully understood. The antiproliferative effect of soy isoflavones has been commonly linked to the estrogen receptor interaction, but there is growing evidence that other pathways are influenced as well. Among these, the regulation of apoptosis, cell proliferation and survival, inhibition of angiogenesis and metastasis or antioxidant properties have been recently explored using various isoflavone doses and various breast cancer cells. In this review, we offer a comprehensive perspective on the molecular mechanisms of isoflavones observed in in vitro studies, emphasizing each time the dose-effect relationship and estrogen receptor status of the cells. Furthermore, we present future research directions in this field which could provide a better understanding of the inner molecular mechanisms of soy isoflavones in breast cancer.
Collapse
Affiliation(s)
- Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Louis Pasteur Street 6, Cluj-Napoca 400349, Romania.
- Institute of Biochemistry, Ernst-Moritz-Arndt-University, Felix-Hausdorff Street 4, Greifswald 17487, Germany.
| | - Stefanie Schneider
- Institute of Biochemistry, Ernst-Moritz-Arndt-University, Felix-Hausdorff Street 4, Greifswald 17487, Germany.
| | - Corina Ionescu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Louis Pasteur Street 6, Cluj-Napoca 400349, Romania.
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University, Felix-Hausdorff Street 4, Greifswald 17487, Germany.
| | - Cristina Adela Iuga
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Louis Pasteur Street 6, Cluj-Napoca 400349, Romania.
| |
Collapse
|