1
|
San Anselmo M, Lancelot A, Egido JE, Clavería-Gimeno R, Casanova Á, Serrano JL, Hernández-Ainsa S, Abian O, Sierra T. Janus Dendrimers to Assess the Anti-HCV Activity of Molecules in Cell-Assays. Pharmaceutics 2020; 12:pharmaceutics12111062. [PMID: 33171841 PMCID: PMC7695217 DOI: 10.3390/pharmaceutics12111062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
The use of nanocarriers has been revealed as a valid strategy to facilitate drug bioavailability, and this allows for expanding the drug libraries for the treatment of certain diseases such as viral diseases. In the case of Hepatitis C, the compounds iopanoic acid and 3,3',5-triiodothyroacetic acid (or tiratricol) were identified in a primary screening as bioactive allosteric inhibitors of viral NS3 protease, but they did not exhibit accurate activity inhibiting viral replication in cell-based assays. In this work, dendritic nanocarriers are proposed due to their unique properties as drug delivery systems to rescue the bioactivity of these two drugs. Specifically, four different amphiphilic Janus dendrimers synthesized by combining 2,2'-bis(hydroxymethyl)propionic acid (bis-MPA) and 2,2'-bis(glyciloxy)propionic acid (bis-GMPA) functionalized with either hydrophilic or lipophilic moieties at their periphery were used to entrap iopanoic acid and tiratricol. Interestingly, differences were found in the loading efficiencies depending on the dendrimer design, which also led to morphological changes of the resulting dendrimer aggregates. The most remarkable results consist of the increased water solubility of the bioactive compounds within the dendrimers and the improved antiviral activity of some of the dendrimer/drug aggregates, considerably improving antiviral activity in comparison to the free drugs. Moreover, imaging studies have been developed in order to elucidate the mechanism of cellular internalization.
Collapse
Affiliation(s)
- María San Anselmo
- Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (M.S.A.); (A.L.); (J.E.E.); (J.L.S.)
| | - Alexandre Lancelot
- Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (M.S.A.); (A.L.); (J.E.E.); (J.L.S.)
| | - Julia E. Egido
- Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (M.S.A.); (A.L.); (J.E.E.); (J.L.S.)
| | - Rafael Clavería-Gimeno
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain;
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| | - Álvaro Casanova
- Departamento de Farmacología y Fisiología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - José Luis Serrano
- Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (M.S.A.); (A.L.); (J.E.E.); (J.L.S.)
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (M.S.A.); (A.L.); (J.E.E.); (J.L.S.)
- ARAID Foundation, Government of Aragón, 50018 Zaragoza, Spain
- Correspondence: (S.H.-A.); (O.A.); or (T.S.); Tel.: +34-876-555388 (S.H.-A.); +34-876-555417 (O.A.); +34-976-762276 (T.S.)
| | - Olga Abian
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain;
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (S.H.-A.); (O.A.); or (T.S.); Tel.: +34-876-555388 (S.H.-A.); +34-876-555417 (O.A.); +34-976-762276 (T.S.)
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (M.S.A.); (A.L.); (J.E.E.); (J.L.S.)
- Correspondence: (S.H.-A.); (O.A.); or (T.S.); Tel.: +34-876-555388 (S.H.-A.); +34-876-555417 (O.A.); +34-976-762276 (T.S.)
| |
Collapse
|
2
|
Shukla A, Maiti P. Biodegradable Polymer-Based Nanohybrids for Controlled Drug Delivery and Implant Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2019:3-19. [DOI: 10.1007/978-981-32-9804-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Correia A, Shahbazi MA, Mäkilä E, Almeida S, Salonen J, Hirvonen J, Santos HA. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23197-23204. [PMID: 26440739 DOI: 10.1021/acsami.5b07033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.
Collapse
Affiliation(s)
- Alexandra Correia
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Ermei Mäkilä
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI20014 Turku, Finland
| | - Sérgio Almeida
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI20014 Turku, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|
4
|
Ghasemzadeh I, Alavi-Nasr A, Khademi M, Kargar Kheirabad A, Gouklani H. Prevalence of Hepatitis C infection in Qeshm Island in 2013-2014, Iran. J Med Life 2015; 8:118-121. [PMID: 28316677 PMCID: PMC5348940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/18/2015] [Indexed: 10/26/2022] Open
Abstract
Introduction: Hepatitis has involved many individuals and has left many complications. Hepatitis C is a type of hepatitis connected with several dilemmas. The purpose of the research is to study the Hepatitis epidemiology C into the Island of Qeshm in 2014. Method: this was an interventional study conducted on 1500 inhabitants of Qeshm Island. Participants were selected by using cluster sampling. Five cc of blood was drawn from each participant in order to test for HCV-Ab with ELIZA technique. Positive samples were referred for PCR to investigate the presence of anti Hepatitis C anti body. Data were entered in SPSS v.16 after sample collection and are examined utilizing detailed census (prevalence, mean, percent and standard deviation) and chi-square. Results: out of 1500 participants, 986 (65.7%) are women and 514 (34.3 %) are men. HCV anti body was seen in four patients (0.3 percent). The outcomes of the research explained that not of the studied factors (age, gender, marital status, place of residence, educational level, history of IV drug abuse, being in jail, quitting addiction, risky sexual behavior, etc.) is related to antibody pervasiveness. Conclusion: The disease pervasiveness was 0.3 percent in Qeshm Island, that is compatible with the another research outcomes. Also, factors investigated for HCV were not recognized as HCV risk factors.
Collapse
Affiliation(s)
- I Ghasemzadeh
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - A Alavi-Nasr
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M Khademi
- Clinical Research Development Center, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - A Kargar Kheirabad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - H Gouklani
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|