1
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Feng R, Fan Y, Zhang X, Chen L, Zhong ZF, Wang Y, Yu H, Zhang QW, Li G. A Biomimetic Multifunctional Nanoframework for Symptom Relief and Restorative Treatment of Acute Liver Failure. ACS NANO 2024. [PMID: 38294834 PMCID: PMC10883031 DOI: 10.1021/acsnano.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Acute liver failure (ALF) is a rare and serious condition characterized by major hepatocyte death and liver dysfunction. Owing to the limited therapeutic options, this disease generally has a poor prognosis and a high mortality rate. When ALF cannot be reversed by medications, liver transplantation is often needed. However, transplant rejection and the shortage of donor organs still remain major challenges. Most recently, stem cell therapy has emerged as a promising alternative for the treatment of liver diseases. However, the limited cell delivery routes and poor stability of live cell products have greatly hindered the feasibility and therapeutic efficacy of stem cell therapy. Inspired by the functions of mesenchymal stem cells (MSCs) primarily through the secretion of several factors, we developed an MSC-inspired biomimetic multifunctional nanoframework (MBN) that encapsulates the growth-promoting factors secreted by MSCs via combination with hydrophilic or hydrophobic drugs. The red blood cell (RBC) membrane was coated with the MBN to enhance its immunological tolerance and prolong its circulation time in blood. Importantly, the MBN can respond to the oxidative microenvironment, where it accumulates and degrades to release the payload. In this work, two biomimetic nanoparticles, namely, rhein-encapsulated MBN (RMBN) and N-acetylcysteine (NAC)-encapsulated MBN (NMBN), were designed and synthesized. In lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced and acetaminophen (APAP)-induced ALF mouse models, RMBN and NMBN could effectively target liver lesions, relieve the acute symptoms of ALF, and promote liver cell regeneration by virtue of their strong antioxidative, anti-inflammatory, and regenerative activities. This study demonstrated the feasibility of the use of an MSC-inspired biomimetic nanoframework for treating ALF.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| | - Xinya Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| | - Lanmei Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| |
Collapse
|
3
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
4
|
Noddeland HK, Kemp P, Urquhart AJ, Herchenhan A, Rytved KA, Petersson K, B. Jensen L. Reactive Oxygen Species-Responsive Polymer Nanoparticles to Improve the Treatment of Inflammatory Skin Diseases. ACS OMEGA 2022; 7:25055-25065. [PMID: 35910173 PMCID: PMC9330180 DOI: 10.1021/acsomega.2c01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
To improve the quality of life for people living with chronic inflammatory skin diseases, we propose a new treatment strategy by exploring a stimuli-responsive drug delivery system. Formulations designed by exploiting smart materials can be programmed to perform a specific action upon exposure to disease-related stimuli. For instance, increased levels of reactive oxygen species (ROS), especially the accumulation of hydrogen peroxide, can be utilized to differentiate between healthy and inflamed tissues. In this concept-proofing study, the polymer poly(1,4 phenyleneacetone dimethylene thioketal) (PPADT) was investigated for its ROS-responsive properties and potential to treat inflammatory skin diseases. PPADT nanoparticles were formulated by oil-in-water emulsification followed by solvent evaporation and characterized by size, zeta-potential, and release kinetic profiles. Release profiles revealed that the PPADT nanoparticles were sensitive toward elevated levels of ROS in an ROS-stimulus concentration (0.1-10 mM) and time-dependent manner (flare-up mimicked). The safety assessment proved that the PPADT polymer and the monomers generated by oxidation do not show any sign of being cytotoxic to fibroblasts and no mutagenic liabilities were observed. In conclusion, the PPADT polymer demonstrated to be a promising material for stimuli-responsive delivery of hydrophobic small molecules in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Heidi K. Noddeland
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Pernille Kemp
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
| | - Andrew J. Urquhart
- Department
of Health Technology, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Klaus A. Rytved
- In
Vivo Biology & Safety, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
| | - Louise B. Jensen
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
| |
Collapse
|
5
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
6
|
Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers (Basel) 2022; 14:polym14040687. [PMID: 35215600 PMCID: PMC8874672 DOI: 10.3390/polym14040687] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS)-sensitive drug delivery systems (DDS) specifically responding to altered levels of ROS in the pathological microenvironment have emerged as an effective means to enhance the pharmaceutical efficacy of conventional nanomedicines, while simultaneously reducing side effects. In particular, the use of the biocompatible, biodegradable, and non-toxic ROS-responsive thioketal (TK) functional group in the design of smart DDS has grown exponentially in recent years. In the design of TK-based DDS, different technological uses of TK have been proposed to overcome the major limitations of conventional DDS counterparts including uncontrolled drug release and off-target effects. This review will focus on the different technological uses of TK-based biomaterials in smart nanomedicines by using it as a linker to connect a drug on the surface of nanoparticles, form prodrugs, as a core component of the DDS to directly control its structure, to control the opening of drug-releasing gates or to change the conformation of the nano-systems. A comprehensive view of the various uses of TK may allow researchers to exploit this reactive linker more consciously while designing nanomedicines to be more effective with improved disease-targeting ability, providing novel therapeutic opportunities in the treatment of many diseases.
Collapse
|
7
|
Shafiq M, Chen Y, Hashim R, He C, Mo X, Zhou X. Reactive Oxygen Species-Based Biomaterials for Regenerative Medicine and Tissue Engineering Applications. Front Bioeng Biotechnol 2022; 9:821288. [PMID: 35004664 PMCID: PMC8733692 DOI: 10.3389/fbioe.2021.821288] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS), acting as essential mediators in biological system, play important roles in the physiologic and pathologic processes, including cellular signal transductions and cell homeostasis interference. Aberrant expression of ROS in tissue microenvironment can be caused by the internal/external stimuli and tissue injury, which may leads to an elevated level of oxidative stress, inflammatory response, and cellular damage as well as disruption in the tissue repair process. To prevent the formation of excess ROS around the injury site, advanced biomaterials can be remodeled or instructed to release their payloads in an injury microenvironment-responsive fashion to regulate the elevated levels of the ROS, which may also help downregulate the oxidative stress and promote tissue regeneration. A multitude of scaffolds and bioactive cues have been reported to promote the regeneration of damaged tissues based on the scavenging of free radicals and reactive species that confer high protection to the cellular activity and tissue function. In this review, we outline the underlying mechanism of ROS generation in the tissue microenvironment and present a comprehensive review of ROS-scavenging biomaterials for regenerative medicine and tissue engineering applications, including soft tissues regeneration, bone and cartilage repair as well as wound healing. Additionally, we highlight the strategies for the regulation of ROS by scaffold design and processing technology. Taken together, developing ROS-based biomaterials may not only help develop advanced platforms for improving injury microenvironment but also accelerate tissue regeneration.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Biotechnology, Faculty of Life Science, University of Central Punjab (UCP), Lahore, Pakistan
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Rashida Hashim
- Department of Chemistry, Faculty of Science, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
8
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, Forouzandeh Moghadam M, Samadikuchaksaraei A. Designer Exosomes: A New Platform for Biotechnology Therapeutics. BioDrugs 2021; 34:567-586. [PMID: 32754790 PMCID: PMC7402079 DOI: 10.1007/s40259-020-00434-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limitations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineering approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes using parental cell-based engineering and their application in cancer treatment and regenerative medicine. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Davod Jafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Shajari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosna Gomari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ganji
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
11
|
O’Dwyer J, Cullen M, Fattah S, Murphy R, Stefanovic S, Kovarova L, Pravda M, Velebny V, Heise A, Duffy GP, Cryan SA. Development of a Sustained Release Nano-In-Gel Delivery System for the Chemotactic and Angiogenic Growth Factor Stromal-Derived Factor 1α. Pharmaceutics 2020; 12:E513. [PMID: 32512712 PMCID: PMC7355599 DOI: 10.3390/pharmaceutics12060513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Stromal-Derived Factor 1α (SDF) is an angiogenic, chemotactic protein with significant potential for applications in a range of clinical areas, including wound healing, myocardial infarction and orthopaedic regenerative approaches. The 26-min in vivo half-life of SDF, however, has limited its clinical translation to date. In this study, we investigate the use of star-shaped or linear poly(glutamic acid) (PGA) polypeptides to produce PGA-SDF nanoparticles, which can be incorporated into a tyramine-modified hyaluronic acid hydrogel (HA-TA) to facilitate sustained localised delivery of SDF. The physicochemical properties and biocompatibility of the PGA-SDF nanoparticle formulations were extensively characterised prior to incorporation into a HA-TA hydrogel. The biological activity of the SDF released from the nano-in-gel system was determined on Matrigel®, scratch and Transwell® migration assays. Both star-shaped and linear PGA facilitated SDF nanoparticle formation with particle sizes from 255-305 nm and almost complete SDF complexation. Star-PGA-SDF demonstrated superior biocompatibility and was incorporated into a HA-TA gel, which facilitated sustained SDF release for up to 35 days in vitro. Released SDF significantly improved gap closure on a scratch assay, produced a 2.8-fold increase in HUVEC Transwell® migration and a 1.5-fold increase in total tubule length on a Matrigel® assay at 12 h compared to untreated cells. Overall, we present a novel platform system for the sustained delivery of bioactive SDF from a nano-in-gel system which could be adapted for a range of biomedical applications.
Collapse
Affiliation(s)
- Joanne O’Dwyer
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
| | - Megan Cullen
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
| | - Sarinj Fattah
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
| | - Robert Murphy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
| | - Smiljana Stefanovic
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
| | - Lenka Kovarova
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
- Faculty of Chemistry, Institute of Physical Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic
| | - Martin Pravda
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
| | - Vladimir Velebny
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
| | - Andreas Heise
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
| | - Garry P. Duffy
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
- Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sally Ann Cryan
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
12
|
Qu M, Jiang X, Zhou X, Wang C, Wu Q, Ren L, Zhu J, Zhu S, Tebon P, Sun W, Khademhosseini A. Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering. Adv Healthc Mater 2020; 9:e1901714. [PMID: 32125786 PMCID: PMC7189772 DOI: 10.1002/adhm.201901714] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Indexed: 02/05/2023]
Abstract
Growth factors (GFs) play a crucial role in directing stem cell behavior and transmitting information between different cell populations for tissue regeneration. However, their utility as therapeutics is limited by their short half-life within the physiological microenvironment and significant side effects caused by off-target effects or improper dosage. "Smart" materials that can not only sustain therapeutic delivery over a treatment period but also facilitate on-demand release upon activation are attracting significant interest in the field of GF delivery for tissue engineering. Three properties are essential in engineering these "smart" materials: 1) the cargo vehicle protects the encapsulated therapeutic; 2) release is targeted to the site of injury; 3) cargo release can be modulated by disease-specific stimuli. The aim of this review is to summarize the current research on stimuli-responsive materials as intelligent vehicles for controlled GF delivery; Five main subfields of tissue engineering are discussed: skin, bone and cartilage, muscle, blood vessel, and nerve. Challenges in achieving such "smart" materials and perspectives on future applications of stimuli-responsive GF delivery for tissue regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingzhi Wu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Li Ren
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jixiang Zhu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peyton Tebon
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
14
|
Xing F, Li L, Liu M, Duan X, Long Y, Xiang Z. [The application and research progress of in-situ tissue engineering technology in bone and cartilage repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1358-1364. [PMID: 30215487 DOI: 10.7507/1002-1892.201712118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the application and research progress of
in-situ tissue engineering technology in bone and cartilage repair. Methods The original articles about
in-situ tissue engineering technology in bone and cartilage repair were extensively reviewed and analyzed. Results In-situ tissue engineering have been shown to be effective in repairing bone defects and cartilage defects, but biological mechanisms are inadequate. At present, most of researches are mainly focused on animal experiments, and the effect of clinical repair need to be further studied. Conclusion In-situ tissue engineering technology has wide application prospects in bone and cartilage tissue engineering. However, further study on the mechanism of related cytokines need to be conducted.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lang Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ye Long
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
15
|
Sthijns MMJPE, van Blitterswijk CA, LaPointe VLS. Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. J Tissue Eng Regen Med 2018; 12:2013-2020. [PMID: 30044552 PMCID: PMC6221092 DOI: 10.1002/term.2730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to incorporate a functioning vasculature to overcome the consequences of a lack of oxygen and nutrients in the tissue construct. Otherwise, decreased oxygen tension leads to incomplete metabolism and the formation of the so‐called reactive oxygen species (ROS). Cells have many endogenous antioxidant systems to ensure a balance between ROS and antioxidants, but if this balance is disrupted by factors such as high levels of ROS due to long‐term hypoxia, there will be tissue damage and dysfunction. Current attempts to solve the oxygen problem in the field rarely take into account the importance of the redox balance and are instead centred on releasing or generating oxygen. The first problem with this approach is that although oxygen is necessary for life, it is paradoxically also a highly toxic molecule. Furthermore, although some oxygen‐generating biomaterials produce oxygen, they also generate hydrogen peroxide, a ROS, as an intermediate product. In this review, we discuss why it would be a superior strategy to supplement oxygen delivery with molecules to safeguard the important redox balance. Redox sensor proteins that can stimulate the anaerobic metabolism, angiogenesis, and enhancement of endogenous antioxidant systems are discussed as promising targets. We propose that redox regulating biomaterials have the potential to tackle some of the challenges related to angiogenesis and that the knowledge in this review will help scientists in tissue engineering and regenerative medicine realize this aim.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
He F, Luo PF, Tang T, Zhang F, Fang H, Ji SZ, Sun Y, Wu GS, Pan BH, Huo ZB, Wang GY, Xia ZF. Targeted release of stromal cell-derived factor-1α by reactive oxygen species-sensitive nanoparticles results in bone marrow stromal cell chemotaxis and homing, and repair of vascular injury caused by electrical burns. PLoS One 2018. [PMID: 29529067 PMCID: PMC5847229 DOI: 10.1371/journal.pone.0194298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rapid repair of vascular injury is an important prognostic factor for electrical burns. This repair is achieved mainly via stromal cell-derived factor (SDF)-1α promoting the mobilization, chemotaxis, homing, and targeted differentiation of bone marrow mesenchymal stem cells (BMSCs) into endothelial cells. Forming a concentration gradient from the site of local damage in the circulation is essential to the role of SDF-1α. In a previous study, we developed reactive oxygen species (ROS)-sensitive PPADT nanoparticles containing SDF-1α that could degrade in response to high concentration of ROS in tissue lesions, achieving the goal of targeted SDF-1α release. In the current study, a rat vascular injury model of electrical burns was used to evaluate the effects of targeted release of SDF-1α using PPADT nanoparticles on the chemotaxis of BMSCs and the repair of vascular injury. Continuous exposure to 220 V for 6 s could damage rat vascular endothelial cells, strip off the inner layer, significantly elevate the local level of ROS, and decrease the level of SDF-1α. After injection of Cy5-labeled SDF-1α-PPADT nanoparticles, the distribution of Cy5 fluorescence suggested that SDF-1α was distributed primarily at the injury site, and the local SDF-1α levels increased significantly. Seven days after injury with nanoparticles injection, aggregation of exogenous green fluorescent protein-labeled BMSCs at the injury site was observed. Ten days after injury, the endothelial cell arrangement was better organized and continuous, with relatively intact vascular morphology and more blood vessels. These results showed that SDF-1α-PPADT nanoparticles targeted the SDF-1α release at the site of injury, directing BMSC chemotaxis and homing, thereby promoting vascular repair in response to electrical burns.
Collapse
Affiliation(s)
- Fang He
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
- Department of Burn Surgery, the Nanjing Medical University affiliated Suzhou Hospital, Jiangsu, China
| | - Peng-Fei Luo
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Tao Tang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
- Department of Surgery, Navy Hospital of PLA, Shanghai, China
| | - Fang Zhang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - He Fang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Shi-Zhao Ji
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Yu Sun
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Guo-Sheng Wu
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Bo-Han Pan
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Zhi-Bao Huo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZBH); (GYW); (ZFX)
| | - Guang-Yi Wang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
- * E-mail: (ZBH); (GYW); (ZFX)
| | - Zhao-Fan Xia
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
- * E-mail: (ZBH); (GYW); (ZFX)
| |
Collapse
|
17
|
Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS CENTRAL SCIENCE 2017; 3:163-175. [PMID: 28386594 PMCID: PMC5364456 DOI: 10.1021/acscentsci.6b00371] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 05/09/2023]
Abstract
The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. A number of engineered nanotechnologies have been proposed demonstrating unique properties and multiple functions that address specific problems associated with wound repair mechanisms. In this outlook, we highlight the most recently developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment, with emphasis on chronic cutaneous wounds. Herein we explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Suzana Hamdan
- Department of Biochemistry
and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program,
Department of Dermatology and Cutaneous Surgery, Miller School of
Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Stefan Drakulich
- Wound Healing and Regenerative Medicine Research Program,
Department of Dermatology and Cutaneous Surgery, Miller School of
Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Emre Dikici
- Department of Biochemistry
and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program,
Department of Dermatology and Cutaneous Surgery, Miller School of
Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Sapna Deo
- Department of Biochemistry
and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Sylvia Daunert
- Department of Biochemistry
and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
- E-mail:
| |
Collapse
|
18
|
Li X, Ye X, Qi J, Fan R, Gao X, Wu Y, Zhou L, Tong A, Guo G. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent. Int J Nanomedicine 2016; 11:3993-4009. [PMID: 27574428 PMCID: PMC4993277 DOI: 10.2147/ijn.s104350] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xianlong Ye
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Jianying Qi
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Yunzhou Wu
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|