1
|
Gaudu N, Farr O, Ona-Nguema G, Duval S. Dissolved metal ions and mineral-liposome hybrid systems: Underlying interactions, synthesis, and characterization. Biochimie 2023; 215:100-112. [PMID: 37699473 DOI: 10.1016/j.biochi.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Liposomes are versatile lipid-based vesicles with interesting physicochemical properties, making them excellent candidates for interdisciplinary applications in the medicinal, biological, and environmental sciences. The synthesis of mineral-liposome hybrid systems lends normally inert vesicles with the catalytic, magnetic, electrical, and optical properties of the integrated mineral species. Such applications require an understanding of the physicochemical interactions between organic molecules and inorganic crystal structures. This review provides an overview on these interactions and details on synthesis and characterization methods for these systems.
Collapse
Affiliation(s)
- Nil Gaudu
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13400, Marseille, France.
| | - Orion Farr
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13400, Marseille, France; Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288, Marseille, France
| | - Georges Ona-Nguema
- Sorbonne Université - CNRS UMR 7590 - Muséum National D'Histoire Naturelle - IRD UMR 206, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Faculté des Sciences et Ingénierie, Campus Pierre & Marie Curie, 4 Place Jussieu, F-75005, Paris, France
| | - Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13400, Marseille, France
| |
Collapse
|
2
|
Jordanoski D, Drobne D, Repar N, Dogsa I, Mrak P, Cerc-Korošec R, Škapin AS, Nadrah P, Poklar Ulrih N. A Novel Artificial Hemoglobin Carrier Based on Heulandite-Calcium Mesoporous Aluminosilicate Particles. Int J Mol Sci 2022; 23:7460. [PMID: 35806461 PMCID: PMC9267069 DOI: 10.3390/ijms23137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Tetraethyl-orthosilicate (TEOS)-based nanoparticles are most extensively used as a silica-based hemoglobin carrier system. However, TEOS-based nanoparticles induce adverse effects on the hemoglobin structure. Therefore, a heulandite-calcium-based carrier was investigated as a novel silica-based hemoglobin carrier system. The heulandite-calcium mesoporous aluminosilicate particles (MSPs) were fabricated by a patented tribo-mechanical activation process, according to the manufacturer, and its structure was assessed by X-ray diffraction analysis. Upon hemoglobin encapsulation, alternation in the secondary and tertiary structure was observed. The hemoglobin-particle interactions do not cause heme degradation or decreased activity. Once encapsulated inside the particle pores, the hemoglobin shows increased thermal stability, and higher loading capacity per gram of particles (by a factor of >1.4) when compared to TEOS-based nanoparticles. Futhermore, we introduced a PEGlyted lipid bilayer which significantly decreases the premature hemoglobin release and increases the colloidal stability. The newly developed hemoglobin carrier shows no cytotoxicity to human umbilical vein endothelial cells (HUVEC).
Collapse
Affiliation(s)
- Dino Jordanoski
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.J.); (D.D.); (N.R.); (I.D.); (P.M.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.J.); (D.D.); (N.R.); (I.D.); (P.M.)
| | - Neža Repar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.J.); (D.D.); (N.R.); (I.D.); (P.M.)
| | - Iztok Dogsa
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.J.); (D.D.); (N.R.); (I.D.); (P.M.)
| | - Polona Mrak
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.J.); (D.D.); (N.R.); (I.D.); (P.M.)
| | - Romana Cerc-Korošec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot, 1000 Ljubljana, Slovenia;
| | - Andrijana Sever Škapin
- Slovenian National Bulding and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia; (A.S.Š.); (P.N.)
| | - Peter Nadrah
- Slovenian National Bulding and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia; (A.S.Š.); (P.N.)
| | - Natasa Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.J.); (D.D.); (N.R.); (I.D.); (P.M.)
| |
Collapse
|
3
|
Mota-Cobián A, Velasco C, Mateo J, España S. Optimization of purification techniques for lumen-loaded magnetoliposomes. NANOTECHNOLOGY 2020; 31:145102. [PMID: 31810069 DOI: 10.1088/1361-6528/ab5f80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liposomes encapsulating magnetic nanoparticles (MNPs), known as magnetoliposomes (MLs), have become a hot topic in biomedical research for applications in remote-triggered drug delivery and diagnostic imaging. One of the most crucial steps in the preparation of MLs is the purification of non-encapsulated MNPs, as a non-efficient purification can lead to misleading results. Purification is challenging especially when MNPs are loaded in the liposome lumen due to the small size differences between the MLs and the non-encapsulated MNPs. This work presents a comparison of three well known purification techniques, namely size exclusion chromatography, centrifugation and salt-induced aggregation, using five commercial MNPs with different configurations. The optimal purification techniques for two MNPs were studied further in the synthesis of MLs. In conclusion, we show that an efficient MLs purification requires the performance of a detailed study to select a valid method that is strongly dependent upon MNPs choices.
Collapse
Affiliation(s)
- Adriana Mota-Cobián
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Universidad Complutense de Madrid; IdISSC, Madrid, Spain
| | | | | | | |
Collapse
|
4
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
5
|
Carvalho A, Gonçalves MC, Corvo ML, Martins MBF. Development of New Contrast Agents for Imaging Function and Metabolism by Magnetic Resonance Imaging. MAGNETIC RESONANCE INSIGHTS 2017; 10:1178623X17722134. [PMID: 28804244 PMCID: PMC5533252 DOI: 10.1177/1178623x17722134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023]
Abstract
Liposomes are interesting nanosystems with a wide range of medical application. One particular application is their ability to enhance contrast in magnetic resonance images; when properly loaded with magnetic/superparamagnetic nanoparticles, this means to act as contrast agents. The design of liposomes loaded with magnetic particles, magnetoliposomes, presents a large number of possibilities depending on the application from image function to metabolism. More interesting is its double function application as theranostics (diagnostics and therapy). The synthesis, characterization, and possible medical applications of two types of magnetoliposomes are reviewed. Their performance will be compared, in particular, their efficiency as contrast agents for magnetic resonance imaging, measured by their relaxivities r1 and r2 relating to their particular composition. One of the magnetoliposomes had 1,2-diacyl-sn-glycero-3-phosphocholine (soy) as the main phospholipid component, with and without cholesterol, varying its phospholipid to cholesterol molar ratios. The other formulation is a long-circulating liposome composed of 1,2-diacyl-sn-glycero-3-phosphocholine (egg), cholesterol, and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. Both nanosystems were loaded with superparamagnetic iron oxide nanoparticles with different sizes and coatings.
Collapse
Affiliation(s)
- Alexandra Carvalho
- IEQUALTECS LDA, Departamento de Investigação, Formação, Inovação e Serviços
| | - M Clara Gonçalves
- Departamento de Engenharia Química and Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M Luísa Corvo
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - M Bárbara F Martins
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|