1
|
Feng J, Liu Y, Chen J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Marine Chitooligosaccharide Alters Intestinal Flora Structure and Regulates Hepatic Inflammatory Response to Influence Nonalcoholic Fatty Liver Disease. Mar Drugs 2022; 20:md20060383. [PMID: 35736186 PMCID: PMC9231394 DOI: 10.3390/md20060383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, C57BL/6 mice were given an HFHSD diet for 8 weeks to induce hepatic steatosis and then given COSM solution orally for 12 weeks. The study found that the HFHSD diet resulted in steatosis and insulin resistance in mice. The formation of NAFLD induced by HFHSD diet was related to the imbalance of intestinal flora. However, after COSM intervention, the abundance of beneficial bacteria increased significantly, while the abundance of harmful bacteria decreased significantly. The HFHSD diet also induced changes in intestinal bacterial metabolites, and the content of short-chain fatty acids in cecal contents after COSM intervention was significantly higher than that in the model group. In addition, COSM not only improved LPS levels and barrier dysfunction in the ileum and colon but upregulated protein levels of ZO-1, occludin, and claudin in the colon and downregulated the liver LPS/TLR4/NF-κB inflammatory pathway. We concluded that the treatment of marine chitooligosaccharide COSM could improve the intestinal microflora structure of the fatty liver and activate an inflammatory signaling pathway, thus alleviating the intrahepatic lipid accumulation induced by HFHSD.
Collapse
Affiliation(s)
- Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| |
Collapse
|
2
|
Áyen Á, Jiménez Martínez Y, Marchal JA, Boulaiz H. Recent Progress in Gene Therapy for Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19071930. [PMID: 29966369 PMCID: PMC6073662 DOI: 10.3390/ijms19071930] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in developed countries. This is due to the lack of specific symptoms that hinder early diagnosis and to the high relapse rate after treatment with radical surgery and chemotherapy. Hence, novel therapeutic modalities to improve clinical outcomes in ovarian malignancy are needed. Progress in gene therapy has allowed the development of several strategies against ovarian cancer. Most are focused on the design of improved vectors to enhance gene delivery on the one hand, and, on the other hand, on the development of new therapeutic tools based on the restoration or destruction of a deregulated gene, the use of suicide genes, genetic immunopotentiation, the inhibition of tumour angiogenesis, the alteration of pharmacological resistance, and oncolytic virotherapy. In the present manuscript, we review the recent advances made in gene therapy for ovarian cancer, highlighting the latest clinical trials experience, the current challenges and future perspectives.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|
3
|
Lloyd-Parry O, Downing C, Aleisaei E, Jones C, Coward K. Nanomedicine applications in women's health: state of the art. Int J Nanomedicine 2018; 13:1963-1983. [PMID: 29636611 PMCID: PMC5880180 DOI: 10.2147/ijn.s97572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
State-of-the-art applications of nanomedicine have the potential to revolutionize the diagnosis, prevention, and treatment of a range of conditions and diseases affecting women’s health. In this review, we provide a synopsis of potential applications of nanomedicine in some of the most dominant fields of women’s health: mental health, sexual health, reproductive medicine, oncology, menopause-related conditions and dementia. We explore published studies arising from in vitro and in vivo experiments, and clinical trials where available, to reveal novel and highly promising therapeutic applications of nanomedicine in these fields. For the first time, we summarize the growing body of evidence relating to the use of nanomaterials as experimental tools for the detection, prevention, and treatment of significant diseases and conditions across the life course of a cisgender woman, from puberty to menopause; revealing the far-reaching and desirable theoretical impact of nanomedicine across different medical disciplines. We also present an overview of potential concerns regarding the therapeutic applications of nanomedicine and the factors currently restricting the growth of applied nanomedicine.
Collapse
Affiliation(s)
- Oliver Lloyd-Parry
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Charlotte Downing
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Eisa Aleisaei
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
4
|
Men K, Zhang R, Zhang X, Huang R, Zhu G, Tong R, Yang L, Wei Y, Duan X. Delivery of modified mRNA encoding vesicular stomatitis virus matrix protein for colon cancer gene therapy. RSC Adv 2018; 8:12104-12115. [PMID: 35539419 PMCID: PMC9079296 DOI: 10.1039/c7ra13656k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2017] [Accepted: 03/17/2018] [Indexed: 02/05/2023] Open
Abstract
Plasmid DNA based gene delivery has been widely utilized among both pre-clinical and clinical gene therapy studies. However, therapeutic efficiency is usually limited by the size and potential immune-stimulation issue of plasmid backbone. As an alternative form of genetic material, chemically modified messenger RNA (mRNA) provides a promising alternative to plasmid DNA. In this work, an in vitro transcription mRNA encoding vesicular stomatitis virus matrix protein (VSVMP) was delivered by a cationic liposome–protamine complex, resulting in high mRNA transporting and expression efficiency. The liposome–protamine complex delivered VSVMP mRNA strongly inhibits the growth of C26 tumor cells through inducing apoptosis, while obvious tumor regressions were achieved on both abdominal cavity metastatic and subcutaneous xenograft models in vivo with high safety. Our results also demonstrated that the liposome–protamine–mRNA complex was as potent as its plasmid DNA counterpart, showing strong potential in further colon cancer therapy. Liposome–protamine complex delivered VSVMP mRNA efficiently inhibits C26 colon carcinoma with safety, providing an alternative strategy for non-viral gene therapy.![]()
Collapse
Affiliation(s)
- Ke Men
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rong Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Guonian Zhu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rongsheng Tong
- Individualized Medication Key Laboratory of Sichuan Province
- Department of Pharmacy
- Sichuan Provincial People's Hospital
- Chengdu
- People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Xingmei Duan
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| |
Collapse
|
5
|
Gutiérrez-Lovera C, Vázquez-Ríos AJ, Guerra-Varela J, Sánchez L, de la Fuente M. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes (Basel) 2017; 8:E349. [PMID: 29182542 PMCID: PMC5748667 DOI: 10.3390/genes8120349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.
Collapse
Affiliation(s)
- C Gutiérrez-Lovera
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| | - A J Vázquez-Ríos
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| | - J Guerra-Varela
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
- Geneaqua S.L., Lugo 27002, Spain.
| | - L Sánchez
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - M de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| |
Collapse
|
6
|
Xiao Y, Yang Y, Wu Y, Wang C, Cheng H, Zhao W, Li Y, Liu B, Long J, Guo W, Gao G, Gou M. Nanoparticles co-delivering pVSVMP and pIL12 for synergistic gene therapy of colon cancer. RSC Adv 2017. [DOI: 10.1039/c7ra03727a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles delivering therapeutic genes have promising applications in cancer treatments.
Collapse
|