1
|
Ren Z, Zhang X, Han J. Expression and Prognostic Significance of Ferroptosis-related Proteins SLC7A11 and GPX4 in Renal Cell Carcinoma. Protein Pept Lett 2023; 30:868-876. [PMID: 37807410 PMCID: PMC10788919 DOI: 10.2174/0109298665255704230920063254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The ferroptosis inhibitory gene solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) inhibit ferroptosis in carcinoma cells. However, whether SLC7A11 and GPX4 serve as an oncogene in renal cell carcinoma (RCC) remains unclear. METHODS Immunohistochemistry (IHC) assays were performed to assess the expression of SLC7A11 and GPX4 in human RCC tissues. Clinical-pathological analysis was performed to explore the correlation between SLC7A11 and GPX4 expression. Kaplan-Meier survival analysis was performed to characterise the associations between protein expression and patient progressionfree survival (PFS). RESULTS The upregulation of SLC7A11 and GPX4 was detected by IHC in RCC tissues compared with that in normal renal tissues. Meanwhile, the expression level of SLC7A11 and GPX4 was correlated with tumour diameter and distant metastasis (P<0.05). Kaplan-Meier survival analysis indicated that patients with high SLC7A11 and GPX4 expression levels exhibited worse PFS than those with low SLC7A11 and GPX4 expression levels (P<0.05). CONCLUSION The upregulation of SLC7A11 and GPX4 expression was associated with poor prognosis in patients with RCC. SLC7A11 and GPX4 may serve as diagnostic and prognostic biomarkers for patients with RCC.
Collapse
Affiliation(s)
- Zongtao Ren
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiaoyu Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| |
Collapse
|
2
|
Essegian DJ, Chavez V, Bustamante F, Schürer SC, Merchan JR. Cellular and molecular effects of PNCK, a non-canonical kinase target in renal cell carcinoma. iScience 2022; 25:105621. [PMID: 36465101 PMCID: PMC9713373 DOI: 10.1016/j.isci.2022.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a fatal disease when advanced. While immunotherapy and tyrosine kinase inhibitor-based combinations are associated with improved survival, the majority of patients eventually succumb to the disease. Through a comprehensive pan-cancer, pan-kinome analysis of the Cancer Genome Atlas (TCGA), pregnancy-upregulated non-ubiquitous calcium-calmodulin-dependent kinase (PNCK), was identified as the most differentially overexpressed kinase in RCC. PNCK overexpression correlated with tumor stage, grade and poor survival. PNCK overexpression in RCC cells was associated with increased CREB phosphorylation, increased cell proliferation, and cell cycle progression. PNCK down-regulation, conversely, was associated with the opposite, in addition to increased apoptosis. Pathway analyses in PNCK knockdown cells showed significant down-regulation of hypoxia and angiogenesis pathways, as well as the modulation of the cell cycle, DNA damage, and apoptosis pathways. These results demonstrate for the first time the biological role of PNCK, an understudied kinase, in RCC and validate PNCK as a druggable target.
Collapse
Affiliation(s)
- Derek J. Essegian
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Valery Chavez
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Floritza Bustamante
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jaime R. Merchan
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
3
|
Du Y, Zhao HC, Zhu HC, Jin Y, Wang L. Ferroptosis is involved in the anti-tumor effect of lycorine in renal cell carcinoma cells. Oncol Lett 2021; 22:781. [PMID: 34594422 PMCID: PMC8456505 DOI: 10.3892/ol.2021.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common malignant tumor in the genitourinary system. Studies have shown that Lycorine has promising anticancer activities with minor side effects. However, the effect of lycorine on the proliferation of RCC cells and its underlying anti-tumor mechanism have not yet been fully elucidated. The human renal cancer cell lines 786-O, A498 and Caki-1 were cultured and treated with different concentrations of lycorine or ferrostatin-1, a ferroptosis inhibitor. Cell viability and colony formation assays were used to measure cell proliferation. The 5-, 12- and 15-HETE hydroxyeicosatetraenoic acid (HETE) and MDA levels, as well as the reduced to oxidized glutathione (GHS/GSSG) ratio, were analyzed. Western blot analysis was used to detect the expression of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long chain family member 4 (ACSL4), which are key markers of ferroptosis. Transmission electron microscopy was used to observe the morphological features associated with ferroptosis. Lycorine was found to inhibit the proliferation of RCC cells. After lycorine treatment, the expression levels of GPX4 in RCC cells decreased, whereas those of ACSL4 increased. Lycorine induced the expression of 5-HETE, 12-HETE, 15-HETE and MDA in RCC cells, and reduced the GSH/GSSG ratio. In addition, ferrostatin-1 could prevent lycorine-induced ferroptosis in RCC cells.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Hong-Chao Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Heng-Cheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Yao Jin
- Department of Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
4
|
Hydroxychloroquine Potentiates Apoptosis Induced by PPAR α Antagonist in 786-O Clear Cell Renal Cell Carcinoma Cells Associated with Inhibiting Autophagy. PPAR Res 2021; 2021:6631605. [PMID: 33959154 PMCID: PMC8075691 DOI: 10.1155/2021/6631605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major pathological pattern of renal cell carcinoma. The ccRCC cells exhibit a certain degree of inherent drug resistance due to some genetic mutations. In recent years, peroxisome proliferator-activated receptor-α (PPARα) antagonists have been reported as a targeted therapeutic drug capable of inducing apoptosis and cell cycle arrest in the ccRCC cell line. Autophagy, which can be induced by stress in eukaryotic cells, plays a complex role in the proliferation, survival, and death of tumor cells. In our study, we found that the expression of PPARα was low in highly differentiated ccRCC tissues and 786-O cell line but high in poorly differentiated ccRCC tissues. The level of PPARα expression in ccRCC tissues is correlated to the grade of differentiation, but not to the sex or age of ccRCC patients. The findings also revealed that the PPARα antagonist GW6471 can lower cell viability and induce autophagy in the 786-O ccRCC cell line. This autophagy can be inhibited by hydroxychloroquine. When treated with a combination of hydroxychloroquine and GW6471, the viability of the 786-O cells was decreased further when compared to the treatment with GW6471 or hydroxychloroquine alone, and apoptosis was promoted. Meanwhile, when human kidney 2 cells were cotreated with hydroxychloroquine and GW6471, cell viability was only slightly influenced. Hence, our finding indicates that the combination of GW6471 and hydroxychloroquine may constitute a novel and potentially effective treatment for ccRCC. Furthermore, this approach is likely to be safe owing to its minimal effects on normal renal tissues.
Collapse
|
5
|
Padmavathi R, Chandrasekaran D, Sundaram S, Maheshkumar K, Kathiresan N. Preoperative neutrophil–lymphocyte ratio/platelet–lymphocyte ratio: A potential and economical marker for renal cell carcinoma. J Cancer Res Ther 2021; 18:1635-1639. [DOI: 10.4103/jcrt.jcrt_482_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells. Biomolecules 2020; 10:biom10091260. [PMID: 32878322 PMCID: PMC7565513 DOI: 10.3390/biom10091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma has emerged as one of the leading causes of cancer-related deaths in the USA. Here, we examined the anticancer profile of oxindole derivatives (SH-859) in human renal cancer cells. Targeting 786-O cells by SH-859 inhibited cell growth and affected the protein kinase B/mechanistic target of rapamycin 1 pathway, which in turn downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, as well as other signaling proteins. Treatment with SH-859 altered glycolysis, mitochondrial function, and levels of adenosine triphosphate and cellular metabolites. Flow cytometry revealed the induction of apoptosis and G0/G1 cell cycle arrest in renal cancer cells following SH-859 treatment. Induction of autophagy was also confirmed after SH-859 treatment by acridine orange and monodansylcadaverine staining, immunocytochemistry, and Western blot analyses. Finally, SH-859 also inhibited the tumor development in a xenograft model. Thus, SH-859 can serve as a potential molecule for the treatment of human renal carcinoma.
Collapse
|
7
|
Cox A, Zhao C, Tolkach Y, Nettersheim D, Schmidt D, Kristiansen G, Hauser S, Müller SC, Ritter M, Ellinger J. The contrasting roles of Dysferlin during tumor progression in renal cell carcinoma. Urol Oncol 2020; 38:687.e1-687.e11. [PMID: 32430251 DOI: 10.1016/j.urolonc.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The vesicle fusion protein Dysferlin (DYSF) is mainly known as a membrane repair protein in muscle cells. Mutations of DYSF lead to muscular dystrophies and cardiomyopathies. In contrast to other members of the Ferlin protein family, few is known about its role in cancer. Our study was designed to investigate the expression and functional properties of DYSF in ccRCC and its association with clinicopathological parameters and survival. MATERIAL AND METHODS TCGA cohort: mRNA expression data of DYSF were extracted from TCGA for patients with ccRCC (n = 603; ccRCC n = 522, benign n = 81). Study cohort: mRNA expression of DYSF in ccRCC was determined using qPCR (n = 126; ccRCC n = 82, benign n = 44). Immunohistochemical staining against DYSF was performed on tissue microarrays to validate protein expression (n = 172; ccRCC n = 142, benign n = 30). Correlations between mRNA/protein expression and clinicopathological data were statistically tested. Following siRNA-mediated knockdown of DYSF in ccRCC cell line ACHN, cell migration, invasion and proliferation were investigated. RESULTS Both DYSF mRNA and protein expression are significantly up-regulated in ccRCC tissue. DYSF mRNA expression decreased during tumor progression: lower expression levels were measured in higher stage/grade and metastatic ccRCC with independent prognostic significance for overall and cancer-specific survival. In contrast, protein expression correlated positively with pathological parameters. Overexpression showed tendency toward poor survival. Accordingly, knockdown of DYSF suppressed migration and invasion of ccRCC cells. CONCLUSION DYSF mRNA and protein expression are opposingly involved in tumor progression of ccRCC. DYSF could be used as a prognostic biomarker to predict survival of patients with ccRCC.
Collapse
Affiliation(s)
- Alexander Cox
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Chenming Zhao
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational Uro-oncology, University Medical School Düsseldorf, Düsseldorf, Germany
| | - Doris Schmidt
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Stefan Hauser
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Stefan C Müller
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Whiting D, Sriprasad S. Molecular biology and targeted therapy in metastatic renal cell carcinoma. JOURNAL OF CLINICAL UROLOGY 2020. [DOI: 10.1177/2051415819849322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The treatment of metastatic renal cell carcinoma is challenging as it has proven to be relatively resistant to conventional oncological treatments. An improved understanding of the molecular biology of renal cell carcinoma has led to the development of a number of targeted therapies in metastatic renal cell carcinoma. This includes vascular endothelial growth factor inhibitors, tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors and most recently immune checkpoint inhibitors. This article will review the mechanisms of development and progression of renal cell carcinoma as well as the mechanisms of current approved treatments in metastatic disease.Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
- D Whiting
- Department of Urology, Darent Valley Hospital, UK
| | - S Sriprasad
- Department of Urology, Darent Valley Hospital, UK
| |
Collapse
|
9
|
Dey P, Son JY, Kundu A, Kim KS, Lee Y, Yoon K, Yoon S, Lee BM, Nam KT, Kim HS. Knockdown of Pyruvate Kinase M2 Inhibits Cell Proliferation, Metabolism, and Migration in Renal Cell Carcinoma. Int J Mol Sci 2019; 20:E5622. [PMID: 31717694 PMCID: PMC6887957 DOI: 10.3390/ijms20225622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that the activity of pyruvate kinase M2 (PKM2) isoform is crucial for the survival of tumor cells. However, the molecular mechanism underlying the function of PKM2 in renal cancer is undetermined. Here, we reveal the overexpression of PKM2 in the proximal tubule of renal tumor tissues from 70 cases of patients with renal carcinoma. The functional role of PKM2 in human renal cancer cells following small-interfering RNA-mediated PKM2 knockdown, which retarded 786-O cell growth was examined. Targeting PKM2 affected the protein kinase B (AKT)/mechanistic target of the rapamycin 1 (mTOR) pathway, and downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, and other downstream signaling key proteins. PKM2 knockdown changed glycolytic metabolism, mitochondrial function, adenosine triphosphate (ATP) level, and intracellular metabolite formation and significantly reduced 786-O cell migration and invasion. Acridine orange and monodansylcadaverine staining, immunocytochemistry, and immunoblotting analyses revealed the induction of autophagy in renal cancer cells following PKM2 knockdown. This is the first study to indicate PKM2/AKT/mTOR as an important regulatory axis mediating the changes in the metabolism of renal cancer cells.
Collapse
Affiliation(s)
- Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Yura Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea;
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ki Taek Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| |
Collapse
|
10
|
Apelin and apelin receptor expression in renal cell carcinoma. Br J Cancer 2019; 120:633-639. [PMID: 30783205 PMCID: PMC6461937 DOI: 10.1038/s41416-019-0396-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background The APLNR (apelin receptor) has been shown to be an essential gene for cancer immunotherapy, with deficiency in APLNR leading to immunotherapy failure. The aim of this study is to investigate the expression of APLN (apelin) and APLNR in patients with renal cell carcinoma (RCC), and its association with clinicopathological parameters and survival. Methods Three well-characterised patient cohorts with RCC were used: Study cohort 1 (clear-cell RCC; APLN/APLNR mRNA expression; n = 166); TCGA validation cohort (clear-cell RCC; APLN/APLNR mRNA expression; n = 481); Study cohort 2 (all RCC subtypes; APLNR protein expression/immunohistochemistry; n = 300). Associations between mRNA/protein expression and clinicopathological variables/patients’ survival were tested statistically. Results While APLN showed only very weak association with tumour histological grade (TCGA cohort), APLNR/mRNA protein expression correlate significantly with ccRCC aggressiveness. APLNR is expressed in tumour vasculature and tumour cells at different levels, and these expression levels associate with tumour aggressiveness in opposing directions. APLNR expression was negatively correlated with PD-L1 expression by tumour cells in a subset of patients with ccRCC. APLNR expression in either compartment is an independent prognostic factor for survival of patients with ccRCC. Conclusion The APLNR/APLN-system appears to play an important role in ccRCC, warranting further clinical investigation.
Collapse
|
11
|
Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, Kochan G. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther 2018; 3:26. [PMID: 30275987 PMCID: PMC6160488 DOI: 10.1038/s41392-018-0022-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Programmed cell death-1 ligand-1 (PD-L1) overexpression in cancer cells accelerates tumor progression. PD-L1 possesses two main pro-oncogenic functions. First, PD-L1 is a strong immunosuppressive molecule that inactivates tumor-specific T cells by binding to the inhibitory receptor PD-1. Second, PD-L1 function relies on the delivery of intrinsic intracellular signals that enhance cancer cell survival, regulate stress responses and confer resistance toward pro-apoptotic stimuli, such as interferons. Here, we review the current knowledge on intracellular signal transduction pathways regulated by PD-L1, describe its associated signalosome and discuss potential combinations of targeted therapies against the signalosome with PD-L1/PD-1 blockade therapies.
Collapse
Affiliation(s)
- David Escors
- Navarrabiomed, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
- Rayne Institute, Division of Infection and Immunity, University College London, 5 University Street, WC1E 6JF London, UK
| | - María Gato-Cañas
- Navarrabiomed, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
| | - Miren Zuazo
- Navarrabiomed, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
| | - Hugo Arasanz
- Navarrabiomed, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
- Oncology Department, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
| | - María Jesus García-Granda
- Navarrabiomed, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
| | - Ruth Vera
- Oncology Department, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
| | - Grazyna Kochan
- Navarrabiomed, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Navarra Spain
| |
Collapse
|