1
|
Endacott SK, Brennan C, Kahl RGS, Onifade OM, Rae KM, Lumbers ER, Pringle KG. Soluble (pro)renin receptor (s(P)RR) levels in women carrying Aboriginal and/or Torres Strait Islander babies; the Gomeroi Gaaynggal study. Pregnancy Hypertens 2024; 38:101169. [PMID: 39577063 DOI: 10.1016/j.preghy.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To determine the levels of soluble (pro)renin receptor (s(P)RR) in women carrying Aboriginal and/or Torres Strait Islander (First Nations) babies and investigate whether s(P)RR levels change in women who have complicated pregnancies. STUDY DESIGN Cross-sectional analysis of data (2010-2018). Data/samples were from the Gomeroi Gaaynggal Study, a longitudinal cohort study based on Gomeroi/Kamilaroi lands (Tamworth), NSW, Australia. Third trimester samples (blood/urine) were collected from pregnant women carrying a First Nations baby (N = 188). METHODS/MAIN OUTCOME MEASURES Plasma s(P)RR and markers of kidney function (plasma: creatinine, urea and cystatin C; urinary: creatinine, protein, albumin, angiotensinogen, nephrin and Na/K) were measured by enzyme-linked immunosorbent assay or standardised pathology procedures as needed. RESULTS Soluble (P)RR was detected in plasma of women in the cohort (median: 19.86 ng/mL; IQR: 12.52-26.8). Soluble (P)RR levels correlated positively with maternal plasma creatinine (P = 0.0001) and gestational age in the third trimester (P = 0.002). Levels of s(P)RR tended to positively correlate with urinary protein/creatinine (P = 0.04) and nephrin/creatinine (P = 0.03). Soluble (P)RR levels tended to be higher in women who birthed prematurely (P = 0.06). Soluble (P)RR levels did not change with other pregnancy complications or outcomes (preeclampsia, GDM or small or large for gestational age birth). CONCLUSIONS Soluble (P)RR is present in the plasma of pregnant women carrying First Nations babies and is correlated with known urinary biomarkers of renal function. Increased maternal s(P)RR levels may be associated with increased risk of preterm birth.
Collapse
Affiliation(s)
- Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Cassandra Brennan
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Oyepeju M Onifade
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kym M Rae
- Mater Research Institute, Aubigny Place, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| |
Collapse
|
2
|
Gladysheva IP, Sullivan RD, Ramanathan K, Reed GL. Soluble (Pro)Renin Receptor Levels Are Regulated by Plasma Renin Activity and Correlated with Edema in Mice and Humans with HFrEF. Biomedicines 2022; 10:biomedicines10081874. [PMID: 36009420 PMCID: PMC9405551 DOI: 10.3390/biomedicines10081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Symptomatic heart failure with reduced ejection fraction (HFrEF) is characterized by edema and chronic pathological activation of the classical renin–angiotensin–aldosterone system (RAAS). The soluble (pro)renin receptor (s(P)RR) is released into circulation by proteolytic cleavage of tissue expressed (P)RR and is a candidate biomarker of RAAS activation. However, previous studies linked elevated levels of s(P)RR in patients with HFrEF to renal dysfunction. Utilizing prospectively enrolled patients with comparable rEF, we show that increased plasma levels of s(P)RR are associated with symptomatic HF (characterized by edema), independent of chronic renal dysfunction. We also found that s(P)RR levels were positively correlated with patient plasma renin activity (PRA). Normotensive mice with dilated cardiomyopathy (DCM) and HFrEF, without renal dysfunction, showed plasma s(P)RR and PRA patterns similar to human HFrEF patients. Plasma s(P)RR levels positively correlated with PRA and systemic edema, but not with EF, resembling findings in patients with HFrEF without chronic kidney dysfunction. In female DCM mice with elevated PRA levels and plasma s(P)RR levels, a randomized, blinded trial comparing the direct renin inhibitor, aliskiren vs. vehicle control, showed that direct renin inhibition normalized PRA, lowered s(P)RR, and prevented symptomatic HFrEF. Considered in light of previous findings, these data suggest that, in HFrEF, in the absence of renal dysfunction, elevation of plasma s(P)RR levels is caused by increased PRA and associated with the development of systemic edema.
Collapse
Affiliation(s)
- Inna P. Gladysheva
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (G.L.R.)
- Correspondence: ; Tel.: +1-(602)-827-2919
| | - Ryan D. Sullivan
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (G.L.R.)
| | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (G.L.R.)
| |
Collapse
|
3
|
Cardiorenal Disease in COVID-19 Patients. J Renin Angiotensin Aldosterone Syst 2022; 2022:4640788. [PMID: 35359461 PMCID: PMC8956393 DOI: 10.1155/2022/4640788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an illness caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in the genetic coding and the variations in the spike proteins are critical for the virus's mechanism of facilitating fusion with the human host, making the disease more severe. Recent research indicates that comorbidities including diabetes, hypertension, renal disease, heart failure, and atherosclerosis play a significant role in the severity and high mortality rates of (COVID-19), suggesting that perhaps the metabolic syndrome and its components are associated with COVID-19 morbidity. Primarily, angiotensin-converting enzyme 2 (ACE2) receptor is identified as the entrance receptor of SARS-CoV-2. Increased ACE2 expression, endothelial dysfunction plays a vital role in the progression and severity of complications developed due to COVID-19. In this review, we will discuss the association and management of cardiorenal disease and COVID-19.
Collapse
|
4
|
Zhou Y, Wang B, Wang Q, Tang L, Zou P, Zeng Z, Zhang H, Gong L, Li W. Protective Effects of Lactobacillus plantarum Lac16 on Clostridium perfringens Infection-Associated Injury in IPEC-J2 Cells. Int J Mol Sci 2021; 22:ijms222212388. [PMID: 34830269 PMCID: PMC8620398 DOI: 10.3390/ijms222212388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Huihua Zhang
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
- Correspondence: (L.G.); (W.L.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Correspondence: (L.G.); (W.L.)
| |
Collapse
|
5
|
Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021; 173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The (pro)renin receptor [(P)RR, Atp6ap2] was initially discovered as a membrane-bound binding partner of prorenin and renin. A soluble (P)RR has additional paracrine effects and is involved in metabolic syndrome and kidney damage. Meanwhile it is clear that most of the effects of the (P)RR are independent of prorenin. In the kidney, (P)RR plays an important role in renal dysfunction by activating proinflammatory and profibrotic molecules. In the brain, (P)RR is expressed in cardiovascular regulatory nuclei and is linked to hypertension. (P)RR is known to be an essential component of the v-ATPase as a key accessory protein and plays an important role in kidney, brain and heart via regulating the pH of the extracellular space and intracellular compartments. V-ATPase and (P)RR together act on WNT and mTOR signalling pathways, which are responsible for cellular homeostasis and autophagy. (P)RR through its role in v-ATPase assembly and function is also important for fast recycling endocytosis by megalin. In the kidney, megalin together with v-ATPase and (P)RR is crucial for endocytic uptake of components of the RAS and their intracellular processing. In the brain, (P)RR, v-ATPases and megalin are important regulators both during development and in the adult. All three proteins are associated with diseases such as XLMR, XMRE, X-linked parkinsonism and epilepsy, cognitive disorders with Parkinsonism, spasticity, intellectual disability, and Alzheimer's Disease which are characterized by impaired neuronal function and/or neuronal loss. The present review focusses on the relevant effects of Atp6ap2 without assigning them necessarily to the RAS. Mechanistically, many effects can be well explained by the role of Atp6ap2 for v-ATPase assembly and function. Furthermore, application of a soluble (P)RR analogue as new therapeutic option is discussed.
Collapse
Affiliation(s)
- Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany.
| |
Collapse
|
6
|
Effect of Angiotensin II on Chondrocyte Degeneration and Protection via Differential Usage of Angiotensin II Receptors. Int J Mol Sci 2021; 22:ijms22179204. [PMID: 34502113 PMCID: PMC8430521 DOI: 10.3390/ijms22179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The renin–angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT1R) and type 2 (AT2R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT1R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT1R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT1R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT1R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II–AT1R axis.
Collapse
|