1
|
Guo F, Hu H, Peng H, Liu J, Tang C, Zhang H. Research progress on machine algorithm prediction of liver cancer prognosis after intervention therapy. Am J Cancer Res 2024; 14:4580-4596. [PMID: 39417194 PMCID: PMC11477842 DOI: 10.62347/beao1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment for liver cancer has transitioned from traditional surgical resection to interventional therapies, which have become increasingly popular among patients due to their minimally invasive nature and significant local efficacy. However, with advancements in treatment technologies, accurately assessing patient response and predicting long-term survival has become a crucial research topic. Over the past decade, machine algorithms have made remarkable progress in the medical field, particularly in hepatology and prognosis studies of hepatocellular carcinoma (HCC). Machine algorithms, including deep learning and machine learning, can identify prognostic patterns and trends by analyzing vast amounts of clinical data. Despite significant advancements, several issues remain unresolved in the prognosis prediction of liver cancer using machine algorithms. Key challenges and main controversies include effectively integrating multi-source clinical data to improve prediction accuracy, addressing data privacy and ethical concerns, and enhancing the transparency and interpretability of machine algorithm decision-making processes. This paper aims to systematically review and analyze the current applications and potential of machine algorithms in predicting the prognosis of patients undergoing interventional therapy for liver cancer, providing theoretical and empirical support for future research and clinical practice.
Collapse
Affiliation(s)
- Feng Guo
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Hu
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Hao Peng
- Department of Abdominal Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi 445000, Hubei, China
| | - Jia Liu
- Department of Oncology, The First People’s Hospital of Changde CityChangde 415003, Hunan, China
| | - Chengbo Tang
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Zhang
- Department of Interventional Vascular Surgery, First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital)Changsha 410000, Hunan, China
| |
Collapse
|
2
|
Mendiratta-Lala M, Aslam A, Bai HX, Chapiro J, De Baere T, Miyayama S, Chernyak V, Matsui O, Vilgrain V, Fidelman N. Ethiodized oil as an imaging biomarker after conventional transarterial chemoembolization. Eur Radiol 2024; 34:3284-3297. [PMID: 37930412 PMCID: PMC11126446 DOI: 10.1007/s00330-023-10326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 11/07/2023]
Abstract
Conventional transarterial chemoembolization (cTACE) utilizing ethiodized oil as a chemotherapy carrier has become a standard treatment for intermediate-stage hepatocellular carcinoma (HCC) and has been adopted as a bridging and downstaging therapy for liver transplantation. Water-in-oil emulsion made up of ethiodized oil and chemotherapy solution is retained in tumor vasculature resulting in high tissue drug concentration and low systemic chemotherapy doses. The density and distribution pattern of ethiodized oil within the tumor on post-treatment imaging are predictive of the extent of tumor necrosis and duration of response to treatment. This review describes the multiple roles of ethiodized oil, particularly in its role as a biomarker of tumor response to cTACE. CLINICAL RELEVANCE: With the increasing complexity of locoregional therapy options, including the use of combination therapies, treatment response assessment has become challenging; Ethiodized oil deposition patterns can serve as an imaging biomarker for the prediction of treatment response, and perhaps predict post-treatment prognosis. KEY POINTS: • Treatment response assessment after locoregional therapy to hepatocellular carcinoma is fraught with multiple challenges given the varied post-treatment imaging appearance. • Ethiodized oil is unique in that its' radiopacity can serve as an imaging biomarker to help predict treatment response. • The pattern of deposition of ethiodozed oil has served as a mechanism to detect portions of tumor that are undertreated and can serve as an adjunct to enhancement in order to improve management in patients treated with intraarterial embolization with ethiodized oil.
Collapse
Affiliation(s)
- Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan Medicine, 1500 E Medical Center Dr., UH B2 A209R, Ann Arbor, MI, 48109, USA.
| | - Anum Aslam
- Department of Radiology, University of Michigan Medicine, 1500 E Medical Center Dr., UH B2 A209R, Ann Arbor, MI, 48109, USA
| | - Harrison X Bai
- Department of Radiology and Radiological Sciences, John Hopkins University, 601 N Caroline St, Baltimore, MD, 21287, USA
| | - Julius Chapiro
- Department of Radiology & Biomedical Imaging Yale University School of Medicine, 300 Cedar Street - TAC N312A, New Haven, CT, 06520, USA
| | - Thiery De Baere
- Gustave Roussy University of Paris Saclay, Villejuif, France
- Interventional Radiology, Gustave Roussy Cancer Center, Villejuif, France
- Département d'Anesthésie, Chirurgie et Imagerie Interventionnelle, Gustave Roussy Cancer Center, Villejuif, France
| | - Shiro Miyayama
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital 7-1, Funabashi, Wadanaka-cho, Fukui, 918-8503, Japan
| | - Victoria Chernyak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Osamu Matsui
- Department of Radiology, Kananzawa University, Japan, 2-21-9 Asahi-machi, Kanazawa, 920-0941, Japan
| | - Valerie Vilgrain
- Department of Radiology, Hospital Beaujon APHP.Nord, Université Paris Cité, CRI INSERM 1149, Paris, France
| | - Nicholas Fidelman
- University of California San Francisco, 505 Parnassus Avenue, Room M-361, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
İnce O, Önder H, Gençtürk M, Cebeci H, Golzarian J, Young S. Machine Learning Models in Prediction of Treatment Response After Chemoembolization with MRI Clinicoradiomics Features. Cardiovasc Intervent Radiol 2023; 46:1732-1742. [PMID: 37884802 DOI: 10.1007/s00270-023-03574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To evaluate machine learning models, created with radiomics and clinicoradiomics features, ability to predict local response after TACE. MATERIALS AND METHODS 188 treatment-naïve patients (150 responders, 38 non-responders) with HCC who underwent TACE were included in this retrospective study. Laboratory, clinical and procedural information were recorded. Local response was evaluated by European Association for the Study of the Liver criteria at 3-months. Radiomics features were extracted from pretreatment pre-contrast enhanced T1 (T1WI) and late arterial-phase contrast-enhanced T1 (CE-T1) MRI images. After data augmentation, data were split into training and test sets (70/30). Intra-class correlations, Pearson's correlation coefficients were analyzed and followed by a sequential-feature-selection (SFS) algorithm for feature selection. Support-vector-machine (SVM) models were trained with radiomics and clinicoradiomics features of T1WI, CE-T1 and the combination of both datasets, respectively. Performance metrics were calculated with the test sets. Models' performances were compared with Delong's test. RESULTS 1128 features were extracted. In feature selection, SFS algorithm selected 18, 12, 24 and 8 features in T1WI, CE-T1, combined datasets and clinical features, respectively. The SVM models area-under-curve was 0.86 and 0.88 in T1WI; 0.76, 0.71 in CE-T1 and 0.82, 0.91 in the combined dataset, with and without clinical features, respectively. The only significant change was observed after inclusion of clinical features in the combined dataset (p = 0.001). Higher WBC and neutrophil levels were significantly associated with lower treatment response in univariant analysis (p = 0.02, for both). CONCLUSION Machine learning models created with clinical and MRI radiomics features, may have promise in predicting local response after TACE. LEVEL OF EVIDENCE Level 4, Case-control study.
Collapse
Affiliation(s)
- Okan İnce
- Department of Radiology, Medical School, University of Minnesota, 420 Delaware Street S.E, Minneapolis, MN, 55455, USA.
| | - Hakan Önder
- Department of Radiology, Health Sciences University, Prof. Dr. Cemil TASCIOGLU City Hospital, Istanbul, Turkey
| | - Mehmet Gençtürk
- Department of Radiology, Medical School, University of Minnesota, 420 Delaware Street S.E, Minneapolis, MN, 55455, USA
| | - Hakan Cebeci
- Department of Radiology, Medical School, University of Minnesota, 420 Delaware Street S.E, Minneapolis, MN, 55455, USA
| | - Jafar Golzarian
- Department of Radiology, Medical School, University of Minnesota, 420 Delaware Street S.E, Minneapolis, MN, 55455, USA
| | - Shamar Young
- Department of Radiology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| |
Collapse
|
4
|
Feng S, Wang J, Wang L, Qiu Q, Chen D, Su H, Li X, Xiao Y, Lin C. Current Status and Analysis of Machine Learning in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1184-1191. [PMID: 37577233 PMCID: PMC10412715 DOI: 10.14218/jcth.2022.00077s] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Although the diagnosis and treatment of HCC have made great progress, the overall prognosis remains poor. As the core component of artificial intelligence, machine learning (ML) has developed rapidly in the past decade. In particular, ML has become widely used in the medical field, and it has helped in the diagnosis and treatment of cancer. Different algorithms of ML have different roles in diagnosis, treatment, and prognosis. This article reviews recent research, explains the application of different ML models in HCC, and provides suggestions for follow-up research.
Collapse
Affiliation(s)
- Sijia Feng
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Jianhua Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Liheng Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Qixuan Qiu
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Dongdong Chen
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Huo Su
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoli Li
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Yao Xiao
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Chiayen Lin
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhong JW, Nie DD, Huang JL, Luo RG, Cheng QH, Du QT, Guo GH, Bai LL, Guo XY, Chen Y, Chen SH. Prediction model of no-response before the first transarterial chemoembolization for hepatocellular carcinoma: TACF score. Discov Oncol 2023; 14:184. [PMID: 37847433 PMCID: PMC10581972 DOI: 10.1007/s12672-023-00803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Previous clinic models for patients with hepatocellular carcinoma (HCC) receiving transarterial chemoembolization (TACE) mainly focused on the overall survival, whereas a simple-to-use tool for predicting the response to the first TACE and the management of risk classification before TACE are lacking. Our aim was to develop a scoring system calculated manually for these patients. A total of 437 patients with hepatocellular carcinoma (HCC) who underwent TACE treatment were carefully selected for analysis. They were then randomly divided into two groups: a training group comprising 350 patients and a validation group comprising 77 patients. Furthermore, 45 HCC patients who had recently undergone TACE treatment been included in the study to validate the model's efficacy and applicability. The factors selected for the predictive model were comprehensively based on the results of the LASSO, univariate and multivariate logistic regression analyses. The discrimination, calibration ability and clinic utility of models were evaluated in both the training and validation groups. A prediction model incorporated 3 objective imaging characteristics and 2 indicators of liver function. The model showed good discrimination, with AUROCs of 0.735, 0.706 and 0.884 and in the training group and validation groups, and good calibration. The model classified the patients into three groups based on the calculated score, including low risk, median risk and high-risk groups, with rates of no response to TACE of 26.3%, 40.2% and 76.8%, respectively. We derived and validated a model for predicting the response of patients with HCC before receiving the first TACE that had adequate performance and utility. This model may be a useful and layered management tool for patients with HCC undergoing TACE.
Collapse
Affiliation(s)
- Jia-Wei Zhong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dan-Dan Nie
- Department of Gastroenterology, Fengcheng People's Hospital, Fengcheng, Jiangxi, China
| | - Ji-Lan Huang
- Medical Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong-Guang Luo
- Department of Interventional Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing-He Cheng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiao-Ting Du
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gui-Hai Guo
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang-Liang Bai
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Yun Guo
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Chen
- Department of Interventional Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Si-Hai Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
6
|
Wang Q, Sheng Y, Jiang Z, Liu H, Lu H, Xing W. What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis: CT or MRI or Both? Diagnostics (Basel) 2023; 13:2012. [PMID: 37370907 DOI: 10.3390/diagnostics13122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It is of great importance to predict the early recurrence (ER) of hepatocellular carcinoma (HCC) after hepatectomy using preoperative imaging modalities. Nevertheless, no comparative studies have been conducted to determine which modality, CT or MRI with radiomics analysis, is more effective. METHODS We retrospectively enrolled 119 HCC patients who underwent preoperative CT and MRI. A total of 3776 CT features and 4720 MRI features were extracted from the whole tumor. The minimum redundancy and maximum relevance algorithm (MRMR) and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection, then support vector machines (SVMs) were applied for model construction. Multivariable logistic regression analysis was employed to construct combined models that integrate clinical-radiological-pathological (CRP) traits and radscore. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to compare the efficacy of CT, MRI, and CT and MRI models in the test cohort. RESULTS The CT model and MRI model showed no significant difference in the prediction of ER in HCC patients (p = 0.911). RadiomicsCT&MRI demonstrated a superior predictive performance than either RadiomicsCT or RadiomicsMRI alone (p = 0.032, 0.039). The combined CT and MRI model can significantly stratify patients at high risk of ER (area under the curve (AUC) of 0.951 in the training set and 0.955 in the test set) than the CT model (AUC of 0.894 and 0.784) and the MRI model (AUC of 0.856 and 0.787). DCA demonstrated that the CT and MRI model provided a greater net benefit than the models without radiomics analysis. CONCLUSIONS No significant difference was found in predicting the ER of HCC between CT models and MRI models. However, the multimodal radiomics model derived from CT and MRI can significantly improve the prediction of ER in HCC patients after resection.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Ye Sheng
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Zhenxing Jiang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haifeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haitao Lu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| |
Collapse
|
7
|
Wang L, Song D, Wang W, Li C, Zhou Y, Zheng J, Rao S, Wang X, Shao G, Cai J, Yang S, Dong J. Data-Driven Assisted Decision Making for Surgical Procedure of Hepatocellular Carcinoma Resection and Prognostic Prediction: Development and Validation of Machine Learning Models. Cancers (Basel) 2023; 15:cancers15061784. [PMID: 36980670 PMCID: PMC10046511 DOI: 10.3390/cancers15061784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Currently, surgical decisions for hepatocellular carcinoma (HCC) resection are difficult and not sufficiently personalized. We aimed to develop and validate data driven prediction models to assist surgeons in selecting the optimal surgical procedure for patients. Methods: Retrospective data from 361 HCC patients who underwent radical resection in two institutions were included. End-to-end deep learning models were built to automatically segment lesions from the arterial phase (AP) of preoperative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Clinical baseline characteristics and radiomic features were rigorously screened. The effectiveness of radiomic features and radiomic-clinical features was also compared. Three ensemble learning models were proposed to perform the surgical procedure decision and the overall survival (OS) and recurrence-free survival (RFS) predictions after taking different solutions, respectively. Results: SegFormer performed best in terms of automatic segmentation, achieving a Mean Intersection over Union (mIoU) of 0.8860. The five-fold cross-validation results showed that inputting radiomic-clinical features outperformed using only radiomic features. The proposed models all outperformed the other mainstream ensemble models. On the external test set, the area under the receiver operating characteristic curve (AUC) of the proposed decision model was 0.7731, and the performance of the prognostic prediction models was also relatively excellent. The application web server based on automatic lesion segmentation was deployed and is available online. Conclusions: In this study, we developed and externally validated the surgical decision-making procedures and prognostic prediction models for HCC for the first time, and the results demonstrated relatively accurate predictions and strong generalizations, which are expected to help clinicians optimize surgical procedures.
Collapse
Affiliation(s)
- Liyang Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Danjun Song
- Department of Interventional Therapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wentao Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chengquan Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yiming Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiaping Zheng
- Department of Interventional Therapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoying Wang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoliang Shao
- Department of Interventional Therapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiabin Cai
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (J.C.); (S.Y.)
| | - Shizhong Yang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Correspondence: (J.C.); (S.Y.)
| | - Jiahong Dong
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
8
|
Labinsky H, Ukalovic D, Hartmann F, Runft V, Wichmann A, Jakubcik J, Gambel K, Otani K, Morf H, Taubmann J, Fagni F, Kleyer A, Simon D, Schett G, Reichert M, Knitza J. An AI-Powered Clinical Decision Support System to Predict Flares in Rheumatoid Arthritis: A Pilot Study. Diagnostics (Basel) 2023; 13:148. [PMID: 36611439 PMCID: PMC9818406 DOI: 10.3390/diagnostics13010148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Treat-to-target (T2T) is a main therapeutic strategy in rheumatology; however, patients and rheumatologists currently have little support in making the best treatment decision. Clinical decision support systems (CDSSs) could offer this support. The aim of this study was to investigate the accuracy, effectiveness, usability, and acceptance of such a CDSS-Rheuma Care Manager (RCM)-including an artificial intelligence (AI)-powered flare risk prediction tool to support the management of rheumatoid arthritis (RA). Longitudinal clinical routine data of RA patients were used to develop and test the RCM. Based on ten real-world patient vignettes, five physicians were asked to assess patients' flare risk, provide a treatment decision, and assess their decision confidence without and with access to the RCM for predicting flare risk. RCM usability and acceptance were assessed using the system usability scale (SUS) and net promoter score (NPS). The flare prediction tool reached a sensitivity of 72%, a specificity of 76%, and an AUROC of 0.80. Perceived flare risk and treatment decisions varied largely between physicians. Having access to the flare risk prediction feature numerically increased decision confidence (3.5/5 to 3.7/5), reduced deviations between physicians and the prediction tool (20% to 12% for half dosage flare prediction), and resulted in more treatment reductions (42% to 50% vs. 20%). RCM usability (SUS) was rated as good (82/100) and was well accepted (mean NPS score 7/10). CDSS usage could support physicians by decreasing assessment deviations and increasing treatment decision confidence.
Collapse
Affiliation(s)
- Hannah Labinsky
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Fabian Hartmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | | | | | - Kira Gambel
- Siemens Healthineers, 91502 Erlangen, Germany
| | | | - Harriet Morf
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jule Taubmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Johannes Knitza
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Lin Y, Tang M, Liu Y, Jiang M, He S, Zeng D, Cui MY. A narrative review on machine learning in diagnosis and prognosis prediction for tongue squamous cell carcinoma. Transl Cancer Res 2022; 11:4409-4415. [PMID: 36644177 PMCID: PMC9834582 DOI: 10.21037/tcr-22-1669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022]
Abstract
Background Tongue squamous cell carcinoma (TSCC) is the most common subtype of oral cavity squamous cell carcinoma (OCSCC), and it also has the worst prognosis. It is crucial to find an effective way to solve the challenges in diagnosis and prognosis prediction for TSCC. Machine learning (ML) has been widely used in medical research and has shown good performance. It can be used for feature extraction, feature selection, model construction, etc. Radiomics and deep learning (DL), the new components of ML, have also been utilized to explore the relationship between image features and diseases. The current study aimed to highlight the importance of ML as a potential method for addressing the challenges in diagnosis and prognosis prediction of TSCC by reviewing studies on ML in TSCC. Methods The studies on ML in TSCC in PubMed, Scopus, Web of Science, and China National Knowledge Infrastructure published between the dates of inception of these databases and April 30, 2022, were reviewed. Key Content and Findings ML (including radiomics and DL) which was used in diagnosis and prognosis prediction for TSCC, has shown promising performance. Conclusions Despite its limitations, ML is still a potential approach that can help to deal with the challenges in diagnosis and prognosis prediction for TSCC. Nevertheless, more efforts are needed to enhance the usefulness of ML in this field.
Collapse
Affiliation(s)
- Yingyu Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Liu
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Mengjie Jiang
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shuangshuang He
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Donglin Zeng
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Min-Yi Cui
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
10
|
Li J, Wu QQ, Zhu RH, Lv X, Wang WQ, Wang JL, Liang BY, Huang ZY, Zhang EL. Machine learning predicts portal vein thrombosis after splenectomy in patients with portal hypertension: Comparative analysis of three practical models. World J Gastroenterol 2022; 28:4681-4697. [PMID: 36157936 PMCID: PMC9476873 DOI: 10.3748/wjg.v28.i32.4681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND For patients with portal hypertension (PH), portal vein thrombosis (PVT) is a fatal complication after splenectomy. Postoperative platelet elevation is considered the foremost reason for PVT. However, the value of postoperative platelet elevation rate (PPER) in predicting PVT has never been studied.
AIM To investigate the predictive value of PPER for PVT and establish PPER-based prediction models to early identify individuals at high risk of PVT after splenectomy.
METHODS We retrospectively reviewed 483 patients with PH related to hepatitis B virus who underwent splenectomy between July 2011 and September 2018, and they were randomized into either a training (n = 338) or a validation (n = 145) cohort. The generalized linear (GL) method, least absolute shrinkage and selection operator (LASSO), and random forest (RF) were used to construct models. The receiver operating characteristic curves (ROC), calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) were used to evaluate the robustness and clinical practicability of the GL model (GLM), LASSO model (LSM), and RF model (RFM).
RESULTS Multivariate analysis exhibited that the first and third days for PPER (PPER1, PPER3) were strongly associated with PVT [odds ratio (OR): 1.78, 95% confidence interval (CI): 1.24-2.62, P = 0.002; OR: 1.43, 95%CI: 1.16-1.77, P < 0.001, respectively]. The areas under the ROC curves of the GLM, LSM, and RFM in the training cohort were 0.83 (95%CI: 0.79-0.88), 0.84 (95%CI: 0.79-0.88), and 0.84 (95%CI: 0.79-0.88), respectively; and were 0.77 (95%CI: 0.69-0.85), 0.83 (95%CI: 0.76-0.90), and 0.78 (95%CI: 0.70-0.85) in the validation cohort, respectively. The calibration curves showed satisfactory agreement between prediction by models and actual observation. DCA and CIC indicated that all models conferred high clinical net benefits.
CONCLUSION PPER1 and PPER3 are effective indicators for postoperative prediction of PVT. We have successfully developed PPER-based practical models to accurately predict PVT, which would conveniently help clinicians rapidly differentiate individuals at high risk of PVT, and thus guide the adoption of timely interventions.
Collapse
Affiliation(s)
- Jian Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qi-Qi Wu
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Rong-Hua Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xing Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wen-Qiang Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jin-Lin Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bin-Yong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhi-Yong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Er-Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|