1
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
2
|
Wang J, Behl T, Rana T, Sehgal A, Wal P, Saxena B, Yadav S, Mohan S, Anwer MK, Chigurupati S, Zaheer I, Shen B, Singla RK. Exploring the pathophysiological influence of heme oxygenase-1 on neuroinflammation and depression: A study of phytotherapeutic-based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155466. [PMID: 38461764 DOI: 10.1016/j.phymed.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technology, University of A Coruña, A Coruña, Spain
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Punjab, India; Government Pharmacy College, Seraj-175123, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar-141104, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah-51452, Kingdom of Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai-602105, India
| | - Imran Zaheer
- Department of Pharmacology, College of Medicine, (Al-Dawadmi Campus), Shaqra University, Al-Dawadmi, 11961, Kingdom of Saudi Arabia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| |
Collapse
|
3
|
Li X, Hu J, Zang X, Xing J, Mo X, Hei Z, Gong C, Chen C, Zhou S. Etomidate Improves the Antidepressant Effect of Electroconvulsive Therapy by Suppressing Hippocampal Neuronal Ferroptosis via Upregulating BDNF/Nrf2. Mol Neurobiol 2023; 60:6584-6597. [PMID: 37466875 DOI: 10.1007/s12035-023-03499-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Electroconvulsive therapy (ECT) performed under general anesthesia is an effective treatment for severe depression. Etomidate is an intravenous anesthetic that shows beneficial effects on ECT. However, the potential mechanisms have rarely been reported. In this study, male rats were exposed to chronic unpredictable mild stress for 4 weeks, followed by ECT for 10 days, with or without intervention with ferrostatin-1 (2 mg/kg) or all-trans retinoic acid (ATRA, 5 mg/kg). Rats subjected to etomidate (20 mg/kg) or propofol (120 mg/kg) treatment were administered with designated anesthetic before ECT. Compared to depressive rats without ECT, those who received ECT showed increased numbers of hippocampal neurons, increased expression of negative regulators of ferroptosis including glutathione peroxidase 4, ferritin heavy chain 1, and ferroptosis suppressor protein 1, upregulation of brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor, and downregulation of acyl-CoA synthetase long-chain family member 4, a positive regulator of ferroptosis in the hippocampus. Additionally, compared with propofol, etomidate used in ECT resulted in higher upregulation of BDNF/Nrf2 and inhibited neuronal ferroptosis in hippocampus. These results showed etomidate may enhance the antidepressant effect of ECT by protecting hippocampal neurons against ferroptosis.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jingping Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xiangyang Zang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jibin Xing
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xingying Mo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| |
Collapse
|
4
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Zhu W, Li W, Jiang J, Wang D, Mao X, Zhang J, Zhang X, Chang J, Yao P, Yang X, Da Costa C, Zhang Y, Yu J, Li H, Li S, Chi X, Li N. Chronic salmon calcitonin exerts an antidepressant effect via modulating the p38 MAPK signaling pathway. Front Mol Neurosci 2023; 16:1071327. [PMID: 36969556 PMCID: PMC10036804 DOI: 10.3389/fnmol.2023.1071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.
Collapse
Affiliation(s)
- Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, Guangdong, China
| | - Jin Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Huiliang Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shupeng Li,
| | - Xinjin Chi
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Xinjin Chi,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- The Fifth People’s Hospital of Datong City, Datong, China
- Ningning Li,
| |
Collapse
|
6
|
Pei H, Zeng J, He Z, Zong Y, Zhao Y, Li J, Chen W, Du R. Palmatine ameliorates LPS-induced HT-22 cells and mouse models of depression by regulating apoptosis and oxidative stress. J Biochem Mol Toxicol 2023; 37:e23225. [PMID: 36169195 DOI: 10.1002/jbt.23225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Depression is one of the most common neuropsychiatric disorders that is characterized by low mood, lack of motivation, slow thinking, and recurrent suicidal thoughts. The mechanism of action of palmatine in depression has been rarely reported and remains unclear. The present study examined the neuroprotective effects of palmatine on lipopolysaccharide (LPS)-induced oxidative stress, apoptosis, and depression-like behavior. In this study, cell apoptosis was evaluated by CCK-8, flow cytometry, and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, reactive oxygen species (ROS) and mitochondrial membrane potential were detected in vitro. In vivo, we investigated depressive-like behaviors in mice by an open field test (OFT) and elevated plus-maze test (EPM). Additionally, the levels of superoxide dismutases (SOD), TNF-α, IL-1β, and IL-6 were detected by enzyme-linked immunosorbent assay. The hematoxylin-eosin staining and TUNEL staining were used to evaluate the pathology of the hippocampus. The expression of Nrf2/HO-1 and BAX/Bcl-2 pathways in the hippocampus were assessed by Western blot analysis. Palmatine could significantly reduce apoptosis and ROS levels, and improve mitochondrial damage. Moreover, palmatine significantly improves movement time and central square crossing time in OFT, and improves open arms and movement time in EMP. And the levels of SOD, TNF-α, IL-1β, and IL-6 were significantly decreased after palmatine treatment. More importantly, palmatine improved neuronal apoptosis in the hippocampus, and depression through BAX/Bcl-2 and Nrf2/HO-1 signaling pathways. We provide evidence that palmatine further alleviates the depressive-like behavior of LPS-induced by improving apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, China
| |
Collapse
|
7
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Wu J, Zhang J, Xie Q, He X, Guo Z, Zheng B, Wang S, Yang Q, Du C. Bergaptol Alleviates LPS-Induced Neuroinflammation, Neurological Damage and Cognitive Impairment via Regulating the JAK2/STAT3/p65 Pathway. J Inflamm Res 2022; 15:6199-6211. [PMID: 36386582 PMCID: PMC9656435 DOI: 10.2147/jir.s383853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Neuroinflammation is considered a critical pathological process in various central nervous system (CNS) diseases and is closely related to neuronal death and dysfunction. Bergaptol is a natural 5-hydroxyfurocoumarin found in lemon, bergamot and other plants. Some studies have confirmed its anti-cancer, anti-inflammatory and anti-atherogenic functions, indicating that it may have significant medicinal value. In this study, we investigated the potential effect of Bergaptol in vitro and in vivo neuroinflammatory models. Methods Mice were injected with LPS (40 μg/kg) into the hippocampal CA1 region and then injected intraperitoneally with Bergaptol (10, 20 and 40 mg/kg) once a day for two weeks. In addition, to verify the effect of Bergaptol on BV2 cells, Bergaptol with different concentrations (5, 10 and 20 μg/mL) was firstly incubated for 1 hour, then LPS with a concentration of 1 μg/mL was added and incubated for 23 hours. Results Bergaptol treatment significantly improved the cognitive impairment induced by LPS. In addition, Bergaptol significantly inhibited the reduction of dendritic spines and the mRNA level of inflammatory factors (TNF-α, IL-6 and IL-1β) in hippocampal induced by LPS. In vitro, Bergaptol inhibited the production of TNF-α, IL-6 and IL-1β from LPS-treated BV-2 cells. In addition, Bergaptol treatment significantly reduced the phosphorylation levels of JAK2, STAT3 and p65 in LPS-stimulated BV-2 cells. Conclusion In conclusion, our results suggest that Bergaptol alleviates LPS-induced neuroinflammation, neurological damage and cognitive impairment by regulating the JAK2/STAT3/P65 pathway, suggesting that Bergaptol is a promising neuroprotective agent.
Collapse
Affiliation(s)
- Jianbing Wu
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Jie Zhang
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Qiangli Xie
- Department of Cardiovascular Medicine, Chengdu Qingbaijiang District People’s Hospital, Chengdu, 610300, People’s Republic of China
| | - Xiaohuan He
- Department of the Fifth Dispatched Outpatient, The General Hospital of Western Theater Command, Chengdu, 610083, People’s Republic of China
| | - Zhangchao Guo
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Bo Zheng
- Department of Neurology, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Sisong Wang
- Department of Neurosurgery, the Chengdu 363 Affiliated Hospital of Southwest Medical University, Chengdu, 610041, People’s Republic of China
| | - Qiumei Yang
- Department of Geriatrics, Luzhou People’s Hospital, Luzhou, 646000, People’s Republic of China
| | - Chunfu Du
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
- Correspondence: Chunfu Du, Department of Neurosurgery, Ya’an People’s Hospital, 358 Chenghou Road, Ya’an, Sichuan, 625000, People’s Republic of China, Tel +86-835-2862065, Email
| |
Collapse
|
9
|
Yue J, Guo P, Jin Y, Li M, Hu X, Wang W, Wei X, Qi S. Momordica charantia polysaccharide ameliorates D-galactose-induced aging through the Nrf2/β-Catenin signaling pathway. Metab Brain Dis 2022; 38:1067-1077. [PMID: 36287355 DOI: 10.1007/s11011-022-01103-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Aging is widely thought to be associated with oxidative stress. Momordica charantia (MC) is a classic vegetable and traditional herbal medicine widely consumed in Asia, and M. charantia polysaccharide (MCP) is the main bioactive ingredient of MC. We previously reported an antioxidative and neuroprotective effect of MCP in models of cerebral ischemia/reperfusion and hemorrhage injury. However, the role played by MCP in neurodegenerative diseases, especially during aging, remains unknown. In this study, we investigated the protective effect of MCP against oxidative stress and brain damage in a D-galactose-induced aging model (DGAM). The Morris water maze test was performed to evaluate the spatial memory function of model rats. The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were measured and telomerase activity was determined. The results showed that MCP treatment attenuated spatial memory dysfunction induced by D-galactose. In addition, MCP increased antioxidant capacity by decreasing MDA and increasing SOD and GSH levels. MCP treatment also improved telomerase activity in aging rats. Mechanistically, MCP promoted the entry of both Nrf2 and β-Catenin into the nucleus, which is the hallmark of antioxidation signaling pathway activation. This study highlights a role played by MCP in ameliorating aging-induced oxidative stress injury and reversing the decline in learning and memory capacity. Our work provides evidence that MCP administration might be a potential antiaging strategy.
Collapse
Affiliation(s)
- Jun Yue
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
- Department of Laboratory Medicine, Jinhu County People's Hospital, 211600, Huaian, People's Republic of China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People's Republic of China
| | - Ming Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiaotong Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
- National Experimental Teaching and Demonstration Center of Basic Medicine, 221004, Xuzhou, People's Republic of China
| | - Wan Wang
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 221004, Xuzhou, People's Republic of China
| | - Xuewen Wei
- Department of Laboratory Medicine, Xuzhou First People's Hospital, 221000, Xuzhou, People's Republic of China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China.
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 221004, Xuzhou, People's Republic of China.
| |
Collapse
|
10
|
Lo J, Liu CC, Li YS, Lee PY, Liu PL, Wu PC, Lin TC, Chen CS, Chiu CC, Lai YH, Chang YC, Wu HE, Chen YR, Huang YK, Huang SP, Wang SC, Li CY. Punicalagin Attenuates LPS-Induced Inflammation and ROS Production in Microglia by Inhibiting the MAPK/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. J Inflamm Res 2022; 15:5347-5359. [PMID: 36131784 PMCID: PMC9484772 DOI: 10.2147/jir.s372773] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1β was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1β, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yueh-Shan Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tzu-Chieh Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
11
|
Alattar A, Alvi AM, Rashid S, Hussain N, Gul M, Ikram M, Khalil AAK, Alshaman R, Shah FA, Li S, Li J. RETRACTED: Carveol ameliorates mercury-induced oxidative stress, neuroinflammation, and neurodegeneration in a mouse brain. Neurotoxicology 2022; 92:212-226. [PMID: 35963490 DOI: 10.1016/j.neuro.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors-in-Chief. Sections of panels from Figure 7B appear similar to each other. Also, inconsistencies have been noticed between the text of the subsection 2.5.4. ‘Morris Water Maze (MWM) test’ and Figure 6E. The journal records indicated that the names of the authors Sajid Rashid, Nadia Hussain, Mehreen Gul, Muhammad Ikram and Jingbo Li were added to the revised version of the article without exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, UAE
| | - Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Atif Ali Khan Khalil
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan.
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Jingbo Li
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Yan C, Mao J, Yao C, Liu Y, Yan H, Jin W. Neuroprotective effects of mild hypothermia against traumatic brain injury by the involvement of the Nrf2/ARE pathway. Brain Behav 2022; 12:e2686. [PMID: 35803901 PMCID: PMC9392531 DOI: 10.1002/brb3.2686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is the leading cause of death and disability worldwide. Mild hypothermia (32-35°C) has been found to show neuroprotective effects against TBI. However, the specific mechanism is still elusive. In the current study, we explored the relationship between oxidative damage after TBI and treatment with mild hypothermia as well as the underlying molecular mechanisms. METHODS We used the closed cortex injury model to perform the brain injury and a temperature monitoring and control system to regulate the body temperature of mice after injury. Adult male C57BL/6 mice were adopted in this study and divided into four experimental groups. Tissue samples were harvested 24 h after injury. RESULTS First, our results showed that treatment with mild hypothermia significantly improved neurobehavioral dysfunction and alleviated brain edema after TBI. Moreover, treatment with mild hypothermia enhanced the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and reduced the accumulation of lipid peroxidation malondialdehyde. Importantly, the expression and activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway were upregulated by mild hypothermia after TBI. Finally, treatment with hypothermia significantly decreased the cell apoptosis induced by TBI. CONCLUSION Our results showed that the protective effects of mild hypothermia after TBI may be achieved by the upregulation of the Nrf2-ARE pathway and revealed Nrf2 as a potentially important target to improve the prognosis of TBI.
Collapse
Affiliation(s)
- Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Department of Neurosurgery, Zhongshan Hospital, The Affiliated Hospital of Fudan University, Shanghai, China
| | - Jiannan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenbei Yao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
13
|
Gul M, Shah FA, Sahar NU, Malik I, Din FU, Khan SA, Aman W, Choi HI, Lim CW, Noh HY, Noh JS, Zeb A, Kim JK. Formulation optimization, in vitro and in vivo evaluation of agomelatine-loaded nanostructured lipid carriers for augmented antidepressant effects. Colloids Surf B Biointerfaces 2022; 216:112537. [PMID: 35561634 DOI: 10.1016/j.colsurfb.2022.112537] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 01/04/2023]
Abstract
The present study was intended to prepare and optimize agomelatine-loaded nanostructured lipid carriers (AGM-NLCs) for augmented in vivo antidepressant potential. AGM-NLCs were optimized on several parameters including cumulative hydrophilic-lipophilic balance of surfactants, proportions of solid and liquid lipids, total amounts of drug and surfactants. AGM-NLCs were assessed for their physicochemical properties, in vitro AGM release and in vivo antidepressant effects in mice model. The optimized AGM-NLCs demonstrated spherical morphology with average particle size of 99.8 ± 2.6 nm, PDI of 0.142 ± 0.017, zeta potential of - 23.2 ± 1.2 mV and entrapment efficiency of 97.1 ± 2.1%. Thermal and crystallinity studies depict amorphous nature of AGM after its incorporation into NLCs. AGM-NLCs exhibit a sustained drug release profile after initial 2 h. Mice treated with AGM-NLCs exhibited reduced immobility time in behavioral analysis. Furthermore, cresyl violet staining demonstrated an improved neuronal morphology and survival in AGM-NLCs group. The concentrations and the expression of inflammatory markers (TNF-α and COX-2) in mice brain were significantly reduced by AGM-NLCs. Taken together, therapeutic effectiveness of AGM was markedly augmented in AGM-NLCs and thereby they could be promising nanocarriers for the effective delivery of antidepressants to brain.
Collapse
Affiliation(s)
- Maleeha Gul
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us Sahar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Imran Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jin-Su Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| |
Collapse
|
14
|
Azizi Z, Majlessi N, Choopani S, Naghdi N. Neuroprotective effects of carvacrol against Alzheimer's disease and other neurodegenerative diseases: A review. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:371-387. [PMID: 35782773 PMCID: PMC9121261 DOI: 10.22038/ajp.2022.19491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Objective Neurodegenerative diseases are considered an important cause of cognitive deficit and morbidity in old ages. Alzheimer's disease (AD) is one of these disorders affecting about 40 million people in the world at the present time. Available drug therapy is mostly symptomatic and does not modify or stop disease progression. Recently, biologically active chemicals from herbs have been studied to develop new therapeutic drugs. Carvacrol has shown positive properties on many neurological diseases. This compound is expected to have the ability to affect AD pathogenesis and therefore, it is considered an anti-AD agent. Materials and Methods This review was conducted using PubMed, Google Scholar and Science Direct bibliographic databases until November 2021. For data collection, the following keywords were used: carvacrol, neuroprotective, cognition, anti-inflammatory, antioxidant, Acetylcolinesterase inhibitor (AChEI), Alzheimer's, Parkinson's, epilepsy, stroke, ischemic brain injury, and neurodegenerative diseases. Results This review summarizes in vitro and in vivo studies on protective potential of carvacrol in neurodegenerative disorders and various underlying mechanisms, such as anti-inflammatory, antioxidant, and anticholinesterase effects. Conclusion We gave an overview of available literature concerning neuroprotective effects of carvacrol in ameliorating the neurodegenerative diseases symptoms in vivo and in vitro. Particular attention is given to AD. Several neuro-pharmacological actions of carvacrol have been summarized in the current review article including anti-inflammatory, antioxidant, and AChEI properties.
Collapse
Affiliation(s)
| | | | | | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Catalpol Exerts Antidepressant-Like Effects by Enhancing Anti-oxidation and Neurotrophy and Inhibiting Neuroinflammation via Activation of HO-1. Neurochem Res 2022; 47:2975-2991. [PMID: 35668334 DOI: 10.1007/s11064-022-03641-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Catalpol is an iridoid glycoside with rich content, rich nutrition, and numerous biological activities in Rehmanniae Radix contained in classic antidepressant prescriptions in Chinese clinical medicine. Catalpol has been confirmed previously its exact antidepressant-like effect involved heme oxygenase (HO)-1, but its antidepressant molecular targets and mechanism are still unclear. Here, catalpol's antidepressant-like molecular target was diagnosed and confirmed by ZnPP intervention [the antagonist of HO-1, (10 μg/rat), intracerebroventricular] for the first time, and its molecule mechanism network was determined through HO-1 related pathway and molecules in the hippocampus. Results showed that ZnPP significantly abolished catalpol's (10 mg/kg) reversal on depressive-like behaviors of chronic unpredictable mild stress rats, abolished catalpol's up-regulation on the phosphorylation level of extracellular regulated protein kinases (ERK)1/2 and brain-derived neurotrophic factor (BDNF)'s receptor tropomyosin-related kinase B (TrkB), the nuclear expression level of nuclear factor E 2-related factor 2 (Nrf2), the levels of anti-oxidant factors (such as HO-1, SOD, GPX, GST, GSH) and BDNF, and abolished catalpol's down-regulation on the levels of peroxide and neuroinflammation factors [cyclooxygenase-2 (COX-2), induced nitrogen monoxide synthase (iNOS), nitric oxide (NO)]. Thus, HO-1 could serve as an important potential molecular target for catalpol's antidepressant-like process, and the antidepressant-like mechanism of catalpol could at least involve the activation of HO-1 triggering the up-regulation of the ERK1/2/Nrf2/HO-1 pathway-related factors to enhance the anti-oxidant defense, triggering the down-regulation of the COX-2/iNOS/NO pathway-related factors to inhibit neuroinflammation, and triggering the up-regulation of the BDNF/TrkB pathway to enhance neurotrophy.
Collapse
|
16
|
Sun Y, He Y, Tong J, Liu D, Zhang H, He T, Bi Y. All-trans retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating ferroptosis. Genes Dis 2022; 9:1742-1756. [PMID: 36157492 PMCID: PMC9485287 DOI: 10.1016/j.gendis.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yun He
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jishuang Tong
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing Emergency Medical Centre, Chongqing 400014, PR China
| | - Haodong Zhang
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Centre, Chicago, IL 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Corresponding author. Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, Building 7, Room 905, 136 Zhongshan Er Road, Chongqing 400014, PR China.
| |
Collapse
|
17
|
Yıldız MO, Çelik H, Caglayan C, Genç A, Doğan T, Satıcı E. Neuroprotective effects of carvacrol against cadmium-induced neurotoxicity in rats: role of oxidative stress, inflammation and apoptosis. Metab Brain Dis 2022; 37:1259-1269. [PMID: 35316447 DOI: 10.1007/s11011-022-00945-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/06/2023]
Abstract
Cadmium (Cd), is a heavy metal reported to be associated with oxidative stress and inflammation. In this paper, we investigated the possible protective effects of carvacrol against Cd-induced neurotoxicity in rats. Adult male Sprague Dawley rats were treated orally with Cd (25 mg/kg body weight) and with carvacrol (25 and 50 mg/kg body weight) for 7 days. Carvacrol decreased the levels of malondialdehyde (MDA), glial fibrillary acidic protein (GFAP) and monoamine oxidase (MAO), and significantly increased the levels of glutathione (GSH) and activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in brain tissue. Additionally, carvacrol alleviated the in levels of inflammation and apoptosis related proteins involving p38 mitogen-activated protein kinase (p38 MAPK), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), B-cell lymphoma-3 (Bcl-3), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), myeloperoxidase (MPO), prostaglandin E2 (PGE2), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), cysteine aspartate specific protease-3 (caspase-3) and Bcl-2 associated X protein (Bax) in the Cd-induced neurotoxicity. Carvacrol also decreased the mRNA expression of matrix metalloproteinases (MMP9 and MMP13), as well as 8-hydroxy-2'-deoxyguanosine (8 - OHdG) level, a marker of oxidative DNA damage. Collectively, our findings indicated that carvacrol has a beneficial effect in ameliorating the Cd-induced neurotoxicity in the brain of rats.
Collapse
Affiliation(s)
- Mustafa Onur Yıldız
- Department of Neurology, Erzurum Regional Health Application and Research Hospital, Health Sciences University, Erzurum, Turkey
| | - Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| | - Tuba Doğan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emine Satıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Muhammad AJ, Hao L, Al Kury LT, Rehman NU, Alvi AM, Badshah H, Ullah I, Shah FA, Li S. Carveol Promotes Nrf2 Contribution in Depressive Disorders through an Anti-inflammatory Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4509204. [PMID: 35295720 PMCID: PMC8920705 DOI: 10.1155/2022/4509204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) is a progressive deteriorating mental state with a feeling of worthlessness and frequent mood swings. Several studies reported the favorable effects of natural drug substances on MMD associated oxidative stress and neuroinflammation. The present study is attempted to examine whether carveol could affect lipopolysaccharide- (LPS-) induced depression, and if so, how nuclear factor E2-related factor (Nrf2) contributed to the neuroprotective effects of carveol mechanistically. Two experimental cohorts were used using the SD rats: first to evaluate the promising dose of carveol (whether 20 mg/kg or 50 mg/kg) and secondly to determine the effect of carveol on Nrf2-mediated antidepression. Significant neuronal alterations were noticed in the cortex and hippocampus regions in the LPS-treated group, accompanied by elevated inflammatory cytokine levels such as tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX-2), and c-Jun N-terminal kinase (p-JNK). Moreover, amassing of free radicals exacerbated lipid peroxidase (LPO) and oxidative stress with a limited antioxidant capacity. Carveol (20 mg/kg) significantly ameliorated these detrimental effects by promoting the antioxidant Nrf2 gene and protein, which critically regulate the downstream antioxidant and anti-inflammatory pathway. To further elaborate our hypothesis, we employed all-trans retinoic acid (ATRA), an Nrf2 inhibitor, and we found that ATRA exaggerated LPS-induced depressive-like effects associated with elevated neuroinflammatory markers. Our results demonstrated that carveol (20 mg/kg) could activate the endogenous antioxidant Nrf2, which regulates the downstream antioxidant signaling pathway, eventually leading to amelioration of LPS-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Asmaa Jan Muhammad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Liangliang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 49153, UAE
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Haroon Badshah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - Ikram Ullah
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518000, China
| |
Collapse
|
19
|
Abstract
The overload cytosolic free Ca2+ (cCa2+) influx-mediated excessive generation of oxidative stress in the pathophysiological conditions induces neuronal and cellular injury via the activation of cation channels. TRPM2 and TRPV4 channels are activated by oxidative stress, and their specific antagonists have not been discovered yet. The antioxidant and anti-Covid-19 properties of carvacrol (CARV) were recently reported. Hence, I suspected possible antagonist properties of CARV against oxidative stress (OS)/ADP-ribose (ADPR)-induced TRPM2 and GSK1016790A (GSK)-mediated TRPV4 activations in neuronal and kidney cells. I investigated the antagonist role of CARV on the activations of TRPM2 and TRPV4 in SH-SY5Y neuronal, BV-2 microglial, and HEK293 cells. The OS/ADPR and GSK in the cells caused to increase of TRPM2/TRPV4 current densities and overload cytosolic free Ca2+ (cCa2+) influx with an increase of mitochondrial membrane potential, cytosolic (cROS), and mitochondrial (mROS) ROS. The changes were not observed in the absence of TRPM2 and TRPV4 or the presence of Ca2+ free extracellular buffer and PARP-1 inhibitors (PJ34 and DPQ). When OS-induced TRPM2 and GSK-induced TRPV4 activations were inhibited by the treatment of CARV, the increase of cROS, mROS, lipid peroxidation, apoptosis, cell death, cCa2+ concentration, caspase -3, and caspase -9 levels were restored via upregulation of glutathione and glutathione peroxidase. In conclusion, the treatment of CARV modulated the TRPM2 and TRPV4-mediated overload Ca2+ influx and may provide an avenue for protecting TRPM2 and TRPV4-mediated neurodegenerative diseases associated with the increase of mROS and cCa2+. The possible TRPM2 and TRPV4 blocker action of carvacrol (CARV) via the modulation oxidative stress and apoptosis in the SH-SY5Y neuronal cells. TRPM2 is activated by DNA damage-induced (via PARP-1 activation) ADP-ribose (ADPR) and reactive oxygen species (ROS) (H2O2), although it is inhibited by nonspecific inhibitors (ACA and 2-APB). TRPV4 is activated by the treatments of GSK1016790A (GSK), although it is inhibited by a nonspecific inhibitor (ruthenium red, RuRe). The treatment of GSK induces excessive generation of ROS. The accumulation of free cytosolic Ca2+ (cCa2+) via the activations of TRPM2 and TRPV4 in the mitochondria causes the increase of mitochondrial membrane depolarization (ΔΨm). In turn, the increase of ΔΨm causes the excessive generation of ROS. The TRPM2 and TRPV4-induced the excessive generations of ROS result in the increase of apoptosis and cell death via the activations of caspase -3 (Casp-3) and caspase -9 (Casp-9) in the neuronal cells, although their oxidant actions decrease the glutathione (GSH) and glutathione peroxidase (GSHPx) levels. The oxidant and apoptotic adverse actions of TRPM2 and TRPV4 are modulated by the treatment of CARV.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Trade Ltd, Isparta, TR-32260, Turkey.
- Departments of Biophysics and Neuroscience, Faculty of Medicine, Suleyman Demirel University, Isparta, TR-32260, Turkey.
| |
Collapse
|
20
|
Bajagai YS, Petranyi F, Horyanto D, Batacan R, Lobo E, Ren X, Whitton MM, Yu SJ, Kayal A, Stanley D. Ileum transcriptional response to prolonged supplementation with phytogenic product containing menthol, carvacrol and carvone. Heliyon 2022; 8:e09131. [PMID: 35345405 PMCID: PMC8956889 DOI: 10.1016/j.heliyon.2022.e09131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
|
21
|
Alvi AM, Shah FA, Muhammad AJ, Feng J, Li S. 1,3,4, Oxadiazole Compound A3 Provides Robust Protection Against PTZ-Induced Neuroinflammation and Oxidative Stress by Regulating Nrf2-Pathway. J Inflamm Res 2022; 14:7393-7409. [PMID: 35002275 PMCID: PMC8721032 DOI: 10.2147/jir.s333451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Epilepsy is a common neurological disorder that is characterized by recurrent episodes of seizures. Various studies have demonstrated a direct association between oxidative stress and inflammation in several neurological disorders including epilepsy. This study aimed to investigate the neuroprotective effects of a synthetic 1,3,4, oxadiazole compound A3 against pentylenetetrazole (PTZ)-induced kindling and seizure model. Methodology PTZ was administered in a sub-convulsive dose of 40 mg/kg for 15 days, at 48-hour intervals to male Swiss-Albino mice until animals were fully kindled. Two different doses of A3 (10 mg/kg and 30 mg/kg) were administered to find out the effective dose of A3 and to further demonstrate the relative role of nuclear factor E2-related factor (Nrf2) in the PTZ-induced kindled model. Results Our results demonstrated a compromised antioxidant capacity associated with a low level of catalase (CAT), superoxide dismutase (SOD), glutathione (GST), and glutathione S-transferase (GSH) in the kindled group. However, the PTZ-induced group demonstrated an elevated level of lipid peroxidation (LPO) level parallel to pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), mediators as cyclooxygenase (COX-2), and nuclear factor kappa B (NFκB). Furthermore, the A3 treatment reversed these changes and overexpressed the antioxidant Nrf2 gene and its downstream HO-1. To further investigate the involvement of Nrf2, we employed an Nrf2-inhibitor, ie, all-trans retinoic acid (ATRA), that further aggravated the PTZ toxicity. Moreover, vascular endothelial growth factor (VEGF) expression was evaluated to assess the extent of BBB disruption. Conclusion The findings of this study suggest that A3 could mediate neuroprotection possibly by activating Nrf2 dependent downregulation of inflammatory cascades.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asmaa Jan Muhammad
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
22
|
Cheng WJ, Li P, Huang WY, Huang Y, Chen WJ, Chen YP, Shen JL, Chen JK, Long NS, Meng XJ. Acupuncture Relieves Stress-Induced Depressive Behavior by Reducing Oxidative Stress and Neuroapoptosis in Rats. Front Behav Neurosci 2022; 15:783056. [PMID: 35058758 PMCID: PMC8763975 DOI: 10.3389/fnbeh.2021.783056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress is closely related to the occurrence of depression. Acupuncture has been proved to be an effective method for treating depression. In order to explore the mechanism of the antidepressant effect of acupuncture, this study performed acupuncture prevention on chronic unpredictable mild stress (CUMS) depression model rats, and observed the effect of acupuncture on hippocampal oxidative stress and Nrf2 signaling pathway. Male SD rats were randomly divided into control group, CUMS group, acupuncture group, and fluoxetine group (n = 10/group). Fluoxetine, a common antidepressant, was used as a positive control drug in this study. In the fluoxetine group, rats were given fluoxetine (2.1 mg/kg) intragastrically once a day for 28 days. The acupoints of Shangxing (GV23) and Fengfu (GV16) were applied in acupuncture group, once every other day for 14 times in total. Behavioral tests and biological detections were used to evaluate the effects of the interventions and the changes of factors related to oxidative stress, Nrf2 pathway, and neuronal apoptosis. The results showed that both acupuncture and fluoxetine could increase sugar preference rate in SPT and decrease immobility time in FST in depression model rats. It also significantly decreased oxidative stress products such as ROS and H2O2, and elevated the protein and mRNA expressions of Nrf2 and HO-1. From Nissl’s staining, there were more abundant nerve cells in two intervention groups compared with CUMS group. Plus, acupuncture down-regulated the expression levels of Bax and caspase-3 and up-regulated the expression of Bcl-2. Our findings indicate that acupuncture improved depression-like behaviors of CUMS rats. And CUMS-induced depression-like behaviors in rats were related to oxidative stress and neuronal apoptosis in hippocampus. Acupuncture showed antidepressant effects in reducing oxidative stress products via regulating the Nrf2/HO-1 signaling pathway so that prevented neuronal apoptosis.
Collapse
Affiliation(s)
- Wen-Jing Cheng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ya Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Wen-Jie Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Ping Chen
- Third Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Jun-Liang Shen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Kun Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Na-Sha Long
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Xian-Jun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
- *Correspondence: Xian-Jun Meng,
| |
Collapse
|
23
|
Anaeigoudari A. Hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol: A comprehensive review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Rajaei Z, Amooheydari Z, Alaei H, Esmaeil N. Supplementation of carvacrol attenuates hippocampal tumor necrosis factor-alpha level, oxidative stress, and learning and memory dysfunction in lipopolysaccharide-exposed rats. Adv Biomed Res 2022; 11:33. [PMID: 35720215 PMCID: PMC9201230 DOI: 10.4103/abr.abr_194_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Carvacrol is a natural phenolic monoterpene with anti-inflammatory and antioxidant bioactivities. Neuroinflammatory and oxidative stress responses play a crucial role in the pathogenesis of Alzheimer's disease. The present study examined the effect of carvacrol on brain tumor necrosis factor-alpha (TNF-α) level and oxidative stress as well as spatial learning and memory performances in lipopolysaccharide (LPS)-exposed rats. Materials and Methods: The rats were treated with either carvacrol (25 and 50 mg/kg) or Tween 80 for 2 weeks. Thereafter, LPS (1 mg/kg) or saline was intraperitoneally administered on days 15–19, 2 h before Morris water maze task, and treatments with carvacrol or Tween 80 were performed 30 min prior to behavioral testing. The level of TNF-α, lipid peroxidation, and total thiol concentration were measured in the hippocampus and cerebral cortex at the end of the experiment. Results: It was found that LPS-exposed rats exhibited spatial learning and memory dysfunction, which was accompanied by increased TNF-α level and lipid peroxidation, and decreased total thiol concentration in the hippocampus and/or cortex. Moreover, treatment with carvacrol at a dose of 25 mg/kg attenuated learning and memory impairments, decreased TNF-α and lipid peroxidation level in the hippocampus and cortex, and increased total thiol concentration in the cortex. Conclusion: Carvacrol exerts neuroprotective effects against LPS-induced spatial memory deficits through attenuating hippocampal TNF-α level and oxidative stress in rats.
Collapse
|
25
|
Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer's disease. Pharmacol Res 2021; 175:106018. [PMID: 34863823 DOI: 10.1016/j.phrs.2021.106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/Nrf2) is a pivotal facilitator of cytoprotective responses against the oxidative/electrophilic insults. Upon activation, Nrf2 induces transcription of a wide range of cytoprotective genes having antioxidant response element (ARE) in their promoter region. Dysfunction in Nrf2 signaling has been linked to the pathogenesis of AD and several studies have suggested that boosting Nrf2 expression/activity by genetic or pharmacological approaches is beneficial in AD. Among the diverse mechanisms that regulate the Nrf2 signaling, miRNAs-mediated regulation of Nrf2 has gained much attention in recent years. Several miRNAs have been reported to directly repress the post-transcriptional expression of Nrf2 and thereby negatively regulate the Nrf2-dependent cellular cytoprotective response in AD. Moreover, several Nrf2 targeting miRNAs are misregulated in AD brains. This review is focused on the role of misregulated miRNAs that directly target Nrf2, in AD pathophysiology. Here, alongside a general description of functional interactions between miRNAs and Nrf2, we have reviewed the evidence indicating the possible role of these miRNAs in AD pathogenesis.
Collapse
|
26
|
Zakria M, Ahmad N, Al Kury LT, Alattar A, Uddin Z, Siraj S, Ullah S, Alshaman R, Khan MI, Shah FA. RETRACTED: Melatonin rescues the mice brain against cisplatin-induced neurodegeneration, an insight into antioxidant and anti-inflammatory effects. Neurotoxicology 2021; 87:1-10. [PMID: 34428482 DOI: 10.1016/j.neuro.2021.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors-in-Chief. Figure 1C appears similar to Figure 5h of the article published by Oxidative Medicine and Cellular Longevity 2021 (2021) Article ID 6635552 https://doi.org/10.1155/2021/6635552, Figure 5a of the article published by Cells 10 (2021) 2719 https://doi.org/10.3390/cells10102719 and Figure 8a of the article published by Molecular Neurobiology 56 (2019) 6293–6309 https://doi.org/10.1007/s12035-019-1512-7. Although this article was published earlier than the Cells article, the Editors decided to retract this article given concerns about the reliability of the data. Also, sections of panels within Figures 1H and 2G appear similar to each other. The journal records indicated that the names of the authors Reem Alshaman and Muhammad Imran Khan were added to the revised version of the article without exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship.
Collapse
Affiliation(s)
- Muhammad Zakria
- Institute of Basic Medical Sciences, Khyber Medical Univesity Peshawar Pakistan, Pakistan.
| | - Nasir Ahmad
- Institute of Basic Medical Sciences, Khyber Medical Univesity Peshawar Pakistan, Pakistan.
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 49153, United Arab Emirates.
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottaad campus Abbottabad, Pakistan.
| | - Sami Siraj
- Institute of Basic Medical Sciences, Khyber Medical Univesity Peshawar Pakistan, Pakistan.
| | - Shakir Ullah
- Institute of Basic Medical Sciences, Khyber Medical Univesity Peshawar Pakistan, Pakistan.
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
27
|
Nrf2 Alleviates Cognitive Dysfunction and Brain Inflammatory Injury via Mediating Wfs1 in Rats with Depression-Like Behaviors. Inflammation 2021; 45:399-413. [PMID: 34495404 DOI: 10.1007/s10753-021-01554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
Depression is a major threat to global mental health and demands targeted therapeutic regimens. The current study set out to evaluate the regulatory mechanism of nuclear factor erythroid-2 related factor 2 (Nrf2) in depression-induced cognitive dysfunction and inflammatory injury. First, depressive rat models were established via chronic unpredicted mild stress (CUMS) treatment. Cognitive function of rats was assessed by a series of behavioral tests. Rats were further stereotactically injected with Nrf2 overexpression vector, with expression patterns of Nrf2, miR-17-5p, and wolfram syndrome 1 (Wfs1) detected using qRT-PCR and Western blot assay. In addition, pathological changes of murine hippocampus were analyzed using hematoxylin-eosin staining. In vitro cell models were additionally established using lipopolysaccharide. Cell viability was detected via the CCK-8 method. Moreover, levels of TNF-α, IL-1β, and IL-10 were detected via ELISA. Furthermore, the binding relationships between Nrf2 and the miR-17-5p promoter, miR-17-5p, and Wfs1 were verified. It was found that Nrf2 was weakly expressed in CUMS-treated rats, whereas Nrf2 upregulation alleviated cognitive dysfunction and brain inflammatory injury. Meanwhile, Nrf2 inhibited miR-17-5p expression via binding to the miR-17-5p promoter. miR-17-5p was also found to limit Wfs1 transcription. miR-17-5p overexpression or Wfs1 downregulation partly reversed the role of Nrf2 in reliving inflammatory injury of murine hippocampal neurons. Overall, our findings indicated that Nrf2 inhibited miR-17-5p expression and promoted Wfs1 transcription, thereby alleviating cognitive dysfunction and inflammatory injury in rats with depression-like behaviors.
Collapse
|
28
|
Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9966663. [PMID: 34422216 PMCID: PMC8376446 DOI: 10.1155/2021/9966663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration.
Collapse
|
29
|
Suzuki T, Yamashita S, Hattori K, Matsuda N, Hattori Y. Impact of a long-term high-glucose environment on pro-inflammatory responses in macrophages stimulated with lipopolysaccharide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2129-2139. [PMID: 34402957 DOI: 10.1007/s00210-021-02137-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Cumulative evidence has established that macrophages orchestrate inflammatory responses that crucially contribute to the pathogenesis of insulin-resistant obesity and type 2 diabetes. In the present study, we examined the impact of hyperglycemia on macrophage pro-inflammatory responses under an inflammatory stimulus. To conduct this study, RAW264.7 macrophages were cultured under normal- (5.5 mM) or high-glucose (22 or 40 mM) conditions for 7 days and stimulated with lipopolysaccharide (LPS). Long-term exposure to high glucose significantly enhanced the increase in the production of pro-inflammatory cytokines, including tumor necrosis-α, interleukin (IL)-1β, and IL-6, when macrophages were stimulated with LPS. The LPS-induced increases in inducible nitric oxide (NO) synthase (iNOS) expression and NO production were also significantly enhanced by long-term exposure of macrophages to high glucose. Treatment with N-acetyl-L-cysteine, a widely used thiol-containing antioxidant, blunted the enhancement of the LPS-induced upregulation of pro-inflammatory cytokine production, iNOS expression, and NO production in macrophages. When intracellular reactive oxygen species (ROS) were visualized using the fluorescence dye 5-(and-6)-chloromethyl-2',7'-dichlorofluorescein diacetate, acetyl ester, a significant increase in ROS generation was found after stimulation of macrophages with LPS, and this increased ROS generation was exacerbated under long-term high-glucose conditions. LPS-induced translocation of phosphorylated nuclear factor-κB (NF-κB), a transcription factor regulating many pro-inflammatory genes, into the nucleus was promoted under long-term high-glucose conditions. Altogether, the present results indicate that a long-term high-glucose environment can enhance activation of NF-κB in LPS-stimulated macrophages possibly due to excessive ROS production, thereby leading to increased macrophage pro-inflammatory responses.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- J-Pharma Co., Ltd., Yokohama, 230-0046, Japan
| | - Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan.
| |
Collapse
|