1
|
Karasu E, Halbgebauer R, Schütte L, Greven J, Bläsius FM, Zeller J, Winninger O, Braig D, Messerer DAC, Berger B, Feuerstein H, Schultze A, Peter K, Knippschild U, Horst K, Hildebrand F, Eisenhardt SU, Huber-Lang M. A conformational change of C-reactive protein drives neutrophil extracellular trap formation in inflammation. BMC Biol 2025; 23:4. [PMID: 39773175 PMCID: PMC11708171 DOI: 10.1186/s12915-024-02093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms. RESULTS In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP. We were able to confirm that mCRP co-localizes with leukocytes at the site of injury after polytrauma and therefore assessed whether the CRP conformation potentiates neutrophil activation. We found mCRP-induced neutrophil-extracellular trap formation in vitro and ex vivo involving nicotinamide adenine dinucleotide phosphate oxidase activation, p38/mitogen-activated protein kinase signaling, and histone H3 citrullination. Mimicking the trauma milieu in a human ex vivo whole blood model, we found significant mCRP generation as well as NET formation, prevented by blocking pCRP conformational changes. CONCLUSIONS Our data provide novel molecular insights how CRP dissociation contributes to neutrophil activation as driver of various inflammatory disorders.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Lena Schütte
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Johannes Greven
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Felix M Bläsius
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - Oscar Winninger
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | | | - Bettina Berger
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Hendrik Feuerstein
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Karlheinz Peter
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Medical Center, 89081, Ulm, Germany
| | - Klemens Horst
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Jiang Y, Cai R, Huang Y, Zhu L, Xiao L, Wang C, Wang L. Macrophages in organ fibrosis: from pathogenesis to therapeutic targets. Cell Death Discov 2024; 10:487. [PMID: 39632841 PMCID: PMC11618518 DOI: 10.1038/s41420-024-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Fibrosis, an excessive self-repair response, is an age-related pathological process that universally affects various major organs such as the heart, liver, kidney, and lungs. Continuous accumulation of pathological tissue fibrosis destroys structural integrity and causes loss of function, with consequent organ failure and increased mortality. Although some differences exist in the triggering mechanisms and pathophysiologic manifestations of organ-specific fibrosis, they usually share similar cascading responses and features, including chronic inflammatory stimulation, parenchymal cell injury, and macrophage recruitment. Macrophages, due to their high plasticity, can polarize into different phenotypes in response to varied microenvironments and play a crucial role in the development of organ fibrosis. This review examined the relationship between macrophages and the pathogenesis of organ fibrosis. Moreover, it analyzed how fibrosis can be modulated by targeting macrophages, which may become a novel and promising therapeutic strategy for fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Rong Cai
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Caihong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.
| | - Lihong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.
| |
Collapse
|
3
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Arnaut N, Pastorello Y, Slevin M. Monomeric C-reactive protein: a link between chronic inflammation and neurodegeneration? Neural Regen Res 2024; 19:1643-1644. [PMID: 38103221 PMCID: PMC10960304 DOI: 10.4103/1673-5374.389640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Nicoleta Arnaut
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| | - Ylenia Pastorello
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| |
Collapse
|
5
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
6
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
7
|
Zhu Z, Wang M, Lu S, Dai S, Liu J. Role of macrophage polarization in heart failure and traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1434654. [PMID: 39104386 PMCID: PMC11298811 DOI: 10.3389/fphar.2024.1434654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Heart failure (HF) has a severe impact on public health development due to high morbidity and mortality and is associated with imbalances in cardiac immunoregulation. Macrophages, a major cell population involved in cardiac immune response and inflammation, are highly heterogeneous and polarized into M1 and M2 types depending on the microenvironment. M1 macrophage releases inflammatory factors and chemokines to activate the immune response and remove harmful substances, while M2 macrophage releases anti-inflammatory factors to inhibit the overactive immune response and promote tissue repair. M1 and M2 restrict each other to maintain cardiac homeostasis. The dynamic balance of M1 and M2 is closely related to the Traditional Chinese Medicine (TCM) yin-yang theory, and the imbalance of yin and yang will result in a pathological state of the organism. Studies have confirmed that TCM produces positive effects on HF by regulating macrophage polarization. This review describes the critical role of macrophage polarization in inflammation, fibrosis, angiogenesis and electrophysiology in the course of HF, as well as the potential mechanism of TCM regulation of macrophage polarization in preventing and treating HF, thereby providing new ideas for clinical treatment and scientific research design of HF.
Collapse
Affiliation(s)
- Zheqin Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shenghua Lu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Sisi Dai
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure. Biomed Pharmacother 2024; 173:116413. [PMID: 38461687 DOI: 10.1016/j.biopha.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
9
|
Kirkgöz K. C-Reactive Protein in Atherosclerosis-More than a Biomarker, but not Just a Culprit. Rev Cardiovasc Med 2023; 24:297. [PMID: 39077585 PMCID: PMC11262456 DOI: 10.31083/j.rcm2410297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 07/31/2024] Open
Abstract
C-reactive protein (CRP) is a pentraxin that is mainly synthesized in the liver in response to inflammatory cytokines. It exists in two functionally and structurally distinct isoforms. The first is a highly pro-inflammatory and mostly tissue-bound monomeric isoform (mCRP). The second is circulating pentameric CRP (pCRP), which also serves as a substrate for the formation of mCRP. CRP is elevated during inflammatory conditions and is associated with a higher risk of cardiovascular disease. The aim of this review is to examine the current state of knowledge regarding the role of these two distinct CRP isoforms on atherogenesis. This should allow further evaluation of CRP as a potential therapeutic target for atherosclerosis. While it seems clear that CRP should be used as a therapeutic target for atherosclerosis and cardiovascular disease, questions remain about how this can be achieved. Current data suggests that CRP is more than just a biomarker of atherosclerosis and cardiovascular disease. Indeed, recent evidence shows that mCRP in particular is strongly atherogenic, whereas pCRP may be partially protective against atherogenesis. Thus, further investigation is needed to determine how the two CRP isoforms contribute to atherogenesis and the development of cardiovascular disease.
Collapse
Affiliation(s)
- Kürsat Kirkgöz
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
10
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
11
|
Qu X, Hou X, Zhu K, Chen W, Chen K, Sang X, Wang C, Zhang Y, Xu H, Wang J, Hou Q, Lv L, Hou L, Zhang D. Neutrophil extracellular traps facilitate sympathetic hyperactivity by polarizing microglia toward M1 phenotype after traumatic brain injury. FASEB J 2023; 37:e23112. [PMID: 37534961 DOI: 10.1096/fj.202300752r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Traumatic brain injury (TBI), particularly diffuse axonal injury (DAI), often results in sympathetic hyperactivity, which can exacerbate the prognosis of TBI patients. A key component of this process is the role of neutrophils in causing neuroinflammation after TBI by forming neutrophil extracellular traps (NETs), but the connection between NETs and sympathetic excitation following TBI remains unclear. Utilizing a DAI rat model, the current investigation examined the role of NETs and the HMGB1/JNK/AP1 signaling pathway in this process. The findings revealed that sympathetic excitability intensifies and peaks 3 days post-injury, a pattern mirrored by the activation of microglia, and the escalated NETs and HMGB1 levels. Subsequent in vitro exploration validated that HMGB1 fosters microglial activation via the JNK/AP1 pathway. Moreover, in vivo experimentation revealed that the application of anti-HMGB1 and AP1 inhibitors can mitigate microglial M1 polarization post-DAI, effectively curtailing sympathetic hyperactivity. Therefore, this research elucidates that post-TBI, NETs within the PVN may precipitate sympathetic hyperactivity by stimulating M1 microglial polarization through the HMGB1/JNK/AP1 pathway.
Collapse
Affiliation(s)
- Xiaolin Qu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiang Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, The First Naval Hospital of Southern Theater Command, Zhanjiang, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kun Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xianzheng Sang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chenqing Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yelei Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haoxiang Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qibo Hou
- College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Ruiz-Fernández C, Ait Eldjoudi D, González-Rodríguez M, Cordero Barreal A, Farrag Y, García-Caballero L, Lago F, Mobasheri A, Sakai D, Pino J, Gualillo O. Monomeric CRP regulates inflammatory responses in human intervertebral disc cells. Bone Joint Res 2023; 12:189-198. [PMID: 37051830 PMCID: PMC10032231 DOI: 10.1302/2046-3758.123.bjr-2022-0223.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Aims CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry. Results We demonstrated that mCRP increases nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and Lipocalin 2 (LCN2) expression in human AF and NP cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signalling of mCRP. Finally, we demonstrated the presence of mCRP in human AF and NP tissues. Conclusion Our results indicate, for the first time, that mCRP can be localized in IVD tissues, where it triggers a proinflammatory and catabolic state in degenerative and healthy IVD cells, and that NF-κβ signalling may be implicated in the mediation of this mCRP-induced state. Cite this article: Bone Joint Res 2023;12(3):189–198.
Collapse
Affiliation(s)
- Clara Ruiz-Fernández
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Doctoral Programme in Medicine Clinical Research, International PhD School of the University of Santiago de Compostela (EDIUS), Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria González-Rodríguez
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alfonso Cordero Barreal
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Yousof Farrag
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucia García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Galician Healthcare Service) and IDIS (Health Research Institute of Santiago de Compostela), Research Laboratory 7, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopedic, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara, Japan
| | - Jesús Pino
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Traumatology and Orthopedics Area, Department of Surgery and Medical-Surgical Specialties, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Galician Healthcare Service) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Health Research Institute of Santiago de Compostela), University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Oreste Gualillo. E-mail:
| |
Collapse
|
13
|
Du X, Fu Y, Tian Z, Liu H, Xin H, Fu X, Wang F, Zhang H, Zeng X. Microcystin-LR accelerates follicular atresia in mice via JNK-mediated adherent junction damage of ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114592. [PMID: 36731181 DOI: 10.1016/j.ecoenv.2023.114592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Microcystin-LR (MC-LR), one of aquatic environmental contaminants with reproductive toxicity produced by cyanobacterial blooms, but its toxic effects and mechanisms on the ovary are not fully understood. Here, proteomic techniques and molecular biology experiments were performed to study the potential mechanism of MC-LR-caused ovarian toxicity. Results showed that protein expression profile of ovarian granulosa cells (KK-1) was changed by 17 μg/mL MC-LR exposure. Comparing with the control group, 118 upregulated proteins as well as 97 downregulated proteins were identified in MC-LR group. Function of differentially expressed proteins was found to be enriched in pathways related to adherent junction, such as cadherin binding, cell-cell junction, cell adhesion and focal adherens. Furthermore, in vitro experiments, MC-LR significantly downregulated the expression levels of proteins associated with adherent junction (β-catenin, N-cadherin, and α-catenin) as well as caused cytoskeletal disruption in KK-1 cells (P < 0.05), indicating that the adherent junction was damaged. Results of in vivo experiments have shown that after 14 days of acute MC-LR exposure (40 μg/kg), damaged adherent junction and an increased number of atretic follicles were observed in mouse ovaries. Moreover, MC-LR activated JNK, an upstream regulator of adherent junction proteins, in KK-1 cells and mouse ovarian tissues. In contrast, JNK inhibition alleviated MC-LR-induced adherent junction damage in vivo and in vitro, as well as the number of atretic follicles. Taken together, findings from the present study indicated that JNK is involved in MC-LR-induced granulosa cell adherent junction damage, which accelerated follicular atresia. Our study clarified a novel mechanism of MC-LR-caused ovarian toxicity, providing a theoretical foundation for protecting female reproductive health from environmental pollutants.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxia Xin
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives. Int J Mol Sci 2023; 24:ijms24032079. [PMID: 36768404 PMCID: PMC9917083 DOI: 10.3390/ijms24032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
Collapse
|
15
|
Avdeeva AS. Inflammatory markers in rheumatic diseases. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-561-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune-mediated rheumatic diseases (IMRDs) are a broad group of pathological conditions based on impaired immunological tolerance to one’s own tissues leading to inflammation and irreversible organ damage. Laboratory diagnosis of IMRDs includes a wide range of biomarkers (autoantibodies, acute phase proteins, cytokines, markers of endothelial damage, components of the complement system, immunoglobulins, cryoglobulins, lymphocyte subpopulations, indicators of bone metabolism, apoptosis markers, genetic markers, etc). One of the leading aspects of laboratory diagnosis of IMRDs is the study of the level of inflammation markers in the blood (erythrocyte sedimentation rate, C-reactive protein (CRP), serum amyloid protein (CAA), ferritin, procalcitonin, apolipoprotein AI, calprotectin, etc). The analysis of inflammation markers makes it possible to assess the disease activity, the nature of the progression and the prognosis of the outcomes of a chronic inflammatory process, as well as the effectiveness of the therapy. The review presents the latest data on the role of the most frequently studied inflammatory markers such as CRP, CAA and ferritin.
Collapse
|
16
|
Jiang Y, Chai X, Chen S, Chen Z, Tian H, Liu M, Wu X. Exosomes from the Uterine Cavity Mediate Immune Dysregulation via Inhibiting the JNK Signal Pathway in Endometriosis. Biomedicines 2022; 10:biomedicines10123110. [PMID: 36551866 PMCID: PMC9775046 DOI: 10.3390/biomedicines10123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease with an uncertain pathogenesis. Peritoneal immune dysregulation plays an important role in the pathogenesis of endometriosis. Exosomes are messengers of intercellular communication. This study mainly investigated the role of exosomes from the uterine cavity in endometriosis. Exosomes of the uterine aspirate fluid were isolated and cocultured with macrophages for 48 h. Flow cytometry was used to detect macrophage polarization. A Human MAPK Phosphorylation Antibody Array and Western blot were used to detect the phosphorylation of the MAPK pathway. A microRNA sequencing analysis was used to detect differentially expressed miRNAs. Our research found that exosomes of the uterine aspirate fluid from endometriosis could reduce the proportion of CD80+ macrophages. Additionally, it could inhibit the expression of P-JNK in macrophages. However, the JNK activator anisomycin could increase the proportion of CD80+ macrophages. In addition, exosomes of the uterine aspirate fluid from endometriosis could promote the migration and invasion of endometrial stromal cells by acting on macrophages. The expression of miR-210-3p was increased in both exosomes and the eutopic endometrium in patients with endometriosis through miRNA sequencing, which could also reduce the proportion of CD80+ macrophages. In summary, we propose that exosomes from the uterine cavity in patients with endometriosis may affect the phenotype of macrophages by inhibiting the JNK signaling pathway, thus mediating the formation of an immunological microenvironment conducive to the development of endometriosis.
Collapse
|
17
|
The Efficacy and Safety of Bisoprolol in the Treatment of Myocardial Infarction with Cardiac Insufficiency. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3098726. [PMID: 36060658 PMCID: PMC9436541 DOI: 10.1155/2022/3098726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Background Bisoprolol is commonly used to treat moderate or severe chronic stable heart failure, coronary heart disease, and hypertension. This study is aimed at analyzing the efficacy of bisoprolol in the treatment of myocardial infarction with cardiac insufficiency and its effect on cardiac function, Hcy, and CRP through meta-analysis. Methods A total of 120 patients with myocardial infarction and cardiac insufficiency from February 2020 to February 2021 were selected and randomly divided into two groups (control and the observation, n = 60) according to the random number table method. The control group was given conventional treatment. The observation group was given bisoprolol on the basis of control group. The clinical efficacy, systolic blood pressure, diastolic blood pressure, heart rate, cardiac function indexes, homocysteine (Hcy), and C-reactive protein (CRP) levels were compared between the two groups before and after treatment through data analysis. Adverse reactions were observed during treatment. Results Compared with the control group, the total effective rate of the observation group was significantly increased (p < 0.05). After treatment, the levels of heart rate, left ventricular end-diastolic volume (LVEDV), and left ventricular end-systolic volume (LVESV) and serum Hcy and CRP levels in the observation group were significantly lower than those in the control group (p < 0.05). Meanwhile, left ventricular ejection fraction (LVEF) level in the observation group after treatment was higher than that of the control group (p < 0.05). Conclusion Bisoprolol combined with conventional treatment can reduce serum Hcy and CRP levels in patients with myocardial infarction and cardiac insufficiency and improve cardiac function. Moreover, there are no obvious adverse reactions during the treatment.
Collapse
|
18
|
Song L, Zhang J, Ma D, Fan Y, Lai R, Tian W, Zhang Z, Ju J, Xu H. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Atherosclerosis From 2001 to 2021. Front Immunol 2022; 13:910444. [PMID: 35795675 PMCID: PMC9250973 DOI: 10.3389/fimmu.2022.910444] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, studies of macrophage polarization in atherosclerosis have become an intense area of research. However, there are few bibliometric analyses regarding this area. In this review, we used CiteSpace 5.8.R3 and VOSviewer 1.6.16 software to perform text mining and knowledge-map analysis. We explored the development process, knowledge structure, research hotspots, and potential trends using a bibliometric and knowledge-map analysis to provide researchers with a macroscopic view of this field. The studies concerning macrophage polarization in atherosclerosis were downloaded from the Web of Science Core Collection. A total of 781 studies were identified and published by 954 institutions from 51 countries/regions. The number of studies of macrophage polarization in atherosclerosis increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. De Winther was the most prolific researcher, and Moore had the most co-citations. The author co-occurrence map illustrated that there was active cooperation among researchers. The most productive countries were the United States and China. Amsterdam University, Harvard University, and Maastricht University were the top three productive institutions in the research field. Keyword Co-occurrence, Clusters, and Burst analysis showed that “inflammation,” “monocyte,” “NF kappa B,” “mechanism,” and “foam cell” appeared with the highest frequency in studies. “Oxidative stress,” “coronary heart disease,” and “prevention” were the strongest citation burst keywords from 2019 to 2021.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Xu,
| |
Collapse
|
19
|
Slevin M, Heidari N, Azamfirei L. Monomeric C-Reactive Protein: Current Perspectives for Utilization and Inclusion as a Prognostic Indicator and Therapeutic Target. Front Immunol 2022; 13:866379. [PMID: 35309334 PMCID: PMC8930844 DOI: 10.3389/fimmu.2022.866379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Monomeric C-reactive protein (mCRP), once thought to be a figment of the imagination and whose biological activity was ascribed to its sodium azide preservative, has now pronounced itself as a critical molecule playing a direct role in mediating many of the acute and chronic aberrant pathological responses to inflammation. In this focused mini review, we describe the currently attributed pathobiological interactions of mCRP in disease, where its tissue and cellular distribution and deposition have recently been clearly characterized and linked to inflammation and other pathway-associated progression of neurological and cardiovascular complications and deleterious outcomes. and focus upon current opinions as to the diagnostic and prognostic potential of mCRP-plasma circulating protein and define the possible future therapeutics including ongoing research attempting to block CRP dissociation with small molecule inhibitors or prevention of cell surface binding directly using antibodies or modified orphan drug targeting directed towards CRP, inhibiting its cellular interactions and signaling activation. There is no doubt that understanding the full influence of the biological power of mCRP in disease development and outcome will be considered a critical parameter in future stratified treatment.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Life Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
- The Regenerative Clinic, London, United Kingdom
- The School of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: Mark Slevin, ;
| | - Nima Heidari
- Department of Life Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
- The Regenerative Clinic, London, United Kingdom
| | - Leonard Azamfirei
- Department of Life Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| |
Collapse
|