1
|
Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections. Front Cell Infect Microbiol 2024; 14:1418500. [PMID: 39559705 PMCID: PMC11570582 DOI: 10.3389/fcimb.2024.1418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Alarmin cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) function as danger signals to trigger host immunity in response to tissue injury caused by pathogenic factors such as parasitic infections. Parasitic diseases also provide an excellent context to study their functions and mechanisms. Numerous studies have indicated that alarmin cytokine released by non-immune cells such as epithelial and stromal cells induce the hosts to initiate a type 2 immunity that drives parasite expulsion but also host pathology such as tissue injury and fibrosis. By contrast, alarmin cytokines especially IL-33 derived from immune cells such as dendritic cells may elicit an immuno-suppressive milieu that promotes host tolerance to parasites. Additionally, the role of alarmin cytokines in parasite infections is reported to depend on species of parasites, cellular source of alarmin cytokines, and immune microenvironment, all of which is relevant to the parasitic sites or organs. This narrative review aims to provide information on the crucial and diverse role of alarmin cytokines in parasitic infections involved in different organs including intestine, lung, liver and brain.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing He
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Lei J, Feng Y, Zheng W, Khamis M, Zhang J, Hou X, Guan F. Type I/II Immune Balance Contributes to the Protective Effect of AIF-1 on Hepatic Immunopathology Induced by Schistosoma japonicum in a Transgenic Mouse Model. Inflammation 2024; 47:1806-1819. [PMID: 38554240 DOI: 10.1007/s10753-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease in the world. Liver egg granuloma and fibrosis are the main damage of schistosomiasis. In this study, the role of allograft inflammatory factor-1 (AIF-1) in liver pathology and its regulation in immune responses were investigated in a transgenic mouse infected with Schistosoma japonicum. We found that AIF-1 overexpression reduced worm burden and decreased egg granuloma sizes and serum alanine aminotransferase levels, along with inhibited hepatic collagen deposition and serum hydroxyproline levels during S. japonicum infection. Moreover, AIF-1 overexpression resulted in an increased ratio of Th1/Th2, increased levels of IFN-γ and T-bet, and lower levels of GATA-3 in the spleen, accompanied by increased M1 percentages, decreased M2 percentages, and thus a higher ratio of M1/M2 in the peritoneal cavity and liver. AIF-1 induced CD68 and iNOS mRNA expression and protein levels of cytoplasmic p-P38 and nuclear NF-κB, along with enhanced levels of TNF-α and TGF-β in macrophages in vitro. Moreover, the hepatic pathology had a negative correlation with Th1/Th2 and M1/M2 ratios in the infected mice. The findings reveal that the beneficial role of AIF-1 in alleviating hepatic damage is related to restoring type I/II immune balance in S. japonicum infection.
Collapse
Affiliation(s)
- Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujie Feng
- Department of Clinical Laboratory, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mwadini Khamis
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Hou
- Department of Clinical Laboratory, General Hospital of Central Theater Command, Wuhan, 430000, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Yuan Y, Li J, Lu X, Chen M, Liang H, Chen XP, Long X, Zhang B, Gong S, Huang X, Zhao J, Chen Q. Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis. Front Med 2024; 18:538-557. [PMID: 38769281 DOI: 10.1007/s11684-024-1079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xun Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Song Gong
- Department of Trauma Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei Huang
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Li QF, Li YX, Yang YY, Dong PP, Mei CJ, Lu JL, Zhang JF, Hua HY, Xiong CR, Yu CX, Song LJ, Yang K. The egg ribonuclease SjCP1412 accelerates liver fibrosis caused by Schistosoma japonicum infection involving damage-associated molecular patterns (DAMPs). Parasitology 2024; 151:260-270. [PMID: 38105713 PMCID: PMC11007278 DOI: 10.1017/s0031182023001361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.
Collapse
Affiliation(s)
- Qi-Feng Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Yi-Xin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Ying-Ying Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Pan-Pan Dong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Cong-Jin Mei
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Ju-Lu Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Jian-Feng Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Hai-Yong Hua
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Chun-Rong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Chuan-Xin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Li-Jun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| |
Collapse
|
5
|
Chen XD, Xie J, Wei Y, Yu JF, Cao Y, Xiao L, Wu XJ, Mao CJ, Kang RM, Ye YG. Immune modulation of Th1/Th2/Treg/Th17/Th9/Th21 cells in rabbits infected with Eimeria stiedai. Front Cell Infect Microbiol 2023; 13:1230689. [PMID: 37593762 PMCID: PMC10431940 DOI: 10.3389/fcimb.2023.1230689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Despite long-term integrated control programs for Eimeria stiedai infection in China, hepatic coccidiosis in rabbits persists. Th1, Th2, Th17, Treg, Th9, and Th21 cells are involved in immune responses during pathogen infection. It is unclear whether Th cell subsets are also involved in E. stiedai infection. Their roles in the immunopathology of this infection remain unknown. Therefore, monitoring these T-cell subsets' immune responses during primary infection of E. stiedai at both transcriptional (mRNA) and protein (cytokines) levels is essential. Methods In experimentally infected New Zealand white rabbits, mRNA expression levels of their transcript-TBX2 (Th1), GATA3 (Th2), RORC (Th17), Foxp3 (Treg), SPI1 (Th9), and BCL6 (Th21)-were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), whereas Th1 (IFN-g and TNF-a), Th2 (IL4), Th17 (IL17A and IL6), Treg (IL10 and TGF-b1), Th9 (IL9), and Th21 (IL21) cytokines were measured using enzyme-linked immunosorbent assays (ELISAs). Results We found that levels of TBX2, GATA3, RORC, SPI1, and BCL6 in the livers of infected rabbits were elevated on days 5 and 15 post-infection (PI). The concentrations of their distinctive cytokines IFN-g and TNF-a for Th1, IL4 for Th2, IL17A for Th17, IL9 for Th9, IL21 for Th21, and IL10 for Treg IL10 were also significantly increased on days 5 and 15 PI, respectively (p < 0.05). On day 23 PI, GATA3 with its cytokine IL4, RORC with IL17A, Foxp3 with IL10 and TGF-b1, and SPI1 with IL9 were significantly decreased, but TBX2 with IFN-g and IL6 remained elevated. Discussion Our findings are the first evidence of Th1/Th2/Treg/Th17/Th9/Th21 changes in E. stiedai-infected rabbits and provide insights into immune regulation mechanisms and possible vaccine development.
Collapse
Affiliation(s)
- Xiao-Di Chen
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jing Xie
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yong Wei
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ji-Feng Yu
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ye Cao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lu Xiao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xue-Jing Wu
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Cong-Jian Mao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Run-Min Kang
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yong-Gang Ye
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
6
|
Maggi L, Camelo GMA, Rocha IC, Pereira Alves W, Moreira JMP, Almeida Pereira T, Tafuri WL, Rabelo ÉML, Correa A, Ecco R, Negrão-Corrêa DA. Role of the IL-33/ST2 Activation Pathway in the Development of the Hepatic Fibrosis Induced by Schistosoma mansoni Granulomas in Mice. Int J Mol Sci 2023; 24:10237. [PMID: 37373379 PMCID: PMC10299179 DOI: 10.3390/ijms241210237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Schistosoma mansoni eggs retained in host tissues induce innate cytokine release, contributing to the induction of Type-2 immune responses and granuloma formation, important to restrain cytotoxic antigens, but leading to fibrosis. Interleukin(IL)-33 participates in experimental models of inflammation and chemically induced fibrosis, but its role in S. mansoni-induced fibrosis is still unknown. To explore the role of the IL-33/suppressor of the tumorigenicity 2 (ST2) pathway, serum and liver cytokine levels, liver histopathology, and collagen deposition were comparatively evaluated in S. mansoni-infected wild-type (WT) and IL-33-receptor knockout (ST2-/-) BALB/c mice. Our data show similar egg counts and hydroxyproline in the livers of infected WT and ST2-/- mice; however, the extracellular matrix in ST2-/- granulomas was loose and disorganised. Pro-fibrotic cytokines, such as IL-13 and IL-17, and the tissue-repairing IL-22 were significantly lower in ST2-/- mice, especially in chronic schistosomiasis. ST2-/- mice also showed decreased α-smooth muscle actin (α-SMA) expression in granuloma cells, in addition to reduced Col III and Col VI mRNA levels and reticular fibres. Therefore, IL-33/ST2 signalling is essential for tissue repairing and myofibroblast activation during S. mansoni infection. Its disruption results in inappropriate granuloma organisation, partly due to the reduced type III and VI collagen and reticular fibre formation.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
- Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça 78698-000, MG, Brazil
| | - William Pereira Alves
- Laboratório de Parasitologia Molecular, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (W.P.A.); (É.M.L.R.)
| | - João Marcelo Peixoto Moreira
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Wagner Luiz Tafuri
- Laboratório de Patologia das Leishmanioses, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Élida Mara Leite Rabelo
- Laboratório de Parasitologia Molecular, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (W.P.A.); (É.M.L.R.)
| | - Ary Correa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Roselene Ecco
- Setor de Patologia, Escola Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Deborah Aparecida Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| |
Collapse
|
7
|
Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. [PMID: 36389166 PMCID: PMC9650140 DOI: 10.3389/fcimb.2022.1035765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis has been widely disseminated around the world, and poses a significant threat to human health. Schistosoma eggs and soluble egg antigen (SEA) mediated inflammatory responses promote the formation of egg granulomas and liver fibrosis. With continuous liver injuries and inflammatory stimulation, liver fibrosis can develop into liver cirrhosis and liver cancer. Therefore, anti-fibrotic therapy is crucial to increase the survival rate of patients. However, current research on antifibrotic treatments for schistosomiasis requires further exploration. In the complicated microenvironment of schistosome infections, it is important to understand the mechanism and pathology of schistosomiasis-associated liver fibrosis(SSLF). In this review, we discuss the role of SEA in inhibiting liver fibrosis, describe its mechanism, and comprehensively explore the role of host-derived and schistosome-derived microRNAs (miRNAs) in SSLF. Inflammasomes and cytokines are significant factors in promoting SSLF, and we discuss the mechanisms of some critical inflammatory signals and pro-fibrotic cytokines. Natural killer(NK) cells and Natural killer T(NKT) cells can inhibit SSLF but are rarely described, therefore, we highlight their significance. This summarizes and provides insights into the mechanisms of key molecules involved in SSLF development.
Collapse
Affiliation(s)
- Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
8
|
Hou X, Zhu F, Zheng W, Jacques ML, Huang J, Guan F, Lei J. Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Front Cell Infect Microbiol 2022; 12:1028899. [PMID: 36304936 PMCID: PMC9592807 DOI: 10.3389/fcimb.2022.1028899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-β1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiao Hou
- Department of Clinical Laboratory, The General Hospital of Central Theater Command, The People's Liberation Army, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muziazia Lupemba Jacques
- Department of Parasitology, Kinshasa Institute of Medical, Kinshasa, Democratic Republic of the Congo
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Pu’ai Hospital, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiahui Lei,
| |
Collapse
|
9
|
Yang L, Sun L, Cao Y, Wang Q, Song A, Zhu R, Liu W, Lu S. MULT1-Encoding DNA Alleviates Schistosomiasis-Associated Hepatic Fibrosis via Modulating Cellular Immune Response. J Inflamm Res 2022; 15:4027-4045. [PMID: 35873385 PMCID: PMC9301018 DOI: 10.2147/jir.s354224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose In schistosomiasis-associated hepatic fibrosis, the role of murine UL16-binding protein-like transcript 1 (MULT1), the strongest ligand of natural killer group 2-member D receptor (NKG2D), remains unclear. Here, Schistosoma japonicum-infected mice administered with MULT1-encoding DNA were used to test MULT1 as a potential therapy for schistosomiasis-associated hepatic fibrosis and explore relevant mechanisms. Materials and Methods A recombinant plasmid encoding MULT1 (p-rMULT1) was constructed and administered to Schistosoma japonicum-infected BALB/c mice via hydrodynamic tail vein injection. Egg granulomas in liver, hepatic fibrosis biomarkers and levels of cytokines were investigated. Comparisons of CD4+ T, CD8+ T, NK and NKT proportions as well as their phenotype were performed not only between Schistosoma infected, p-rMULT1 treated group and Schistosoma infected, backbone plasmid pEGFP-N1 treated group but also between infected, nontreated group and health control group. Results Reduced area of granuloma formation and fibrosis around single eggs, downregulated expression of collagen I, α-smooth muscle actin, TGF-β and IL-10, and upregulated expression of IFN-γ, were observed in the livers of p-rMULT1 treated mice. p-rMULT1 treatment improved Schistosoma infection impacted immune microenvironment by modulating proportion of CD4+ T CD8+ T, natural killer (NK) and NKT cells, enhancing expression of NKG2D, in lymphocytes, and augmenting IFN-γ secretion by CD4+ T, CD8+ T, NK and NKT cells, as well as partially reversing some other phenotype changes of lymphocytes. Conclusion To the best of our knowledge, we provided the first in vivo evidence that MULT1 is a favorable anti-fibrosis factor in the context of schistosomiasis. The inhibitory effect of MULT1 overexpression on schistosomiasis associated with hepatic fibrosis may result from augmenting the proportion and function of NKG2D-expressing immune cells, and from enhancing NK- and T-cell activation, as well as regulating the helper T (Th)1/Th2 balance.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yalan Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Anni Song
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqi Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shengjun Lu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
do Nascimento WRC, Nóbrega CGDO, Fernandes EDS, Santos PDA, Melo FL, Albuquerque MCPDA, de Lorena VMB, Costa VMA, Barbosa CCGS, de Souza VMO. Schistosoma mansoni infection decreases IL-33-mRNA expression and increases CXCL9 and CXCL10 production by peripheral blood cells. Med Microbiol Immunol 2022; 211:211-218. [PMID: 35819523 DOI: 10.1007/s00430-022-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Schistosoma mansoni infections, particularly egg antigens, induce Th2-dominant granulomatous responses accompanied by remarkable immunoregulatory mechanisms that avoid intense fibrosis. Interleukin (IL)-33 is a cytokine that stimulates the early activation of Th2 responses, and its soluble ST2 receptor (sST2) avoids granulomatous response, as well as CXCL9 and CXCL10 chemokines that have antifibrotic activity. However, in schistosomiasis, these molecules have not been suitably studied. Therefore, this study aimed to measure IL-33 and sST2 RNA, cytokines, and chemokines in peripheral blood cultures from individuals living in schistosomiasis-endemic areas. Peripheral blood cells from individuals with S. mansoni (n = 34) and non-infected individuals (n = 31) were cultured under mitogen stimulation. Supernatant chemokines and cytokines were evaluated using a cytometric bead array, and IL-33 and sST2 mRNA expression was measured using qPCR. Infected individuals showed higher levels of CXCL8, CXCL9, CXCL10, IFN-γ, TNF-α, IL-6, IL-2, IL-4, and IL-10; there was a lower expression of IL-33 mRNA and similar expression of sST2mRNA in infected than non-infected individuals. In conclusion, for the first time, we demonstrated lower IL-33mRNA expression and high levels of the antifibrotic chemokines CXCL9 and CXCL10 in schistosomiasis mansoni, which could control exacerbations of the disease in individuals from endemic areas.
Collapse
Affiliation(s)
| | - Cassia Giselle de Oliveira Nóbrega
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Erica de Souza Fernandes
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Patrícia d'Emery Alves Santos
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Fábio Lopes Melo
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Mônica Camelo Pessôa de Azevedo Albuquerque
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brazil.,Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Vláudia Maria Assis Costa
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brazil.,Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Valdênia Maria Oliveira de Souza
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil. .,Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|