1
|
Datta D, Noor A, Rathee A, Singh S, Kohli K. Hypothesizing the Oleic Acid-Mediated Enhanced and Sustained Transdermal Codelivery of Pregabalin and Diclofenac Adhesive Nanogel: A Proof of Concept. Curr Mol Med 2024; 24:1317-1328. [PMID: 38847251 DOI: 10.2174/0115665240291343240306054318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 10/19/2024]
Abstract
Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120⁰, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEEbased nanogel across the human skin can be achieved to inhibit inflammation and pain.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Afeefa Noor
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Snigdha Singh
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Kanchan Kohli
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Kováčik A, Kopečná M, Hrdinová I, Opálka L, Boncheva Bettex M, Vávrová K. Time-Dependent Differences in the Effects of Oleic Acid and Oleyl Alcohol on the Human Skin Barrier. Mol Pharm 2023; 20:6237-6245. [PMID: 37950377 DOI: 10.1021/acs.molpharmaceut.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Oleic acid and oleyl alcohol are commonly used permeation and penetration enhancers to facilitate topical drug delivery. Here, we aimed to better understand the mechanism of their enhancing effects in terms of their interactions with the human skin barrier using diclofenac diethylamine (DIC-DEA), a nonsteroidal anti-inflammatory drug for topical pain management. Oleic acid promoted DIC-DEA permeation through ex vivo human skin more rapidly than oleyl alcohol (both applied at 0.75%) due to fluidization of stratum corneum lipids as revealed by infrared spectroscopy. After 12 h, the effect of these enhancers on DIC-DEA permeation leveled off, fluidization was no longer evident, and skin permeabilization was mainly due to the formation of fluid enhancer-rich domains. Contrary to oleyl alcohol, oleic acid adversely affected two indicators of the skin barrier integrity, transepidermal water loss and skin electrical impedance. The content of oleyl alcohol in the stratum corneum was lower than that of oleic acid (even 12 h after the enhancers were removed from the skin surface), but it caused higher DIC-DEA retention in both epidermis and dermis compared to oleic acid. The effects of oleyl alcohol and oleic acid on DIC-DEA permeation and retention in the skin were similar after a single and repeated application (4 doses every 12 h). Thus, oleyl alcohol offers several advantages over oleic acid for topical drug delivery.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Monika Kopečná
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Iva Hrdinová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | | | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Li LP, Jin YC, Fang L, Zhang C. Direct photolysis of diclofenac under simulated sunlight: Transformation pathway and biological concerns. CHEMOSPHERE 2022; 307:135775. [PMID: 35868525 DOI: 10.1016/j.chemosphere.2022.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Topical diclofenac gels are frequently applied on human skin and, consequently are exposed to sunlight during outdoor activities. The degradation of diclofenac (DCF) with sunlight exposure is known to occur but the detailed transformation characteristics and biological concerns have not been comprehensively investigated. In the present work, the transformation products during diclofenac photolysis were identified with the aid of ultra-performance liquid chromatography coupled with triple time-of-flight mass spectrometry (UPLC-TripleTOF). Biological concerns, including microtoxicity, genotoxicity, cytotoxicity and antiestrogenicity were examined with multiple in-vitro bioassays. Spearman correlation analysis was conducted to obtain further insight into the contributions of photolysis products to overall biological concerns. The results demonstrated that diclofenac was readily degraded under sunlight to form five main photolysis products via substitution, dechlorination, dehydroxylation, homodimerization and heterodimerization. Products P1, P2 and P5 were reported previously, while two dimer products (P3 and P4) are innovative products and have not been found in prior studies. A significant elevation in the microtoxicity was found during the photolysis of diclofenac, resulting mainly from the carbazole-containing photolysis products P2, P3, P4 and P5. Genotoxicity and antiestrogenicity declined along with the reduction of diclofenac, indicating that no photolysis products were genotoxic or anti-estrogenic. Modest cytotoxicity to the human skin epidermis cell line was observed and attributed to the formation of intermediate species. This outcome highlighted the biological concerns of diclofenac to human health when exposed to sunlight.
Collapse
Affiliation(s)
- Li-Ping Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| | - Yan-Chao Jin
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Le Fang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Cheng Zhang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
4
|
Beier LS, Waldow A, Khomeijani Farahani S, Mannweiler R, Vidal-Y-Sy S, Brandner JM, Piontek J, Günzel D. Claudin targeting as an effective tool for directed barrier modulation of the viable epidermis. Ann N Y Acad Sci 2022; 1517:251-265. [PMID: 35994210 DOI: 10.1111/nyas.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman Mannweiler
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Kołecka K, Gajewska M, Caban M. From the pills to environment - Prediction and tracking of non-steroidal anti-inflammatory drug concentrations in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153611. [PMID: 35151749 DOI: 10.1016/j.scitotenv.2022.153611] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The extend of environment pollution by pharmaceuticals is in a stage that required more automatic and integrated solutions. The non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most popular pharmaceutical in the world and emerging pollutants of natural waters. The aim of the paper was to check the correlation of the sales data of selected NSAIDs (ibuprofen, naproxen, diclofenac) and their concentration in the WWTP in order to enable predicting their loads, having only the sales data. For calculations, we apply three discharge scenarios (the fates between purchased to the presence in influents), having in mind that some part of sold mass can be improperly dispose to sewage system. To support predictions, chemical analysis was conducted in two conventional wastewater treatment plants (WWTPs) located in Poland during 2018 and 2020, thereby before and during pandemic situation. The NSAIDs concentration in the influent was higher than that which would be obtained if all of the administrated mass of the pharmaceutical went through the metabolic pathway of transformation. This means that substantial mass of sold NSAIDs in improperly dispose to sewage system, and this factor need to be taken into account in future predictions. Furthermore, results indicate that the variance of naproxen and diclofenac concentrations in the influent has no correlation with relatively stable sales throughout whole year. The pandemic situation had yet no direct effect to diclofenac concentrations in influents, despite observed increasing of sales. It was calculated that more than 60 kg of diclofenac was discharged into the Baltic Sea in 2018, and 20 kg in the first half of 2021 from two tested WWTPs. The presence of 4OH-diclofenac in effluents often in higher concentration compared to diclofenac mean that this still biologically active compound need to be taken into account in future risk assessment.
Collapse
Affiliation(s)
- Katarzyna Kołecka
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Magdalena Gajewska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, Department of Environmental Analysis, Wita Stwosza St. 63, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Silișteanu AE, Szakács J. Study on the effects of the use of therapeutic ultrasound in the treatment of osteoarticular diseases. BALNEO AND PRM RESEARCH JOURNAL 2022. [DOI: 10.12680/balneo.2022.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The use of therapeutic ultrasounds is a method that proved its efficiency in articu-lar and periarticular pathology, in the subacute and chronic stages. The biological effects of the ultrasound use are determined by their interaction with the cellular structures whereas the re-sults depend on the used parameters. The purpose of the survey is to evaluate / identify the ef-fects of using ultrasounds in the treatment of musculoskeletal conditions (lumbar discopathy), knee osteoarthritis). Material and method. The survey was conducted on an outpatient basis in a period of 7 months and it is of the longitudinal type. It included 151 patients diagnosed with low back pain and knee osteoarthritis. The evaluated parameters were: pain, functional skills, articu-lar rigidity and the quality of life. Results. The effects of the use of ultrasounds is found in the decrease of pain, the stiffness of the joints and the contracture of the muscles, as shown by the re-sults of several surveys. Our survey proves that the use of ultrasounds decreases pain and in-creases the functional skills, it influences the physical function more obviously in patients with knee osteoarthritis, which is an aspect found in others surveys. Discussion. The use of a complex ultrasound treatment (in the pulsed way to avoid thermal effects) and kinesiotherapy enabled in our research the decrease of the pain and of the rigidity in the joints, the increase of the function-al skills and the quality of life, whereas these obtained results are in accordance with those of others surveys. Conclusions. The use of the therapeutic ultrasounds can have the following ef-fects: the decrease of the pain and of the joint rigidity, the improvement of the physical capacity for daily activities and the improvement of the quality of life. The use of low intensity ultra-sounds can determine biological effects with actions for a short period or for an average one.
Keywords: therapeutic ultrasound, treatment, osteoarticular diseases, quality of life
Collapse
Affiliation(s)
- Andrei-Emanuel Silișteanu
- 1 Master- Health Management- Lucian Blaga University, Faculty of Medicine, Sibiu 2 Faculty of Political, Administrative and Communication Sciences of Cluj-Napoca, Romania
| | - Juliánna Szakács
- 3 George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Faculty of Medicine, Department of Biophysics
| |
Collapse
|
7
|
Shavlovskaya OA, Bokova IA, Shavlovskiy NI. The possibilities of using topical nonsteroidal anti-inflammatory drugs in the complex pain syndrome therapy of musculoskeletal system diseases. CONSILIUM MEDICUM 2021. [DOI: 10.26442/20751753.2021.11.201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diseases of the peripheral joints (osteoarthritis OA) and the spine are the most common pathology among other chronic conditions. One of the most common diseases characterized by degenerative periarticular changes with various clinical manifestations is periarthritis. Unlike OA, periarthritis is characterized by a discrepancy between active and passive movements, increased pain during strictly defined movements, the absence of joint swelling or local swelling in the projection of the affected tendon. As the basic therapy of OA (step 1), it is recommended to prescribe locally nonsteroidal anti-inflammatory drugs (NSAIDs), as drugs with less systemic adverse effects. Local NSAIDs have a sufficient analgesic effect in knee joints OA. Among topical NSAIDs for reducing pain in knee joints OA and periarticular tissues, diclofenac gel (Voltaren Emulgel 2%) is approved for use, the effectiveness of which has been demonstrated in many studies. To achieve maximum effect, the gel is applied according to the instructions for use of the drug: 2 ml on the anterior, posterior and lateral surfaces of the knee 2 times a day (every 12 hours) for 4 weeks.
Collapse
|
8
|
Mannweiler R, Bergmann S, Vidal‐y‐Sy S, Brandner JM, Günzel D. Direct assessment of individual skin barrier components by electrical impedance spectroscopy. Allergy 2021; 76:3094-3106. [PMID: 33844311 DOI: 10.1111/all.14851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/17/2021] [Accepted: 03/07/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Expression of the tight junction proteins Cldn1 and 4 is altered in skin diseases such as atopic dermatitis, and Cldn1 deficiency affects skin barrier formation. Impedance spectroscopy (IS) has been proven to allow detection of alterations in the skin barrier but is currently unable to separate effects on viable epidermis (VE) and stratum corneum (SC). METHODS Effects of siRNA-mediated Cldn1 and 4 knockdown in reconstructed human epidermis (RHE) on VE and SC barrier function were investigated with Ussing chamber-based IS. Barrier components were sequentially altered, employing iron oxide nanoparticles and EGTA, to identify their contribution to the impedance spectrum. Resistance changes due to apically applied hyperosmolar electrolyte were used to identify barrier defects non-invasively. RESULTS IS of RHE yielded two relaxation frequencies, representing the barrier properties of the SC (~1000 Hz) and VE (~100 Hz). As proof of concept, it was shown that the Cldn1 knockdown-induced resistance drop arises from the impairment of both SC and VE, indicated by a shift of both relaxation frequencies. Hyperosmolar electrolyte penetration allowed non-invasive detection of Cldn1 knockdown via time-dependent frequency shifts. The absence of Cldn4 knockdown-induced changes revealed the weaknesses of transepithelial electrical resistance analysis. CONCLUSION In conclusion, the present technique allows to separately measure the barrier properties of SC and VE and further evaluate the Cldn1 and 4 knockdown impact on the skin barrier. As the measurement with agarose-embedded electrolyte allowed non-invasive identification of the Cldn1 knockdown, this opens the way to detailed in vivo skin barrier assessment.
Collapse
Affiliation(s)
- Roman Mannweiler
- Institute of Clinical Physiology/Nutritional Medicine Medical Department Division of Gastroenterology, Infectiology, Rheumatology Charité – Universitätsmedizin Berlin Berlin Germany
| | - Sophia Bergmann
- Department of Dermatology and Venerology University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Sabine Vidal‐y‐Sy
- Department of Dermatology and Venerology University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Johanna M. Brandner
- Department of Dermatology and Venerology University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine Medical Department Division of Gastroenterology, Infectiology, Rheumatology Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
9
|
Milanowski B, Wosicka-Frąckowiak H, Główka E, Sosnowska M, Woźny S, Stachowiak F, Suchenek A, Wilkowski D. Optimization and Evaluation of the In Vitro Permeation Parameters of Topical Products with Non-Steroidal Anti-Inflammatory Drugs through Strat-M ® Membrane. Pharmaceutics 2021; 13:1305. [PMID: 34452264 PMCID: PMC8398299 DOI: 10.3390/pharmaceutics13081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Pharmaceutical products containing non-steroidal anti-inflammatory drugs (NSAIDs) are among the most prescribed topical formulations used for analgesic and antirheumatic properties. These drugs must overcome the skin barrier to cause a therapeutic effect. Human skin has been widely used as a model to study in vitro drug diffusion and permeation, however, it suffers from many limitations. Therefore, to perform in vitro permeation test (IVPT), we used a Strat-M® membrane with diffusion characteristics well-correlated to human skin. This study's objective was to optimize the IVPT conditions using Plackett-Burman experimental design for bio-predictive evaluation of the in vitro permeation rates of five non-steroidal anti-inflammatory drugs (diclofenac, etofenamate, ibuprofen, ketoprofen, naproxen) across Strat-M® membrane from commercial topical formulations. The Plackett-Burman factorial design was used to screen the effect of seven factors in eight runs with one additional center point. This tool allowed us to set the sensitive and discriminative IVPT final conditions that can appropriately characterize the NSAIDs formulations. The permeation rate of etofenamate (ETF) across the Strat-M® membrane was 1.7-14.8 times faster than other NSAIDs from selected semisolids but 1.6 times slower than the ETF spray formulation.
Collapse
Affiliation(s)
- Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Hanna Wosicka-Frąckowiak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Eliza Główka
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Małgorzata Sosnowska
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Filip Stachowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Angelika Suchenek
- MYLAN Healthcare Sp. z o. o., ul. Postępu 21B, 02-676 Warszawa, Poland; (A.S.); (D.W.)
| | - Dariusz Wilkowski
- MYLAN Healthcare Sp. z o. o., ul. Postępu 21B, 02-676 Warszawa, Poland; (A.S.); (D.W.)
| |
Collapse
|
10
|
Mohan V, Wairkar S. Current regulatory scenario and alternative surrogate methods to establish bioequivalence of topical generic products. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Austin TJ, Comber S, Forrester E, Gardner M, Price OR, Oldenkamp R, Ragas AMJ, Hendriks AJ. The importance of over-the-counter-sales and product format in the environmental exposure assessment of active pharmaceutical ingredients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141624. [PMID: 32892036 DOI: 10.1016/j.scitotenv.2020.141624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
When assessing the environmental exposure of active pharmaceutical ingredients (APIs), the mass contributed from over the counter (OTC) sales are often not included due to difficulty obtaining this data and topical formats are overlooked completely. This study presents a comprehensive approach, investigating the significance of OTC and topical applications as sources of API releases to wastewater, in addition to temporal and subnational variations in use in the UK. The study provides methods to obtain and make use of OTC sales data which can be applied widely. The calculated releases to wastewater compared well with influent concentrations measured at several UK wastewater treatment plants (WWTPs). Consistent overestimation was observed, attributed to a number of factors, including in-sewer removal. OTC sales were found to make up a large proportion of the mass of ibuprofen (76%) and diclofenac (35%) consumed and topical formats were also found to be vital, contributing disproportionately to wastewater loadings per unit mass of ibuprofen and diclofenac used (43% and 99% of the total mass released, respectively). Releases of the APIs investigated did not vary temporally, but regional variation was significant and where possible should be considered for the most accurate exposure assessment of pharmaceuticals.
Collapse
Affiliation(s)
| | - Sean Comber
- Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | | | - Mike Gardner
- Atkins Limited, 500, Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | | | - Rik Oldenkamp
- Department of Environmental Science, Radboud University Nijmegen, 6500GL Nijmegen, the Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, 6500GL Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud University Nijmegen, 6500GL Nijmegen, the Netherlands
| |
Collapse
|
12
|
Pradal J. Comparison of Skin Permeation and Putative Anti-Inflammatory Activity of Commercially Available Topical Products Containing Ibuprofen and Diclofenac. J Pain Res 2020; 13:2805-2814. [PMID: 33177865 PMCID: PMC7650811 DOI: 10.2147/jpr.s262390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The therapeutic effect of topical nonsteroidal anti-inflammatory drugs (NSAIDs) depends on the drug’s ability to penetrate and permeate the skin and subsequently inhibit cyclo-oxygenase (COX) isoforms responsible for pain and inflammation. Most commercially available topical NSAID formulations are clinically effective, but direct comparisons of anti-inflammatory activity including both skin absorption and inhibitory potency are lacking. This study examined the skin absorption of representative commercially available topical diclofenac- and ibuprofen-based formulations along with published potency values to determine formulations with superior anti-inflammatory activity. Materials and Methods Cumulative absorption and flux profiles of 12 commercially available topical NSAIDs (6 diclofenac-based and 6 ibuprofen-based) were evaluated in vitro using human skin in static Franz diffusion cells. Each formulation was applied as a single dose. In vitro permeation parameters and published COX-2 inhibition values were used to calculate a modified index of topical anti-inflammatory activity (mITAA). Results All diclofenac and ibuprofen formulations permeated human skin in vitro. The rate and degree of absorption differed between diclofenac and ibuprofen formulations and between formulations of the same drug. NSAID concentration within a product was not solely responsible for the permeation flux or degree of absorption. Ibuprofen formulations permeated the skin more rapidly and to a greater degree than diclofenac, but calculated mITAAs were higher for diclofenac. Conclusion Diclofenac exhibited superior anti-inflammatory activity as measured by the index. Differences beyond drug concentration, including excipients, drug salt form, and dosage form, contribute to differences in absorption and thus in anti-inflammatory activity. Both absorption and COX-2 inhibition potency are important for anti-inflammatory activity, but their priority depends upon the products being compared—with the same NSAID, absorption determines superiority; with different NSAIDs, superiority is determined by the balance between absorption and COX-2 potency. These findings should be considered when selecting a topical NSAID for treating patient pain and inflammation.
Collapse
Affiliation(s)
- Julie Pradal
- GlaxoSmithKline Consumer Healthcare S.A, Nyon 1260, Switzerland
| |
Collapse
|
13
|
Liao PH, Urban PL. Agarose-Based Gel-Phase Microextraction Technique for Quick Sampling of Polar Analytes Adsorbed on Surfaces. ACS OMEGA 2019; 4:19063-19070. [PMID: 31763529 PMCID: PMC6868603 DOI: 10.1021/acsomega.9b02273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Sampling and extraction of chemical residues present on flat or curved surfaces as well as touch-sensitive objects are challenging. Hydrogels are characterized by high mechanical flexibility and water content. Thus, they are an ideal medium for transferring water-soluble analytes from a sampled surface to the next stage of an analytical workflow. Here, we demonstrate gel-phase microextraction (GPME), in which disks of blended hydrogels are utilized to lift traces of water-soluble substances adsorbed on surfaces. The protocol has been optimized in a series of tests involving fluorometric and mass spectrometric measurements. Compared with the pure agarose hydrogel, most of the tested blended hydrogels provide a higher efficiency for the sampling/extraction of a model analyte, fluorescein. The blended hydrogel disks are incorporated into three-dimensional (3D)-printed acrylonitrile-butadiene-styrene chips to create easy-to-use sampling probes. We exemplify the suitability of this improved GPME approach in sampling chemical residues present on the skin, glass, and daily use objects. In these tests, the extracts were analyzed on a triple quadrupole mass spectrometer fitted with an electrospray ion source operated in the positive- and negative-ion modes. The method enabled the detection of diclofenac on excised porcine skin fragments exposed to a topical nonsteroidal anti-inflammatory drug and sweat residues (lactic acid) left on surfaces touched by humans. The limits of detection for diclofenac and lactic acid in hydrogel extract were 6.4 × 10-6 and 2.1 × 10-5 M, respectively. In a model experiment, conducted using the presented approach, the amount of lactic acid on a glass slide with fingerprints was estimated to be ∼1.4 × 10-7 mol cm-2.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Sciences of Matters, National Tsing
Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, 1001 University Road, Hsinchu 300, Taiwan
| | - Pawel L. Urban
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Sciences of Matters, National Tsing
Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|