1
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04562-1. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Han S, Wang J, Zhang W, Tian X. Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms. Mol Neurobiol 2024; 61:8123-8143. [PMID: 38470516 DOI: 10.1007/s12035-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients' quality of life. Despite this comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research directions.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
3
|
O'Brien JA, Austin PJ. Minocycline Abrogates Individual Differences in Nerve Injury-Evoked Affective Disturbances in Male Rats and Prevents Associated Supraspinal Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:30. [PMID: 38878098 PMCID: PMC11180027 DOI: 10.1007/s11481-024-10132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024]
Abstract
Chronic neuropathic pain precipitates a complex range of affective and behavioural disturbances that differ markedly between individuals. While the reasons for differences in pain-related disability are not well understood, supraspinal neuroimmune interactions are implicated. Minocycline has antidepressant effects in humans and attenuates affective disturbances in rodent models of pain, and acts by reducing neuroinflammation in both the spinal cord and brain. Previous studies, however, tend not to investigate how minocycline modulates individual affective responses to nerve injury, or rely on non-naturalistic behavioural paradigms that fail to capture the complexity of rodent behaviour. We investigated the development and resolution of pain-related affective disturbances in nerve-injured male rats by measuring multiple spontaneous ethological endpoints on a longitudinal naturalistic foraging paradigm, and the effect of chronic oral minocycline administration on these changes. Disrupted foraging behaviours appeared in 22% of nerve-injured rats - termed 'affected' rats - and were present at day 14 but partially resolved by day 21 post-injury. Minocycline completely prevented the emergence of an affected subgroup while only partly attenuating mechanical allodynia, dissociating the relationship between pain and affect. This was associated with a lasting downregulation of ΔFosB expression in ventral hippocampal neurons at day 21 post-injury. Markers of microglia-mediated neuroinflammation were not present by day 21, however proinflammatory microglial polarisation was apparent in the medial prefrontal cortex of affected rats and not in CCI minocycline rats. Individual differences in affective disturbances following nerve injury are therefore temporally related to altered microglial morphology and hippocampal neuronal activation, and are abrogated by minocycline.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paul J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Pak R, Cho M, Pride K, Abd-Elsayed A. The Gut Microbiota and Chronic Pain. Curr Pain Headache Rep 2024; 28:259-269. [PMID: 38345694 DOI: 10.1007/s11916-024-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/16/2024]
Abstract
PURPOSE OF REVIEW To examine the effects and interactions between gut microbia and chronic pain. RECENT FINDINGS The gut microbiome has been an area of interest in both the scientific and general audience due to a growing body of evidence suggesting its influence in a variety of health and disease states. Communication between the central nervous system (CNS) and gut microbiome is said to be bidirectional, in what is referred to as the gut-brain axis. Chronic pain is a prevalent costly personal and public health burden and so, there is a vested interest in devising safe and efficacious treatments. Numerous studies, many of which are animal studies, have been conducted to examine the gut microbiome's role in the pathophysiology of chronic pain states, such as neuropathy, inflammation, visceral pain, etc. As the understanding of this relationship grows, so does the potential for therapeutic targeting of the gut microbiome in chronic pain.
Collapse
Affiliation(s)
- Ray Pak
- Department of Physical Medicine and Rehabilitation, New York Medical College/Metropolitan, New York, NY, USA
| | - Michelle Cho
- Department of Physical Medicine and Rehabilitation, New York Medical College/Metropolitan, New York, NY, USA
| | - Keth Pride
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI, 53792-3272, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI, 53792-3272, USA.
| |
Collapse
|
5
|
Magni G, Riboldi B, Ceruti S. Human Glial Cells as Innovative Targets for the Therapy of Central Nervous System Pathologies. Cells 2024; 13:606. [PMID: 38607045 PMCID: PMC11011741 DOI: 10.3390/cells13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.
Collapse
Affiliation(s)
| | | | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy; (G.M.); (B.R.)
| |
Collapse
|
6
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
7
|
Tong RL, Kahn UN, Grafe LA, Hitti FL, Fried NT, Corbett BF. Stress circuitry: mechanisms behind nervous and immune system communication that influence behavior. Front Psychiatry 2023; 14:1240783. [PMID: 37706039 PMCID: PMC10495591 DOI: 10.3389/fpsyt.2023.1240783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes are increased by stress and contribute to the pathology of mood disorders. Stress is thought to primarily induce inflammation through peripheral and central noradrenergic neurotransmission. In healthy individuals, these pro-inflammatory effects are countered by glucocorticoid signaling, which is also activated by stress. In chronically stressed individuals, the anti-inflammatory effects of glucocorticoids are impaired, allowing pro-inflammatory effects to go unchecked. Mechanisms underlying this glucocorticoid resistance are well understood, but the precise circuits and molecular mechanisms by which stress increases inflammation are not as well known. In this narrative review, we summarize the mechanisms by which chronic stress increases inflammation and contributes to the onset and development of stress-related mood disorders. We focus on the neural substrates and molecular mechanisms, especially those regulated by noradrenergic signaling, that increase inflammatory processes in stressed individuals. We also discuss key knowledge gaps in our understanding of the communication between nervous and immune systems during stress and considerations for future therapeutic strategies. Here we highlight the mechanisms by which noradrenergic signaling contributes to inflammatory processes during stress and how this inflammation can contribute to the pathology of stress-related mood disorders. Understanding the mechanisms underlying crosstalk between the nervous and immune systems may lead to novel therapeutic strategies for mood disorders and/or provide important considerations for treating immune-related diseases in individuals suffering from stress-related disorders.
Collapse
Affiliation(s)
- Rose L. Tong
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Ubaidah N. Kahn
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Laura A. Grafe
- Grafe Laboratory, Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Frederick L. Hitti
- Hitti Laboratory, Department of Neurological Surgery and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan T. Fried
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Brian F. Corbett
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
8
|
Dong G, Li H, Gao H, Chen Y, Yang H. Global Trends and Hotspots on Microglia Associated with Pain from 2002 to 2022: A Bibliometric Analysis. J Pain Res 2023; 16:2817-2834. [PMID: 37600079 PMCID: PMC10439805 DOI: 10.2147/jpr.s413028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Background Researchers have made significant progress in microglia associated with pain in recent years. However, more relevant bibliometric analyses are still needed on trends and directions in this field. The aim of this study is to provide a comprehensive perspective and to predict future directions of pain-related microglia research via bibliometric tools. Methods English articles and reviews related with pain and microglia were extracted from the Web of Science core collection (WosCC) database between 2002 to 2022. Bibliometric tools such as VOSviewer, CiteSpace, and Bibliometrix R package were used to analyze publication characteristics, countries, authors, institutions, journals, research hotspots, and trend topics. Results A total of 2761 articles were included in this analysis. Research on microglia associated with pain has increased significantly over the last two decades. China (n = 1020, 36.94%) and the United States (n = 751, 27.20%) contributed the most in terms of publications and citations, respectively. Kyushu University published the most articles in this field compared to other institutions, and Professor Inoue Kazuhide (n = 54) at this university made outstanding contributions in this field. Molecular Pain (n = 113) was the journal with the most publication, while Journal of Neuroscience had the highest number of citations. According to the authors keywords analysis, the research in this area can be summarized into 7 clusters such as "microglia activation pathways", "pain treatment research", "mental symptoms of chronic pain", and so on. Conclusion This study provides a comprehensive analysis of pain-related microglia research in the past two decades. We identified the countries, institutions, scholars, and journals with the highest number of publications and the most influence in the field, and the research trends identified in this paper may provide new insights for future research.
Collapse
Affiliation(s)
- Guoqi Dong
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Hui Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Hui Gao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yingqi Chen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
9
|
Ferraro MC, Cashin AG, Wand BM, Smart KM, Berryman C, Marston L, Moseley GL, McAuley JH, O'Connell NE. Interventions for treating pain and disability in adults with complex regional pain syndrome- an overview of systematic reviews. Cochrane Database Syst Rev 2023; 6:CD009416. [PMID: 37306570 PMCID: PMC10259367 DOI: 10.1002/14651858.cd009416.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a chronic pain condition that usually occurs in a limb following trauma or surgery. It is characterised by persisting pain that is disproportionate in magnitude or duration to the typical course of pain after similar injury. There is currently no consensus regarding the optimal management of CRPS, although a broad range of interventions have been described and are commonly used. This is the first update of the original Cochrane review published in Issue 4, 2013. OBJECTIVES To summarise the evidence from Cochrane and non-Cochrane systematic reviews of the efficacy, effectiveness, and safety of any intervention used to reduce pain, disability, or both, in adults with CRPS. METHODS We identified Cochrane reviews and non-Cochrane reviews through a systematic search of Ovid MEDLINE, Ovid Embase, Cochrane Database of Systematic Reviews, CINAHL, PEDro, LILACS and Epistemonikos from inception to October 2022, with no language restrictions. We included systematic reviews of randomised controlled trials that included adults (≥18 years) diagnosed with CRPS, using any diagnostic criteria. Two overview authors independently assessed eligibility, extracted data, and assessed the quality of the reviews and certainty of the evidence using the AMSTAR 2 and GRADE tools respectively. We extracted data for the primary outcomes pain, disability and adverse events, and the secondary outcomes quality of life, emotional well-being, and participants' ratings of satisfaction or improvement with treatment. MAIN RESULTS: We included six Cochrane and 13 non-Cochrane systematic reviews in the previous version of this overview and five Cochrane and 12 non-Cochrane reviews in the current version. Using the AMSTAR 2 tool, we judged Cochrane reviews to have higher methodological quality than non-Cochrane reviews. The studies in the included reviews were typically small and mostly at high risk of bias or of low methodological quality. We found no high-certainty evidence for any comparison. There was low-certainty evidence that bisphosphonates may reduce pain intensity post-intervention (standardised mean difference (SMD) -2.6, 95% confidence interval (CI) -1.8 to -3.4, P = 0.001; I2 = 81%; 4 trials, n = 181) and moderate-certainty evidence that they are probably associated with increased adverse events of any nature (risk ratio (RR) 2.10, 95% CI 1.27 to 3.47; number needed to treat for an additional harmful outcome (NNTH) 4.6, 95% CI 2.4 to 168.0; 4 trials, n = 181). There was moderate-certainty evidence that lidocaine local anaesthetic sympathetic blockade probably does not reduce pain intensity compared with placebo, and low-certainty evidence that it may not reduce pain intensity compared with ultrasound of the stellate ganglion. No effect size was reported for either comparison. There was low-certainty evidence that topical dimethyl sulfoxide may not reduce pain intensity compared with oral N-acetylcysteine, but no effect size was reported. There was low-certainty evidence that continuous bupivacaine brachial plexus block may reduce pain intensity compared with continuous bupivacaine stellate ganglion block, but no effect size was reported. For a wide range of other commonly used interventions, the certainty in the evidence was very low and provides insufficient evidence to either support or refute their use. Comparisons with low- and very low-certainty evidence should be treated with substantial caution. We did not identify any RCT evidence for routinely used pharmacological interventions for CRPS such as tricyclic antidepressants or opioids. AUTHORS' CONCLUSIONS Despite a considerable increase in included evidence compared with the previous version of this overview, we identified no high-certainty evidence for the effectiveness of any therapy for CRPS. Until larger, high-quality trials are undertaken, formulating an evidence-based approach to managing CRPS will remain difficult. Current non-Cochrane systematic reviews of interventions for CRPS are of low methodological quality and should not be relied upon to provide an accurate and comprehensive summary of the evidence.
Collapse
Affiliation(s)
- Michael C Ferraro
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Benedict M Wand
- The School of Health Sciences and Physiotherapy, The University of Notre Dame Australia, Fremantle, Australia
| | - Keith M Smart
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Physiotherapy Department, St Vincent's University Hospital, Dublin, Ireland
| | - Carolyn Berryman
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
- School of Biomedicine, The University of Adelaide, Kaurna Country, Adelaide, Australia
| | - Louise Marston
- Department of Primary Care and Population Health, University College London, London, UK
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Neil E O'Connell
- Department of Health Sciences, Centre for Health and Wellbeing Across the Lifecourse, Brunel University London, Uxbridge, UK
| |
Collapse
|
10
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
11
|
Panizzutti B, Skvarc D, Lin S, Croce S, Meehan A, Bortolasci CC, Marx W, Walker AJ, Hasebe K, Kavanagh BE, Morris MJ, Mohebbi M, Turner A, Gray L, Berk L, Walder K, Berk M, Dean OM. Minocycline as Treatment for Psychiatric and Neurological Conditions: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24065250. [PMID: 36982324 PMCID: PMC10049047 DOI: 10.3390/ijms24065250] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Minocycline has anti-inflammatory, antioxidant, and anti-apoptotic properties that explain the renewed interest in its use as an adjunctive treatment for psychiatric and neurological conditions. Following the completion of several new clinical trials using minocycline, we proposed an up-to-date systematic review and meta-analysis of the data available. The PICO (patient/population, intervention, comparison and outcomes) framework was used to search 5 databases aiming to identify randomized controlled trials that used minocycline as an adjunctive treatment for psychiatric and neurological conditions. Search results, data extraction, and risk of bias were performed by two independent authors for each publication. Quantitative meta-analysis was performed using RevMan software. Literature search and review resulted in 32 studies being included in this review: 10 in schizophrenia, 3 studies in depression, and 7 in stroke, with the benefit of minocycline being used in some of the core symptoms evaluated; 2 in bipolar disorder and 2 in substance use, without demonstrating a benefit for using minocycline; 1 in obsessive-compulsive disorder, 2 in brain and spinal injuries, 2 in amyotrophic lateral sclerosis, 1 in Alzheimer’s disease, 1 in multiple systems atrophy, and 1 in pain, with mixes results. For most of the conditions included in this review the data is still limited and difficult to interpret, warranting more well-designed and powered studies. On the other hand, the studies available for schizophrenia seem to suggest an overall benefit favoring the use of minocycline as an adjunctive treatment.
Collapse
Affiliation(s)
- Bruna Panizzutti
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - David Skvarc
- School of Psychology, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia
| | - Sylvia Lin
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, VIC 3053, Australia
| | - Sarah Croce
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Alcy Meehan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Chiara Cristina Bortolasci
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Wolfgang Marx
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Adam J. Walker
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Kyoko Hasebe
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bianca E. Kavanagh
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Margaret J. Morris
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Mohammadreza Mohebbi
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC 3125, Australia
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Laura Gray
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lesley Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC 3052, Australia
| | - Olivia M. Dean
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-03-4215-3300
| |
Collapse
|
12
|
Morrissey EJ, Alshelh Z, Knight PC, Saha A, Kim M, Torrado-Carvajal A, Zhang Y, Edwards RR, Pike C, Locascio JJ, Napadow V, Loggia ML. Assessing the potential anti-neuroinflammatory effect of minocycline in chronic low back pain: Protocol for a randomized, double-blind, placebo-controlled trial. Contemp Clin Trials 2023; 126:107087. [PMID: 36657520 DOI: 10.1016/j.cct.2023.107087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT03106740).
Collapse
Affiliation(s)
- Erin J Morrissey
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zeynab Alshelh
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina C Knight
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Atreyi Saha
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Minhae Kim
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chelsea Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vitaly Napadow
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Chen XT, Chen LP, Fan LJ, Kan HM, Wang ZZ, Qian B, Pan ZQ, Shen W. Microglial P2Y12 Signaling Contributes to Cisplatin-induced Pain Hypersensitivity via IL-18-mediated Central Sensitization in the Spinal Cord. THE JOURNAL OF PAIN 2023; 24:901-917. [PMID: 36646400 DOI: 10.1016/j.jpain.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Administration of cisplatin and other chemotherapy drugs is crucial for treating tumors. However, cisplatin-induced pain hypersensitivity is still a critical clinical issue, and the underlying molecular mechanisms have remained unresolved to date. In this study, we found that repeated cisplatin treatments remarkedly upregulated the P2Y12 expression in the spinal cord. Expression of P2Y12 was predominant in the microglia. Pharmacological inhibition of P2Y12 expression markedly attenuated the cisplatin-induced pain hypersensitivity. Meanwhile, blocking the P2Y12 signal also suppressed cisplatin-induced microglia hyperactivity. Furthermore, the microglia Src family kinase/p38 pathway is required for P2Y12-mediated cisplatin-induced pain hypersensitivity via the proinflammatory cytokine IL-18 production in the spinal cord. Blocking the P2Y12/IL-18 signaling pathway reversed cisplatin-induced pain hypersensitivity, as well as activation of N-methyl-D-aspartate receptor and subsequent Ca2+-dependent signals. Collectively, our data suggest that microglia P2Y12-SFK-p38 signaling contributes to cisplatin-induced pain hypersensitivity via IL-18-mediated central sensitization in the spinal, and P2Y12 could be a potential target for intervention to prevent chemotherapy-induced pain hypersensitivity. PERSPECTIVE: Our work identified that P2Y12/IL-18 played a critical role in cisplatin-induced pain hypersensitivity. This work suggests that P2Y12/IL-18 signaling may be a useful strategy for the treatment of chemotherapy-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China; Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zi-Zhu Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Bin Qian
- Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.
| |
Collapse
|
14
|
Tu Y, Muley MM, Beggs S, Salter MW. Microglia-independent peripheral neuropathic pain in male and female mice. Pain 2022; 163:e1129-e1144. [PMID: 35384869 PMCID: PMC9578531 DOI: 10.1097/j.pain.0000000000002643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The dominant view in the field of pain is that peripheral neuropathic pain is driven by microglia in the somatosensory processing region of the spinal dorsal horn. Here, to the contrary, we discovered a form of neuropathic pain that is independent of microglia. Mice in which the nucleus pulposus (NP) of the intervertebral disc was apposed to the sciatic nerve developed a constellation of neuropathic pain behaviours: hypersensitivity to mechanical, cold, and heat stimuli. However, NP application caused no activation of spinal microglia nor was pain hypersensitivity reversed by microglial inhibition. Rather, NP-induced pain hypersensitivity was dependent on cells within the NP which recruited macrophages to the adjacent nerve. Eliminating macrophages systemically or locally prevented NP-induced pain hypersensitivity. Pain hypersensitivity was also prevented by genetically disrupting the neurotrophin brain-derived neurotrophic factor selectively in macrophages. Moreover, the behavioural phenotypes as well as the molecular mechanisms of NP-induced pain hypersensitivity were not different between males and females. Our findings reveal a previously unappreciated mechanism for by which a discrete peripheral nerve lesion may produce pain hypersensitivity, which may help to explain the limited success of microglial inhibitors on neuropathic pain in human clinical trials.
Collapse
Affiliation(s)
- YuShan Tu
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Milind M. Muley
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Simon Beggs
- Developmental Neurosciences, UCL GOSH Institute of Child Health, London, United Kingdom
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
16
|
Sisignano M, Gribbon P, Geisslinger G. Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain. Drugs 2022; 82:357-373. [PMID: 35254645 PMCID: PMC8899787 DOI: 10.1007/s40265-022-01689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany. .,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Izuo N, Nitta A. New Insights Regarding Diagnosis and Medication for Schizophrenia Based on Neuronal Synapse-Microglia Interaction. J Pers Med 2021; 11:jpm11050371. [PMID: 34063598 PMCID: PMC8147599 DOI: 10.3390/jpm11050371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a common psychiatric disorder that usually develops during adolescence and young adulthood. Since genetic and environmental factors are involved in the disease, the molecular status of the pathology of schizophrenia differs across patients. Recent genetic studies have focused on the association between schizophrenia and the immune system, especially microglia–synapse interactions. Microglia physiologically eliminate unnecessary synapses during the developmental period. The overactivation of synaptic pruning by microglia is involved in the pathology of brain disease. This paper focuses on the synaptic pruning function and its molecular machinery and introduces the hypothesis that excessive synaptic pruning plays a role in the development of schizophrenia. Finally, we suggest a strategy for diagnosis and medication based on modulation of the interaction between microglia and synapses. This review provides updated information on the involvement of the immune system in schizophrenia and proposes novel insights regarding diagnostic and therapeutic strategies for this disease.
Collapse
Affiliation(s)
| | - Atsumi Nitta
- Correspondence: ; Tel.: +81-76-415-8822 (ext. 8823); Fax: +81-76-415-8826
| |
Collapse
|