1
|
Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. J Orthop Translat 2024; 48:123-132. [PMID: 39220678 PMCID: PMC11363721 DOI: 10.1016/j.jot.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive understanding of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional influences between immune cells and nerves in OA progression. It explores current approaches that target neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor targeting, for effective pain reduction. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the immune system and nervous system during the progression of OA, as well as their contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of OA pain.
Collapse
Affiliation(s)
- Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| |
Collapse
|
2
|
Xu B, Xu Y, Kong J, Liu Y, Zhang L, Shen F, Wang J, Shen X, Chen H. Chrysin mitigated neuropathic pain and peripheral sensitization in knee osteoarthritis rats by repressing the RAGE/PI3K/AKT pathway regulated by HMGB1. Cytokine 2024; 180:156635. [PMID: 38749277 DOI: 10.1016/j.cyto.2024.156635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic progressive osteoarthropathy. Chrysin's anti-KOA action has been demonstrated, however more research is needed to understand how chrysin contributes to KOA. METHODS LPS/ATP-induced macrophages transfected with or without HMGB1 overexpression underwent 5 μg/mL chrysin. The cell viability and macrophage pyroptosis were examined by cell counting kit-8 and flow cytometer. In vivo experiments, rats were injected with 1 mg monosodium iodoacetate by the infrapatellar ligament of the bilateral knee joint to induce KOA. The histological damage was analyzed by Safranin O/Fast Green staining and hematoxylin and eosin staining. The PWT, PWL and inflammatory factors were analyzed via Von-Frey filaments, thermal radiometer and ELISA. Immunofluorescence assay examined the expressions of CGRP and iNOS. The levels of HMGB1/RAGE-, NLRP3-, PI3K/AKT- and neuronal ion channel-related markers were examined by qPCR and western blot. RESULTS Chrysin alleviated macrophage pyroptosis by inhibiting HMGB1 and the repression of chrysin on HMGB1/RAGE pathway and ion channel activation was reversed by overexpressed HMGB1. HMGB1 facilitated neuronal ion channel activation through the RAGE/PI3K/AKT pathway. Chrysin could improve the pathological injury of knee joints in KOA rats. Chrysin suppressed the HMGB1-regulated RAGE/PI3K/AKT pathway, hence reducing KOA damage and peripheral sensitization. CONCLUSION Chrysin mitigated neuropathic pain and peripheral sensitization in KOA rats by repressing the RAGE/PI3K/AKT pathway modulated by HMGB1.
Collapse
Affiliation(s)
- Bo Xu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Yue Xu
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, PR China
| | - Jian Kong
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Yujiang Liu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Long Zhang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Fan Shen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Jiangping Wang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Xiaofeng Shen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China.
| | - Hua Chen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Liu Y, Jiang W, Huang J, Zhong L. Bioinformatic analysis combined with immune infiltration to explore osteoarthritis biomarkers and drug prediction. Medicine (Baltimore) 2024; 103:e38430. [PMID: 38905428 PMCID: PMC11191918 DOI: 10.1097/md.0000000000038430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024] Open
Abstract
Along with global aging, osteoarthritis (OA) appears to have a high incidence and disability rate, which seriously affects the quality of life of patients, making age a major risk factor. However, the pathology of OA is under-researched, and there is no obvious and effective treatment. Research has demonstrated the importance of aging, inflammation, and immunology in the onset and course of OA. This study aims to anticipate therapeutic drugs based on critical genes associated with OA and to elucidate the roles of genes and possible biomarkers associated with inflammation, immunology, and cellular senescence in OA. The OA gene expression matrix was first obtained from the Gene Expression Omnibus database. Screening for OA significant differentially expressed genes by bioinformatics identification. Specific biological processes and related signaling pathways of the differential genes were enriched. Then elucidate the status of immune cell involvement in OA based on immune infiltration analysis. Finally predict therapeutic agents based on pivotal genes. A total of 198 differentially expressed genes were identified in OA, and TP53, EGFR, TGFB1, LEP, CD4, MAPK8, SCARB1, ADIPOQ, JAK2, and SERPINE1 were further identified as important hub genes. The enrichment results showed that the development of arthritis was mainly related to immune cell differentiation, amino acid metabolism and cellular senescence process. The validation of immune infiltration results indicated that NK_cells, CD4_Tcells, Macrophages, Monocytic_lineage, Dendritic_cells, Basophils, CD8+_naive_T-cells may play an important role in the immune process of OA. Key Drug Prediction of Hub Genes found that Halicin, Ruxolitinib, Tofacitinib, Clenoliximab, Baricitinib may be a key drug or component in the treatment of OA.
Collapse
Affiliation(s)
- Yan Liu
- Gerontology Medicine Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Wei Jiang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Juan Huang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Li Zhong
- Gerontology Medicine Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Lv J, Kou N, Li Y, Qiu K, Guo X, Zhang L, Zhang Z, He S, Yuan Y. Identification and Verification of Endoplasmic Reticulum Stress-Related Genes as Novel Signatures for Osteoarthritis Diagnosis and Therapy: A Bioinformatics Analysis-Oriented Pilot Study. Biochem Genet 2024:10.1007/s10528-024-10818-1. [PMID: 38734758 DOI: 10.1007/s10528-024-10818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum stress (ERS) has been reported to be closely associated with the development of osteoarthritis (OA), but the underlying mechanisms are not fully delineated. The present study was designed to investigate the involvement of ERS-related genes in regulating OA progression. METHODS The expression profiles of OA patients and normal people were downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) in datasets GSE55457 and GSE55235 were screened and identified by R software with the construction of the protein-protein interaction (PPI) networks. Through the STRING and Venn diagram analysis, hub ERS-related genes were obtained. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed. Biomarkers with high diagnostic values of osteoarthritis (OA) were studied. The hematoxylin and eosin (H&E) staining and micro-CT were applied to evaluate the establishment of the OA model. The expression levels of biomarkers were validated with the use of reverse transcription‑quantitative polymerase chain reaction (RT-qPCR) and western blot. Finally, we evaluated the correlations of hub ERS-related genes with the immune infiltration cells via the CIBERSORT algorithm. RESULTS A total of 60 downregulated and 52 upregulated DEGs were identified, and the following GO and KEGG pathway analyses verified that those DEGs were mainly enriched in biological process (BP), cellular component (CC), molecular function (MF), and inflammation-associated signal pathways. Interestingly, among all the DEGs, six ER stress-associated genes, including activating transcription factor 3 (ATF3), DEAD-Box Helicase 3 X-Linked (DDX3X), AP-1 transcription factor subunit (JUN), eukaryotic initiation factor 4 (EIF4A1), KDEL endoplasmic reticulum protein retention receptor 3 (KDELR3), and vascular endothelial growth factor A (VEGFA), were found to be closely associated with OA progression, and the following RT-qPCR and Western Blot analysis confirmed that DDX3X, JUN, and VEGFA were upregulated, whereas KDELR3, EIF4A1, and ATF3 were downregulated in OA rats tissues compared to the normal tissues, which were in accordance with our bioinformatics findings. Furthermore, our receiver operating characteristic (ROC) curve analysis verified that the above six ER stress-associated genes could be used as ideal biomarkers for OA diagnosis and those genes also potentially regulated immune responses by influencing the biological functions of mast cells and macrophages. CONCLUSION Collectively, the present study firstly identified six ER stress-associated genes (ATF3, DDX3X, JUN, EIF4A1, KDELR3, and VEGFA) that may play critical role in regulating the progression of OA.
Collapse
Affiliation(s)
- Jia Lv
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Nannan Kou
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Yunxuan Li
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Kejia Qiu
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Xiang Guo
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Li Zhang
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Zhichao Zhang
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China
| | - Shaoxuan He
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China.
| | - Yong Yuan
- Department of Trauma Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Yunnan-Myanmar Avenue, Kunming, 650101, China.
| |
Collapse
|
5
|
Timkovich AE, Holling GA, Afzali MF, Kisiday J, Santangelo KS. TLR4 antagonism provides short-term but not long-term clinical benefit in a full-depth cartilage defect mouse model. Connect Tissue Res 2024; 65:26-40. [PMID: 37898909 PMCID: PMC11271750 DOI: 10.1080/03008207.2023.2269257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE/AIM Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.
Collapse
Affiliation(s)
- Ariel E. Timkovich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - G. Aaron Holling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Ritter J, Menger M, Herath SC, Histing T, Kolbenschlag J, Daigeler A, Heinzel JC, Prahm C. Translational evaluation of gait behavior in rodent models of arthritic disorders with the CatWalk device - a narrative review. Front Med (Lausanne) 2023; 10:1255215. [PMID: 37869169 PMCID: PMC10587608 DOI: 10.3389/fmed.2023.1255215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Arthritic disorders have become one of the main contributors to the global burden of disease. Today, they are one of the leading causes of chronic pain and disability worldwide. Current therapies are incapable of treating pain sufficiently and preventing disease progression. The lack of understanding basic mechanisms underlying the initiation, maintenance and progression of arthritic disorders and related symptoms represent the major obstacle in the search for adequate treatments. For a long time, histological evaluation of joint pathology was the predominant outcome parameter in preclinical arthritis models. Nevertheless, quantification of pain and functional limitations analogs to arthritis related symptoms in humans is essential to enable bench to bedside translation and to evaluate the effectiveness of new treatment strategies. As the experience of pain and functional deficits are often associated with altered gait behavior, in the last decades, automated gait analysis has become a well-established tool for the quantitative evaluation of the sequalae of arthritic disorders in animal models. The purpose of this review is to provide a detailed overview on the current literature on the use of the CatWalk gait analysis system in rodent models of arthritic disorders, e.g., Osteoarthritis, Monoarthritis and Rheumatoid Arthritis. Special focus is put on the assessment and monitoring of pain-related behavior during the course of the disease. The capability of evaluating the effect of distinct treatment strategies and the future potential for the application of the CatWalk in rodent models of arthritic disorders is also addressed in this review. Finally, we discuss important consideration and provide recommendations on the use of the CatWalk in preclinical models of arthritic diseases.
Collapse
Affiliation(s)
- Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Maximilian Menger
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Johannes C Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
8
|
Amodeo G, Franchi S, Galimberti G, Comi L, D’Agnelli S, Baciarello M, Bignami EG, Sacerdote P. Osteoarthritis Pain in Old Mice Aggravates Neuroinflammation and Frailty: The Positive Effect of Morphine Treatment. Biomedicines 2022; 10:2847. [PMID: 36359375 PMCID: PMC9687902 DOI: 10.3390/biomedicines10112847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 08/03/2023] Open
Abstract
Knee osteoarthritis is a common cause of pain and disability in old subjects. Pain may predispose to the development of frailty. Studies on mechanisms underlying pain in osteoarthritis models during aging are lacking. In this work, we used the monosodium iodoacetate model of osteoarthritis in adult (11-week-old) and old (20-month-old) C57BL/6J mice to compare hypersensitivity, locomotion, neuroinflammation, and the effects of morphine treatment. After osteoarthritis induction in adult and old mice, weight-bearing asymmetry, mechanical allodynia, and thermal hyperalgesia similarly developed, while locomotion and frailty were more affected in old than in adult animals. When behavioral deficits were present, the animals were treated for 7 days with morphine. This opioid counteracts the behavioral alterations and the frailty index worsening both in adult and old mice. To address the mechanisms that underlie pain, we evaluated neuroinflammatory markers and proinflammatory cytokine expression in the sciatic nerve, DRGs, and spinal cord. Overexpression of cytokines and glia markers were present in osteoarthritis adult and old mice, but the activation was qualitatively and quantitatively more evident in aged mice. Morphine was able to counteract neuroinflammation in both age groups. We demonstrate that old mice are more vulnerable to pain's detrimental effects, but prompt treatment is successful at mitigating these effects.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Giulia Galimberti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Laura Comi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
9
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
10
|
He Y, Zhou F, Cheng X. CircKMT2E Participates in Osteoarthritis through Promotes Apoptosis of Chondrocytes Via Sponging miR-140-5p to Activate TLR4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2957844. [PMID: 36159584 PMCID: PMC9499754 DOI: 10.1155/2022/2957844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the latent pathogenesis of circRNAs in osteoarthritis (OA), as well as their function mechanism. Methods The murine chondrocytes with and without OA were involved and used for in-depth sequencing. Herein, we carried out subsequent bioinformatics analysis to disclose the expression pattern, characteristics of circRNAs based on gene ontology, and the KEGG pathway analyses. Then sequencing data were used to deduce the interaction between circRNA and miRNA. The potential miRNA response elements for the annotated circRNAs and relevant target genes were forecasted on the basis of TargetScan and miRanda. For chondrocytes, the effect of the overexpression of the screened circRNA for apoptosis was spotted by flow cytometry as well as Western Blot. Results 466 diverse circRNAs in the 23,787 spotted circRNAs were both significantly and differentially transcribed. CircKMT2E was upregulated more than two folds in chondrocytes with OA compared with normal tissues, exhibiting an expression trend opposite to miR-140-5p. We disclosed that circKMT2E could possess mutual effect with miR-140-5p by way of AGO proteins. Thus, circKMT2E was verified to have functioned as a molecular sponge targeting miR-140-5p. Therefore, circKMT2E may be at work in the pathogenesis of OA. Further, the sponge connection between circKMT2E and miR-140-5p was proved on the basis of a dual-luciferase reporter assay. Besides, miR-140-5p was speculated can bind TLR4 by bioinformatics analysis. Further PCR analysis found the relative expression level of TLR4, caspase-3, and Bax in the OA groups presented significant upregulation. Overexpression of circKMT2E can promote apoptosis of chondrocytes. Conclusion The upregulation of circKMT2E is involved in the chondrocyte apoptosis of the pathogenesis of OA through activation of TLR4 by the sponge function of miR-140-5p.
Collapse
Affiliation(s)
- Yong He
- Department of Orthopedics, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, China
| | - Fubo Zhou
- Department of Trauma Orthopedics, Laiyang Central Hospital, Yantai, Shandong 265200, China
| | - Xianqiang Cheng
- Department of Trauma Orthopedics, Laiyang Central Hospital, Yantai, Shandong 265200, China
| |
Collapse
|
11
|
Pentraxin 3 regulated by miR-224-5p modulates macrophage reprogramming and exacerbates osteoarthritis associated synovitis by targeting CD32. Cell Death Dis 2022; 13:567. [PMID: 35739102 PMCID: PMC9226026 DOI: 10.1038/s41419-022-04962-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023]
Abstract
Emerging evidence has shown an imbalance in M1/M2 macrophage polarization to play an essential role in osteoarthritis (OA) progression. However, the underlying mechanistic basis for this polarization is unknown. RNA sequencing of OA M1-polarized macrophages found highly expressed levels of pentraxin 3 (PTX3), suggesting a role for PTX3 in OA occurrence and development. Herein, PTX3 was found to be increased in the synovium and articular cartilage of OA patients and OA mice. Intra-articular injection of PTX3 aggravated, while PTX3 neutralization reversed synovitis and cartilage degeneration. No metabolic disorder or proteoglycan loss were observed in cartilage explants when treated with PTX3 alone. However, cartilage explants exhibited an OA phenotype when treated with culture supernatants of macrophages stimulated with PTX3, suggesting that PTX3 did not have a direct effect on chondrocytes. Therefore, the OA anti-chondrogenic effects of PTX3 are primarily mediated through macrophages. Mechanistically, PTX3 was upregulated by miR-224-5p deficiency, which activated the p65/NF-κB pathway to promote M1 macrophage polarization by targeting CD32. CD32 was expressed by macrophages, that when stimulated with PTX3, secreted abundant pro-inflammation cytokines that induced severe articular cartilage damage. The paracrine interaction between macrophages and chondrocytes produced a feedback loop that enhanced synovitis and cartilage damage. The findings of this study identified a functional pathway important to OA development. Blockade of this pathway and PTX3 may prevent and treat OA.
Collapse
|
12
|
García MM, Molina-Álvarez M, Rodríguez-Rivera C, Paniagua N, Quesada E, Uranga JA, Rodríguez-Franco MI, Pascual D, Goicoechea C. Antinociceptive and modulatory effect of pathoplastic changes in spinal glia of a TLR4/CD14 blocking molecule in two models of pain in rat. Biomed Pharmacother 2022; 150:112986. [PMID: 35462333 DOI: 10.1016/j.biopha.2022.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
The role of spinal glia in the development and maintenance of chronic pain has become over the last years a subject of increasing interest. In this regard, toll-like receptor 4 (TLR4) signaling has been proposed as a major trigger mechanism. Hence, in this study we explored the implications of TLR4 inhibition in the periphery and primarily in the CNS, focusing on the impact this inhibition renders in pain development and glia activation in the dorsal horn in two models of pain. Making use of a synthetic cluster of differentiation 14 (CD14)/TLR4 antagonist, the effect of TLR4 blockade on tactile allodynia and heat hyperalgesia was evaluated in osteoarthritic and postoperative rat models. An in vitro parallel artificial membrane permeation assay was performed to determine the proneness of the drug to permeate the blood-brain barrier prior to systemic and central administration. Findings suggest a dominant role of peripheral TLR4 in the model of incisional pain, whilst both peripheral and central TLR4 seem to be responsible for osteoarthritic pain. That is, central and peripheral TLR4 may be differently involved in the etiopathology of diverse types of pain what potentially seems a promising approach in the management of pain.
Collapse
Affiliation(s)
- Miguel M García
- Area of Pharmacology and Nutrition and Bromatology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology and Nutrition and Bromatology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain
| | - Carmen Rodríguez-Rivera
- Area of Pharmacology and Nutrition and Bromatology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain
| | - Nancy Paniagua
- Area of Pharmacology and Nutrition and Bromatology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain
| | - Ernesto Quesada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain
| | - José Antonio Uranga
- Area of Histology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Research Group in Physiopathology and Pharmacology of the Digestive System, Universidad Rey Juan Carlos (NEUGUT), Madrid, Spain
| | | | - David Pascual
- Area of Pharmacology and Nutrition and Bromatology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain.
| | - Carlos Goicoechea
- Area of Pharmacology and Nutrition and Bromatology, Department of Basic Health Sciences, School of Health Sciences, Universidad Rey Juan Carlos, High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Madrid, Spain; Unidad Asociada I+D+i Instituto de Química Médica (IQM-CSIC)-URJC, Madrid, Spain
| |
Collapse
|
13
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Hu Z, Xiao M, Cai H, Li W, Fang W, Long X. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway. J Cell Mol Med 2021; 26:925-936. [PMID: 34953035 PMCID: PMC8817133 DOI: 10.1111/jcmm.17149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022] Open
Abstract
To investigate the role of glycyrrhizin on the progression of temporomandibular joint osteoarthritis (TMJOA) and the underlying mechanism by regulation of the high‐mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE)/toll‐like receptor 4 (TLR4)‐nuclear factor kappa B (NF‐κB)/protein kinase B (AKT) pathway. After a rat model of TMJOA was built by intra‐articular injection of monosodium iodoacetate, glycyrrhizin was intragastrically administered at low concentration (20 mg/kg) or high concentration (50 mg/kg). Micro‐computed tomography, histological and immunohistochemical analysis were used to reveal the progression of TMJOA. Rat TMJ chondrocytes and disc cells were cultured in inflammatory condition with different doses of glycyrrhizin. Western blot was used to evaluate the effect of glycyrrhizin on the HMGB1‐RAGE/TLR4‐NF‐κB/AKT pathway. Administration of glycyrrhizin alleviated cartilage degeneration, lowered the levels of inflammatory and catabolic mediators and reduced the production of HMGB1, RAGE and TLR4 in TMJOA animal model. Increased production of RAGE and TLR4, and activated intracellular NF‐κB and/or AKT signalling pathways in chondrocytes and disc cells were found in inflammatory condition. Upon activation, matrix metalloprotease‐3 and interleukin‐6 were upregulated. Glycyrrhizin inhibited not only HMGB1 release but also RAGE and TLR4 in inflammatory condition. Glycyrrhizin alleviated the pathological changes of TMJOA by regulating the HMGB1‐RAGE/TLR4‐NF‐kB/AKT signalling pathway. This study revealed the potential of glycyrrhizin as a novel therapeutic drug to suppress TMJ cartilage degradation.
Collapse
Affiliation(s)
- Zhihui Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mian Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hengxing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|