1
|
Ørbo MC, Høier S, Vangberg TR, Csifcsak G, Grønli OK, Aslaksen PM. The cerebral and cognitive changes after intermittent theta burst stimulation (iTBS) treatment for depression: study protocol for a randomized double-blind sham-controlled trial. Trials 2024; 25:752. [PMID: 39529199 PMCID: PMC11555895 DOI: 10.1186/s13063-024-08606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The therapeutic use of intermittent theta burst stimulation (iTBS) delivered to the left dorsolateral prefrontal cortex (LDLPFC) is a relatively new but promising treatment option for depression. There is a need for more knowledge on the mechanisms involved in its antidepressant effects. METHODS This is a single-centre, prospective, randomized, double-blind, placebo-controlled trial with two arms, iTBS and sham iTBS. Adult outpatients with unipolar major depressive disorder of at least moderate severity will undergo cognitive assessment with an N-back task (0-back and 2-back), functional and structural magnetic resonance imaging and assessment of depression severity before and after brain stimulation. Neuronavigated iTBS or sham stimulation will be targeted at the LDPFC once a day for 10 consecutive workdays. ITBS will be delivered with the parameters 120% of resting motor threshold, triplet 50 Hz bursts repeated at 5 Hz; 2 s on and 8 s off, 600 pulses per session with a total duration of 3 min 9 s. The severity of depression will be measured with the Montogomery Aasberg Depression Rating Scale and the Beck Depression Inventory - second edition. In the iTBS group relative to sham, we expect significant antidepressant effects and improved N-back performance, associated with increased integrity in white matter tracts functionally connected with the LDLPFC and emotion regulation areas within the rostral anterior cingulate cortices, alongside potential increases in cortical thickness in these regions. On functional imaging, we expect to observe increased brain activity in the LDPFC during the performance of the N-back condition with higher cognitive load (2-back) in the iTBS group relative to sham. DISCUSSION iTBS is a promising, time-efficient, and considered a safe treatment option for depression according to existing evidence. This trial aims to assess the neurocognitive impact of a 2-week, once-daily iTBS compared to sham iTBS, targeting the LDLPFC in depressed adult outpatients. The study investigates the relationships between changes in cerebral measures and cognitive performance on an N-back task in relation to the antidepressant effect following iTBS. This trial delves into the neurocognitive mechanisms of iTBS in depression, potentially offering novel scientific insights into its treatment effects and mechanisms of action. TRIAL REGISTRATION ClinicalTrials.gov NCT06534684. Retrospectively registered on August 1st 2024.
Collapse
Affiliation(s)
- Marte C Ørbo
- Department of Psychology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway.
| | - Sabine Høier
- Department of Psychology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Gabor Csifcsak
- Department of Psychology, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Ole K Grønli
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
- Division of Mental Health and Substance Abuse, University Hospital of North Norway, Tromsø, Norway
| | - Per M Aslaksen
- Department of Psychology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
- Regional Centre for Eating Disorders, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
2
|
Abellaneda-Pérez K, Delgado-Martínez I, Salgado P, Ginés JM, Guardiola R, Vaqué-Alcázar L, Roca-Ventura A, Molist-Puigdomènech R, Manero RM, Viles-Garcia M, Medrano-Martorell S, Bartrés-Faz D, Pascual-Leone A, Pérez-Solà V, Villalba-Martínez G. Structural connectivity modifications following deep brain stimulation of the subcallosal cingulate and nucleus accumbens in severe anorexia nervosa. Acta Neurochir (Wien) 2024; 166:364. [PMID: 39261306 DOI: 10.1007/s00701-024-06258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Anorexia nervosa (AN) is a mental health disorder characterized by significant weight loss and associated medical and psychological comorbidities. Conventional treatments for severe AN have shown limited effectiveness, leading to the exploration of novel interventional strategies, including deep brain stimulation (DBS). However, the neural mechanisms driving DBS interventions, particularly in psychiatric conditions, remain uncertain. This study aims to address this knowledge gap by examining changes in structural connectivity in patients with severe AN before and after DBS. METHODS Sixteen participants, including eight patients with AN and eight controls, underwent baseline T1-weigthed and diffusion tensor imaging (DTI) acquisitions. Patients received DBS targeting either the subcallosal cingulate (DBS-SCC, N = 4) or the nucleus accumbens (DBS-NAcc, N = 4) based on psychiatric comorbidities and AN subtype. Post-DBS neuroimaging evaluation was conducted in four patients. Data analyses were performed to compare structural connectivity between patients and controls and to assess connectivity changes after DBS intervention. RESULTS Baseline findings revealed that structural connectivity is significantly reduced in patients with AN compared to controls, mainly regarding callosal and subcallosal white matter (WM) tracts. Furthermore, pre- vs. post-DBS analyses in AN identified a specific increase after the intervention in two WM tracts: the anterior thalamic radiation and the superior longitudinal fasciculus-parietal bundle. CONCLUSIONS This study supports that structural connectivity is highly compromised in severe AN. Moreover, this investigation preliminarily reveals that after DBS of the SCC and NAcc in severe AN, there are WM modifications. These microstructural plasticity adaptations may signify a mechanistic underpinning of DBS in this psychiatric disorder.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ignacio Delgado-Martínez
- Human Anatomy and Embryology Unit, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Purificación Salgado
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - José María Ginés
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Rocío Guardiola
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | | | | | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Víctor Pérez-Solà
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
- Grupo de Investigación en Salud Mental del Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Gloria Villalba-Martínez
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain.
- Systems Neurologic and Neurotherapeutic Group at Research Institute Hospital del Mar, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Briley PM, Webster L, Boutry C, Oh H, Auer DP, Liddle PF, Morriss R. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder. Psychiatry Res Neuroimaging 2024; 342:111846. [PMID: 38908353 DOI: 10.1016/j.pscychresns.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.
Collapse
Affiliation(s)
- P M Briley
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom.
| | - L Webster
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - C Boutry
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom
| | - H Oh
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - D P Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - P F Liddle
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - R Morriss
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom; NIHR Mental Health (MindTech) Health Technology Collaboration, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Yeh CH, Lin PC, Tseng RY, Chao YP, Wu CT, Chou TL, Chen RS, Gau SSF, Ni HC, Lin HY. Lack of effects of eight-week left dorsolateral prefrontal theta burst stimulation on white matter macro/microstructure and connection in autism. Brain Imaging Behav 2024; 18:794-807. [PMID: 38492129 DOI: 10.1007/s11682-024-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Whether brain stimulation could modulate brain structure in autism remains unknown. This study explored the impact of continuous theta burst stimulation (cTBS) over the left dorsolateral prefrontal cortex (DLPFC) on white matter macro/microstructure in intellectually able children and emerging adults with autism. Sixty autistic participants were randomized (30 active) and received active or sham cTBS for eight weeks twice per week, 16 total sessions using a double-blind (participant-, rater-, analyst-blinded) design. All participants received high-angular resolution diffusion MR imaging at baseline and week 8. Twenty-eight participants in the active group and twenty-seven in the sham group with good imaging quality entered the final analysis. With longitudinal fixel-based analysis and network-based statistics, we found no significant difference between the active and sham groups in changes of white matter macro/microstructure and connections following cTBS. In addition, we found no association between baseline white matter macro/microstructure and autistic symptom changes from baseline to week 8 in the active group. In conclusion, we did not find a significant impact of left DLPFC cTBS on white matter macro/microstructure and connections in children and emerging adults with autism. These findings need to be interpreted in the context that the current intellectually able cohort in a single university hospital site limits the generalizability. Future studies are required to investigate if higher stimulation intensities and/or doses, other personal factors, or rTMS parameters might confer significant brain structural changes visible on MRI in ASD.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Po-Chun Lin
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Rung-Yu Tseng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Kaltsouni E, Wikström J, Lanzenberger R, Sundström-Poromaa I, Comasco E. White matter volume and treatment with selective progesterone receptor modulator in patients with premenstrual dysphoric disorder. Psychoneuroendocrinology 2024; 163:106977. [PMID: 38295626 DOI: 10.1016/j.psyneuen.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Premenstrual dysphoric disorder (PMDD) is a mood disorder for which selective progesterone receptor modulator (SPRM) treatment has been demonstrated to be beneficial. The neural signatures of this treatment have been so far identified as greater fronto-cingulate reactivity during aggressive response to provocation, but no changes in terms of gray matter structure. White matter has recently been found to differ between patients with PMDD and healthy controls. The present study thus sought to investigate the relationship between white matter volume and SPRM treatment in patients with PMDD. A pharmaco-neuroimaging study was conducted on patients with PMDD participating in a randomized controlled trial. Participants underwent magnetic resonance imaging before and after treatment randomization to ulipristal acetate (an SPRM), or placebo, for three months. The interaction effect of treatment by time on white matter volume (WMV) was assessed. Voxel based morphometry analyses were performed on both a whole brain exploratory level and on regions of interest. No treatment effect was observed on WMV in any region, including the anterior thalamic radiations, cingulum, forceps minor, fornix, inferior fronto-occipital fasciculus, superior cerebellar peduncle, superior longitudinal fasciculus, and uncinate fasciculus. This is the first finding to indicate that no white matter volume alterations follow three-month progesterone antagonism, suggesting that white matter volume does not participate in symptom relief upon SPRM treatment for PMDD.
Collapse
Affiliation(s)
- Elisavet Kaltsouni
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | | | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
6
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Huang Y, Weng Y, Lan L, Zhu C, Shen T, Tang W, Lai HY. Insight in obsessive-compulsive disorder: conception, clinical characteristics, neuroimaging, and treatment. PSYCHORADIOLOGY 2023; 3:kkad025. [PMID: 38666121 PMCID: PMC10917385 DOI: 10.1093/psyrad/kkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/28/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic disabling disease with often unsatisfactory therapeutic outcomes. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has broadened the diagnostic criteria for OCD, acknowledging that some OCD patients may lack insight into their symptoms. Previous studies have demonstrated that insight can impact therapeutic efficacy and prognosis, underscoring its importance in the treatment of mental disorders, including OCD. In recent years, there has been a growing interest in understanding the influence of insight on mental disorders, leading to advancements in related research. However, to the best of our knowledge, there is dearth of comprehensive reviews on the topic of insight in OCD. In this review article, we aim to fill this gap by providing a concise overview of the concept of insight and its multifaceted role in clinical characteristics, neuroimaging mechanisms, and treatment for OCD.
Collapse
Affiliation(s)
- Yueqi Huang
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Yazhu Weng
- Fourth Clinical School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lan Lan
- Department of Psychology and Behavior Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Zhu
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Ting Shen
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Wenxin Tang
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Hsin-Yi Lai
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310029, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 311121, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Ni HC, Chao YP, Tseng RY, Wu CT, Cocchi L, Chou TL, Chen RS, Gau SSF, Yeh CH, Lin HY. Lack of effects of four-week theta burst stimulation on white matter macro/microstructure in children and adolescents with autism. Neuroimage Clin 2023; 37:103324. [PMID: 36638598 PMCID: PMC9852693 DOI: 10.1016/j.nicl.2023.103324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Following the published behavioral and cognitive results of this single-blind parallel sham-controlled randomized clinical trial, the current study aimed to explore the impact of intermittent theta burst stimulation (iTBS), a variant of excitatory transcranial magnetic stimulation, over the bilateral posterior superior temporal sulci (pSTS) on white matter macro/microstructure in intellectually able children and adolescents with autism. Participants were randomized and blindly received active or sham iTBS for 4 weeks (the single-blind sham-controlled phase). Then, all participants continued to receive active iTBS for another 4 weeks (the open-label phase). The clinical results were published elsewhere. Here, we present diffusion magnetic resonance imaging data on potential changes in white matter measures after iTBS. Twenty-two participants in Active-Active group and 27 participants in Sham-Active group underwent multi-shell high angular resolution diffusion imaging (64-direction for b = 2000 & 1000 s/mm2, respectively) at baseline, week 4, and week 8. With longitudinal fixel-based analysis, we found no white matter changes following iTBS from baseline to week 4 (a null treatment by time interaction and a null within-group paired comparison in the Active-Active group), nor from baseline to week 8 (null within-group paired comparisons in both Active-Active and Sham-Active groups). As for the brain-symptoms relationship, we did not find baseline white matter metrics associated with symptom changes at week 4 in either group. Our results raise the question of what the minimal cumulative stimulation dose required to induce the white matter plasticity is.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rung-Yu Tseng
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chun-Hung Yeh
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Huang Y, Yang H, Zhu C, Jiang X, Zhu W, Liang Y, Ma L, Wang Y, Tang W. An Exploratory Study of a Novel Combined Therapeutic Modality for Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12101309. [PMID: 36291243 PMCID: PMC9599080 DOI: 10.3390/brainsci12101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: To explore whether a systematic combined therapeutic modality (CTM) could quickly and effectively improve the severity of obsessive–compulsive disorder (OCD) and the insight of OCD patients. Methods: Included in this study were 100 patients with OCD according to the 5th Edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), for a 2-week short-term treatment. They were assigned to a drug-alone group (n = 57), and a CTM group (n = 43) using drug treatment in combination with cognitive behavioral treatment (CBT) and repetitive transcranial magnetic stimulation (rTMS). The therapeutic outcome was assessed by the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS), Brown Assessment of Beliefs Scale (BABS), 24-item Hamilton Depression Scale (HAMD-24) and Hamilton Anxiety Scale (HAMA) before and after treatment. All data were treated with SPSS25.0 Software. Results: After the 2-week treatment, the success rate in the CTM group was significantly higher than that in the drug-alone group. Y-BOCS overall and factor scores were decreased as compared with those before treatment in both groups. HAMD, HAMA and BABS overall scores were all decreased after treatment in the CTM group. In addition, compared with the drug-alone group, the Y-BOCS overall score and factor score, HAMD overall score and HAMA overall score were all decreased significantly in CTM group, while the Y-BOCS score reduction rate was increased significantly. Insight was improved in eight cases (57.14%) in the CTM group containing 14 cases with poor insight. Multinomial logistic regression analysis showed that CTM was beneficial for the insight improvement of OCD patients (OR = 91.04–139.68); this improvement was more pronounced in patients with low baseline BABS overall scores (OR = 0.07). Conclusion: CTM may be an effective short-term strategy to improve the severity of OCD and insight of OCD patients and, therefore, is worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Yueqi Huang
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Hangyi Yang
- Fourth Clinical School, Zhejiang Chinese Medical University, Hangzhou 310013, China
| | - Cheng Zhu
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Xiaoying Jiang
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Wenjing Zhu
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Yan Liang
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Lisha Ma
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Yunzan Wang
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Wenxin Tang
- Department of Psychiatry, Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
- Correspondence:
| |
Collapse
|
10
|
Tateishi H, Setoyama D, Kato TA, Kang D, Matsushima J, Nogami K, Mawatari S, Kojima R, Fujii Y, Sakemura Y, Shiraishi T, Imamura Y, Maekawa T, Asami T, Mizoguchi Y, Monji A. Changes in the metabolites of cerebrospinal fluid induced by rTMS in treatment-resistant depression: A pilot study. Psychiatry Res 2022; 313:114636. [PMID: 35594657 DOI: 10.1016/j.psychres.2022.114636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) improves depressive symptoms in treatment-resistant depression (TRD). This study aimed to analyze changes in cerebrospinal fluid (CSF) metabolites in patients with TRD after rTMS. Five patients with TRD were enrolled in a high frequency (10-Hz) rTMS study. The concentration of 72 CSF metabolites were measured at baseline and at the end of the 6-week rTMS treatment. rTMS significantly increased CSF niacinamide, kynurenine, and creatinine levels and significantly decreased CSF cystine levels, but not the levels of the other 68 CSF metabolites. This is the first CSF metabolomics study on patients with TRD who underwent rTMS.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan.
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan
| | - Jun Matsushima
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Kojiro Nogami
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Seiji Mawatari
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Ryohei Kojima
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yuka Fujii
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yuta Sakemura
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Takumi Shiraishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Toshihiko Maekawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan
| | - Toyoko Asami
- Department of Rehabilitation Medicine, Saga University Hospital, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| |
Collapse
|
11
|
Asgharian Asl F, Vaghef L. The effectiveness of high-frequency left DLPFC-rTMS on depression, response inhibition, and cognitive flexibility in female subjects with major depressive disorder. J Psychiatr Res 2022; 149:287-292. [PMID: 35313201 DOI: 10.1016/j.jpsychires.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND The purpose of the present study was to investigate the effect of high-frequency repetitive transcranial magnetic stimulation on depression severity, response inhibition, and cognitive flexibility in subjects with major depressive disorder. METHODS Twenty-eight female subjects with major depressive disorder were randomly divided into experimental and control groups. High frequency (20 Hz) rTMS stimulation at 85% of the MT consisted of 25 trains of 5 s duration, a total of 2500 pulses/session or sham stimulation was applied over the left DLPFC for five consecutive days per week, for two weeks. Depression severity, response inhibition, and cognitive flexibility of subjects were assessed by Beck Depression Inventory, Go/NoGo, and Wisconsin sort cards (WCST) tests, respectively, pre- and post-TMS intervention. RESULTS rTMS over the left DLPFC significantly decreased the depression severity at the Beck Depression Inventory, enhanced accuracy, and decreased reaction time at the Go/NoGo task. In the Wisconsin Card Sort Test, perseverative and non-perseverative errors and failure to maintain a set index significantly decreased following rTMS treatment. CONCLUSIONS Findings indicate that 20-Hz rTMS treatment on the left DLPFC has a positive effect on depression severity, response inhibition, and cognitive flexibility in depressed subjects.
Collapse
Affiliation(s)
- Fatemeh Asgharian Asl
- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Ladan Vaghef
- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
12
|
Chen D, Lei X, Du L, Long Z. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study. J Psychiatr Res 2022; 148:88-94. [PMID: 35121273 DOI: 10.1016/j.jpsychires.2022.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, safe, and efficacious treatment for major depressive disorder (MDD). However, the antidepressant efficacy of rTMS greatly varies across individual patients. Thus, markers that can be used to predict the outcome of rTMS treatment at the individual level must be identified. Thalamo-cortical connectivity was abnormal in patients with MDD, and was normalized after rTMS treatment. In the current study, we investigated whether the resting-state functional and structural thalamo-cortical connectivity could be utilized to predict the rTMS treatment efficacy by employing support vector machine regression analysis. Results showed that the Hamilton Depression Scale scores of patients with MDD decreased after rTMS treatment. The functional connectivity of mediodorsal nucleus with prefrontal cortex predicted the rTMS treatment improvement, whereas the functional connectivity of other thalamic nuclei with cerebral cortex did not predict the treatment efficacy. The brain areas that contributed the most to the prediction were dorsal lateral prefrontal cortex, ventral lateral, and orbital and medial prefrontal areas. The improvement in the outcome of rTMS treatment could also be predicted by the thalamo-prefrontal structural connectivity. No statistically significantly difference in thalamo-cortical connectivity was observed between early improvers and early non-improvers. These results suggested that the thalamo-prefrontal connectivity can predict the rTMS treatment improvement. This study highlighted the crucial role of the thalamo-prefrontal connectivity as a neuroimaging marker in the treatment of depression via rTMS.
Collapse
Affiliation(s)
- Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China.
| |
Collapse
|
13
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Tateishi H, Mizoguchi Y, Monji A. Is the Therapeutic Mechanism of Repetitive Transcranial Magnetic Stimulation in Cognitive Dysfunctions of Depression Related to the Neuroinflammatory Processes in Depression? Front Psychiatry 2022; 13:834425. [PMID: 35280153 PMCID: PMC8907472 DOI: 10.3389/fpsyt.2022.834425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The lifetime prevalence of depression is reported to be >10%, and it is an important illness that causes various disabilities over a long period of life. Neuroinflammation process is often reported to be closely linked to the pathophysiology of depression. Approximately one-third of depression is known to be treatment-resistant depression (TRD), in which the symptoms are refractory to adequate treatment. Cognitive dysfunction is one of the most important symptoms of depression that impedes the rehabilitation of patients with depression. Repetitive transcranial magnetic stimulation (rTMS) is a minimally invasive and effective treatment for TRD and is also known to be effective in cognitive dysfunction in depression. Since the details of the therapeutic mechanism of rTMS are still unknown, we have been conducting studies to clarify the therapeutic mechanism of rTMS, especially focusing on cognitive dysfunction in depression. In the present review, we present our latest results and discuss them from the standpoint of the neuroinflammation hypothesis of depression, while citing relevant literature.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
15
|
Oscillatory brain network changes after transcranial magnetic stimulation treatment in patients with major depressive disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2021.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Schiena G, Franco G, Boscutti A, Delvecchio G, Maggioni E, Brambilla P. Connectivity changes in major depressive disorder after rTMS: a review of functional and structural connectivity data. Epidemiol Psychiatr Sci 2021; 30:e59. [PMCID: PMC8444152 DOI: 10.1017/s2045796021000482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims In the search for effective therapeutic strategies for depression, repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive, promising treatment. This is because the antidepressant effect of rTMS might be related to neuronal plasticity mechanisms possibly reverting connectivity alterations often observed in depression. Therefore, in this review, we aimed at providing an overview of the findings reported by studies investigating functional and structural connectivity changes after rTMS in depression. Methods A bibliographic search was conducted on PubMed, including studies that used unilateral, excitatory (⩾10 Hz) rTMS treatment targeted on the left dorsolateral prefrontal cortex (DLPFC) in unipolar depressed patients. Results The majority of the results showed significant TMS-induced changes in functional connectivity (FC) between areas important for emotion regulation, including the DLPFC and the subgenual anterior cingulate cortex, and among regions that are part of the major resting-state networks, such as the Default Mode Network, the Salience Networks and the Central Executive Network. Finally, in diffusion tensor imaging studies, it has been reported that rTMS appeared to increase fractional anisotropy in the frontal lobe. Limitations The small sample size, the heterogeneity of the rTMS stimulation parameters, the concomitant use of psychotropic drugs might have limited the generalisability of the results. Conclusions Overall, rTMS treatment induces structural and FC changes in brain regions and networks implicated in the pathogenesis of unipolar depression. However, whether these changes underlie the antidepressant effect of rTMS still needs to be clarified.
Collapse
Affiliation(s)
- G. Schiena
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G. Franco
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A. Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - G. Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Author for correspondence: G. Delvecchio, E-mail:
| | - E. Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P. Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
17
|
The changes in kynurenine metabolites induced by rTMS in treatment-resistant depression: A pilot study. J Psychiatr Res 2021; 138:194-199. [PMID: 33865168 DOI: 10.1016/j.jpsychires.2021.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that is considered a valuable and promising technique for improving depressive symptoms in treatment-resistant depression (TRD). However, the exact mechanism by which rTMS ameliorates depressive symptoms remains to be clarified. OBJECTIVE The aim of the present study was to analyzed the changes in metabolites of patients with TRD in the rTMS treatment, especially focusing on the kynurenine (KYN) pathway. METHODS Thirteen participants with TRD were enrolled in a high-frequency (10 Hz) rTMS study. Cognitive function, depressive symptoms and the concentration of plasma tryptophan (TRP) metabolites were measured at baseline and at the endpoint of rTMS treatment. RESULTS rTMS treatment significantly improved depressive symptom scores and some subscales of cognitive dysfunction. The present study has demonstrated that rTMS treatment significantly increased plasma TRP levels and significantly decreased plasma serotonin levels, while plasma KYN and kynurenic acid level as well as KYN/TRP ratio remained unchanged. CONCLUSIONS This is the first metabolomic study of patients with TRD undergoing rTMS treatment. To validate the present results, it is necessary to increase the number of cases including controls, use a sample of cerebrospinal fluid, and measure blood concentration over time in the course of rTMS treatment.
Collapse
|