1
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
2
|
Le système rénine-angiotensine-aldostérone. ACTUALITES PHARMACEUTIQUES 2022. [DOI: 10.1016/j.actpha.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Krzemińska J, Wronka M, Młynarska E, Franczyk B, Rysz J. Arterial Hypertension—Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:antiox11010172. [PMID: 35052676 PMCID: PMC8772909 DOI: 10.3390/antiox11010172] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial hypertension (AH) is a major cause of cardiovascular diseases (CVD), leading to dysfunction of many organs, including the heart, blood vessels and kidneys. AH is a multifactorial disease. It has been suggested that the development of each factor is influenced by oxidative stress, which is characterized by a disturbed oxidant-antioxidant balance. Excessive production of reactive oxygen species (ROS) and an impaired antioxidant system promote the development of endothelial dysfunction (ED), inflammation and increased vascular contractility, resulting in remodeling of cardiovascular (CV) tissue. The hope for restoring the proper functioning of the vessels is placed on antioxidants, and pharmacological strategies are still being sought to reverse the harmful effects of free radicals. In our review, we focused on the correlation of AH with oxidative stress and inflammation, which are influenced by many factors, such as diet, supplementation and pharmacotherapy. Studies show that the addition of a single dietary component may have a beneficial effect on blood pressure (BP) values; however, the relationship between the antioxidant/anti-inflammatory properties of individual dietary components and the hypotensive effect is not clear. Moreover, AH pharmacotherapy alleviates the increased oxidative stress, which may help prevent organ damage.
Collapse
|
4
|
Aliska G, Katar Y, Endo Mahata L, Pratiwi N, Nuranisyah V. Effect of Ramipril on Endothelin-1 Expression in Myocardial Tissue at Wistar Rats Induced Myocardial Infarction. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Acute myocardial infarction occurs due to a sudden decrease in coronary blood flow caused by coronary artery embolism, coronary dissection, or coronary vasospasm. The Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor; it is synthesized and released from vascular and endocardial endothelial cells and myocytes. The action of ET-1 induces endothelial dysfunction in the coronary circulation through several mechanisms, such as reduced NO pathway activity, increased oxidative stress and inflammation, and interference with glucose and lipid metabolism. Ramipril is one of the angiotensin-converting enzyme inhibitors (ACE-I) that can reduce the formation of ET-1 by enhancing the NO expression. NO can down-regulate the ET-1 secretion through soluble guanylate cyclase activation and increased cellular generation of cGMP.
AIM: This study aimed to investigate the effect of Ramipril on ET-1 expression in rats-induced myocardial infarction.
METHODS: Six-week-old male Wistar rats were randomly allocated into three groups: negative control, positive control was given NaCl 0.9% and treatment group treated with ramipril 3 mg/kg/day orally for 7 days. Myocardial infarction was induced in positive and treatment group by subcutaneous injection of isoproterenol, and 24 h after the last administration, rats were sacrificed to evaluate the relative expression of ET-1 using the real-time polymerase chain reaction and 2-ΔΔCt method.
RESULTS: The average expression for the negative control was 0.0098, positive control was 0.0136 and treatment group was 0.0118, with p = 0.210 (p > 0.05).
CONCLUSION: Our data suggest that there is no difference between groups for the relative expression of ET-1.
Collapse
|
5
|
Varghese SS, Eekhoudt CR, Jassal DS. Mechanisms of anthracycline-mediated cardiotoxicity and preventative strategies in women with breast cancer. Mol Cell Biochem 2021; 476:3099-3109. [PMID: 33835331 DOI: 10.1007/s11010-021-04152-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
While anthracyclines (ACs) are a class of chemotherapeutic agents that have improved the prognosis of many women with breast cancer, it is one of the most cardiotoxic agents used to treat cancer. Despite their reported dose-dependent cardiotoxicity, AC-based chemotherapy has become the mainstay of breast cancer therapy due to its efficacy. Elucidating the mechanisms of anthracycline-mediated cardiotoxicity and associated therapeutic interventions continue to be the main focus in the field of cardio-oncology. Herein, we summarized the current literature surrounding the mechanisms of anthracycline-induced cardiotoxicity, including the role of topoisomerase II inhibition, generation of reactive oxygen species, and elevations in free radicals. Furthermore, this review highlights the molecular mechanisms of potential cardioprotective interventions in this setting. The benefits of pharmaceuticals, including dexrazoxane, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, statins, and antioxidants in this setting, are reviewed. Finally, the mechanisms of emerging preventative interventions within this patient population including nutraceuticals and aerobic exercise are explored.
Collapse
Affiliation(s)
- Sonu S Varghese
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Cameron R Eekhoudt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Radiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Xavier LL, Neves PFR, Paz LV, Neves LT, Bagatini PB, Timmers LFSM, Rasia-Filho AA, Mestriner RG, Wieck A. Does Angiotensin II Peak in Response to SARS-CoV-2? Front Immunol 2021; 11:577875. [PMID: 33519802 PMCID: PMC7842149 DOI: 10.3389/fimmu.2020.577875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Human infection by the SARS-CoV-2 is causing the current COVID-19 pandemic. With the growing numbers of cases and deaths, there is an urgent need to explore pathophysiological hypotheses in an attempt to better understand the factors determining the course of the disease. Here, we hypothesize that COVID-19 severity and its symptoms could be related to transmembrane and soluble Angiotensin-converting enzyme 2 (tACE2 and sACE2); Angiotensin II (ANG II); Angiotensin 1-7 (ANG 1-7) and angiotensin receptor 1 (AT1R) activation levels. Additionally, we hypothesize that an early peak in ANG II and ADAM-17 might represent a physiological attempt to reduce viral infection via tACE2. This viewpoint presents: (1) a brief introduction regarding the renin-angiotensin-aldosterone system (RAAS), detailing its receptors, molecular synthesis, and degradation routes; (2) a description of the proposed early changes in the RAAS in response to SARS-CoV-2 infection, including biological scenarios for the best and worst prognoses; and (3) the physiological pathways and reasoning for changes in the RAAS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Lisiê Valeria Paz
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Pamela Brambilla Bagatini
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil
| | - Alberto Antônio Rasia-Filho
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Andrea Wieck
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
7
|
Alarcon G, Medina A, Martin Alzogaray F, Sierra L, Roco J, Van Nieuwenhove C, Medina M, Jerez S. Partial replacement of corn oil with chia oil into a high fat diet produces either beneficial and deleterious effects on metabolic and vascular alterations in rabbits. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Age-Related Differences in Immunological Responses to SARS-CoV-2. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3251-3258. [PMID: 32861856 PMCID: PMC7450283 DOI: 10.1016/j.jaip.2020.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
There is a striking age-related disparity in the prevalence and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 infections, which might be explained by age-dependent immunological mechanisms. These include age-related physiological differences in immunological responses, cross-neutralizing antibodies, and differences in levels and binding affinity of angiotensin-converting enzyme 2, the SARS-CoV-2 target receptor; antibody-dependent enhancement in adults manifesting with an overexuberant systemic inflammation in response to infection; and the increased likelihood of comorbidities in adults and the elderly. Emerging immunological phenomena such as Pediatric Multi-System Inflammatory Disorder Temporally associated with SARS-CoV-2 or Multisystem Inflammatory Syndrome in Children are now being observed, though the underlying mechanisms are still unclear. Understanding the mechanisms through which pediatric patients are protected from severe novel coronaviruses infections will provide critical clues to the pathophysiology of coronavirus disease 2019 infection and inform future therapeutic and prophylactic interventions. Asymptomatic carriage in children may have major public health implications, which will have an impact on social and health care policies on screening and isolation practices, school reopening, and safe distancing requirements in the community.
Collapse
|
9
|
Yao S, Agyei D, Udenigwe CC. Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:145-181. [PMID: 29555068 DOI: 10.1016/bs.afnr.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioactive peptides have many structural features that enable them to become functional in controlling several biological processes in the body, especially those related to metabolic health. This chapter provides an overview of the multiple targets of food-derived peptides against metabolic health problems (e.g., hypertension, dyslipidemia, hyperglycemia, oxidative stress) and discusses the importance of structural chemistry in determining the bioactivities of peptides and protein hydrolysates.
Collapse
Affiliation(s)
- Shixiang Yao
- Southwest University, Chongqing, PR China; University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
10
|
Protective Role of Ramipril and Candesartan against Myocardial Ischemic Reperfusion Injury: A Biochemical and Transmission Electron Microscopical Study. Adv Pharmacol Sci 2016; 2016:4608979. [PMID: 27042175 PMCID: PMC4799827 DOI: 10.1155/2016/4608979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 11/26/2022] Open
Abstract
The present study was designed to investigate the role of combined administration of Ramipril and Candesartan against in vitro myocardial ischemic reperfusion injury in rat. Male Wistar albino rats were divided into five groups (n = 6) and treated with saline (10 mL/kg), Ramipril (2 mg/kg), Candesartan (1 mg/kg), and the combination of both drugs, respectively 24 h before induction of global ischemia (5 min of stabilization, 9 min of global ischemia, and 12 min of reflow). Combination of Ramipril and Candesartan when compared to the monotherapy significantly increased the levels of superoxide dismutase, reduced glutathione, catalase, and nitric oxide and decreased the levels of thiobarbituric acid reactive substances. In addition, the superior protective role of combination of Ramipril and Candesartan on ischemia induced myocardial damage was further confirmed by well preserved myocardial tissue architecture in light microscopy and transmission electron microscopy analysis studies. The combination was proved to be effective in salvaging the myocardial tissue against ischemic reperfusion injury when compared to the monotherapy of individual drugs and further investigations on protective mechanism of drugs by increasing the nitric oxide level at molecular levels are needed.
Collapse
|
11
|
Kantevari S, Addla D, Bagul PK, Sridhar B, Banerjee SK. Synthesis and evaluation of novel 2-butyl-4-chloro-1-methylimidazole embedded chalcones and pyrazoles as angiotensin converting enzyme (ACE) inhibitors. Bioorg Med Chem 2011; 19:4772-81. [DOI: 10.1016/j.bmc.2011.06.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
|