1
|
Inda A, Martinez S, Bessone C, Rios M, Guido M, Herrero-Vanrell R, Luna JD, Allemandi D, Ravetti S, Quinteros D. Evidence of the protective role of Carvacrol in a retinal degeneration animal model. Exp Eye Res 2024; 244:109938. [PMID: 38789020 DOI: 10.1016/j.exer.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.
Collapse
Affiliation(s)
- Ayelen Inda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina
| | - Sofía Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Carolina Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Departamento de Ciencias Básicas, Escuela Ciencias de la Salud, Universidad Nacional de Villa Mercedes (UNVIME), 5730, Villa Mercedes, San Luis, Argentina
| | - Maximiliano Rios
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Mario Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Rocío Herrero-Vanrell
- Grupo de Investigación en Innovación, Terapia y Desarrollo Farmacéutico en Oftalmología (UCM 920415), Departamento de Farmacia y Tecnología de Alimentos, Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - Jose Domingo Luna
- Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER, 5000, Córdoba, Argentina
| | - Daniel Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Soledad Ravetti
- Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, 5900, Villa María, Córdoba, Argentina
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
2
|
Fan K, Dong N, Fang M, Xiang Z, Zheng L, Wang M, Shi Y, Tan G, Li C, Xue Y. Ozone exposure affects corneal epithelial fate by promoting mtDNA leakage and cGAS/STING activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133219. [PMID: 38101018 DOI: 10.1016/j.jhazmat.2023.133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Ozone is a common air pollutant associated with various human diseases. The human ocular surface is frequently exposed to ozone in the troposphere, but the mechanisms by which ozone affects the ocular surface health remain unclear. This study aimed to establish a mouse model to investigate the effects of ozone exposure on the ocular surface and the corneal epithelium. The findings revealed that ozone exposure disrupted corneal epithelial homeostasis and differentiation, resulting in corneal squamous metaplasia. Further, ozone exposure induced oxidative damage and cytoplasmic leakage of mitochondrial DNA (mtDNA), thereby activating the cGAS/STING signaling pathway. The activation of the cGAS/STING signaling pathway triggered the activation of downstream NF-κB and TRAF6 signaling pathways, causing corneal inflammation, thereby promoting corneal inflammation and squamous metaplasia. Finally, C-176, a selective STING inhibitor, effectively prevented and treated corneal inflammation and squamous metaplasia caused by ozone exposure. This study revealed the role of mtDNA leakage-mediated cGAS/STING activation in corneal squamous epithelial metaplasia caused by ozone exposure. It also depicted the abnormal expression pattern of corneal epithelial keratin using three-dimensional images, providing new targets and strategies for preventing and treating corneal squamous metaplasia and other ocular surface diseases.
Collapse
Affiliation(s)
- Kai Fan
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Nuo Dong
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| | - Meichai Fang
- Ningde People's Hospital, Ningde, Fujian 352100, China
| | - Zixun Xiang
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengyuan Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yukuan Shi
- The High School Affiliated to Renmin University of China, 100080, China
| | - Gang Tan
- The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, Fujian 361102, China; The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Yuhua Xue
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Wang H, Yin X, Li Y, Zhang Z, Zhao K, Hu F, Liu Q, Lu Q, Wang Y, Zhang L, Jia H, Han J, Guo J, Li M. Safety and efficacy of intense pulsed light in the treatment of severe chronic ocular graft-versus-host disease. Ocul Surf 2023; 30:276-285. [PMID: 37813151 DOI: 10.1016/j.jtos.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate the safety and efficacy of intense pulsed light (IPL) in the treatment of severe chronic ocular graft-versus-host disease (coGVHD). METHODS A prospective cohort study. Seventeen patients with severe coGVHD were selected for inclusion in this study. All subjects were treated with IPL every fortnight together with conventional treatment, observation time points were pre-treatment (W0), 4 weeks post-treatment (W4), 8 weeks post-treatment (W8) and 12 weeks post-treatment (W12). Dry eye related examinations include Tear meniscus height (TMH), Non-invasive break-up time (NIBUT), Schirmer I test, Tear film lipid layer thickness (LLT), Ocular surface staining (OSS) and assessment of meibomian gland. Corneal epithelial cell morphology and inflammatory cell infiltration were analyzed by corneal confocal microscopy, while goblet cell density and squamous epithelial grade were assessed by conjunctival imprinted cytology. RESULTS Patients did not experience any adverse reactions during the follow-up period. All subjects showed significant improvement in clinical symptoms and most signs after IPL treatment. The corneal confocal microscopy showed that the number of dendritic cells infiltrates in the corneal stroma was significantly reduced after IPL treatment (p < 0.001). Conjunctival blot cytology suggested an increase in the number of conjunctival goblet cells from 5.12 ± 2.71 cells/mm2 before treatment to 22.00 ± 4.58 cells/mm2 after treatment, with a statistically significant difference (p < 0.001). An improvement in conjunctival epithelial cell morphology and a decrease in squamous epithelial grade was also observed. CONCLUSIONS IPL treatment can effectively increase tear film stability in patients with severe coGVHD without significant side effects.
Collapse
Affiliation(s)
- He Wang
- From the Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Huai Hai West Street 99, Xuzhou, 221000, Jiangsu Province, China
| | - Xiaoyue Yin
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yue Li
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Zhaowei Zhang
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Kai Zhao
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Fen Hu
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Qian Liu
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Qiuchen Lu
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yining Wang
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Ling Zhang
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hui Jia
- From the Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Jiaxin Han
- College of Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Jianxin Guo
- From the Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Huai Hai West Street 99, Xuzhou, 221000, Jiangsu Province, China
| | - Mingxin Li
- From the Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Huai Hai West Street 99, Xuzhou, 221000, Jiangsu Province, China.
| |
Collapse
|
4
|
Zemba M, Ionescu MA, Pîrvulescu RA, Dumitrescu OM, Daniel-Constantin B, Radu M, Stamate AC, Istrate S. Biomarkers of ocular allergy and dry eye disease. Rom J Ophthalmol 2023; 67:250-259. [PMID: 37876509 PMCID: PMC10591437 DOI: 10.22336/rjo.2023.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The most common disorders of the ocular surface are dry eye disease (DED) and ocular allergy (OA). These conditions are frequently coexisting with or without a clinical overlap and can cause a severe impact on the patient's quality of life. Therefore, it can sometimes be hard to distinguish between DED and OA because similar changes and manifestations may be present. Atopic patients can also develop DED, which can aggravate their manifestations. Moreover, patients with DED can develop ocular allergies, so these two pathological entities of the ocular surface can be considered as mutual conditions that share the same background. Nowadays, by using different techniques to collect tissue from ocular surfaces, the changes in molecular homeostasis can be detected and this can lead to a precise diagnosis. The article provides an up-to-date review of the various ocular surface biomarkers that have been identified in DED, OA, or both conditions. Abbreviations: DED = dry eye disease, OA = ocular allergy, SS = Sjogren syndrome, TBUT = tear break up time, TFO = tear film osmolarity, AKC = Atopic keratoconjunctivitis, ANXA1 = Annexin 1, ANXA11 = Annexin 11, CALT = Conjunctival associated lymphoid tissue, CCL2/MIP-1 = Chemokine (C-C motif) ligand2/Monocyte chemoattractant protein 1, CCL3/MIP-1α = Chemokine (C-C motif) ligand 3/Macrophage inflammatory protein 1 alpha, CCL4/MIP-1β = Chemokine (C-C motif) ligand 4/Macrophage inflammatory protein 1 beta, CCL5/RANTES = Chemokine (C-C motif) ligand 5 /Regulated on Activation, Normal T cell Expressed and Secreted, CCR2 = Chemokine (C-C motif) receptor 2, CCR5 = Chemokine (C-C motif) receptor 5, CD3+ = Cluster of differentiation 3 positive, CD4+ = Cluster of differentiation 4 positive, CD8+ = Cluster of differentiation 8 positive, CGRP = Calcitonin-gene-related peptide, CX3CL1 C-X3 = C motif -chemokine ligand 1 /Fractalkine, CXCL8 = Chemokine (C-X-C motif) ligand 8, CXCL9 = Chemokine (C-X-C motif) ligand 9, CXCL10 = Chemokine (C-X-C motif) ligand 10, CXCL11 = Chemokine (C-X-C motif) ligand 11, CXCL12 = Chemokine (C-X-C motif) ligand 12, CXCR4 = Chemokine (C-X-C motif) receptor 4, EGF = Epidermal growth factor, HLA-DR = Human leukocyte antigen-D-related, ICAM-1 = Intercellular adhesion molecule 1, IFN-γ = Interferon-gamma, IgG = Immunoglobulin G, IgE = Immunoglobulin E, IL-1 = Interleukin-1, IL-1α = Interleukin-1 alpha, IL-1β = Interleukin-1 beta, CGRP = Calcitonin-Gene-Related Peptide, IL-3 = Interleukin-3, IL-4 = Interleukin-4, IL-6 = Interleukin-6, IL-8 = Interleukin-8, IL-10 = Interleukin-10, IL-17 = Interleukin-17, IL-17A = Interleukin-17A, LPRR3 = Lacrimal proline-rich protein 3, LPRR4 = Lacrimal proline-rich protein 4, MUC5AC = Mucin 5 subtype AC, oligomeric mucus/gel-forming, MUC16 = Mucin 16, OCT = Optical coherence tomography, OGVHD = Ocular graft versus host disease, PAX6 = Paired-box protein 6, VKC = Vernal keratoconjunctivitis, TGF-β = Transforming growth factor β, S100 = proteins Calcium activated signaling proteins, Th1 = T helper 1 cell, Th17 = T helper 17 cell, MGD = Meibomian gland dysfunction, TFOS = Tear film and ocular surface society, SS-KCS = Keratoconjunctivitis Sicca, MMP-9 = Matrix metalloproteinase 9, MMP-1 = Matrix metalloproteinase 1, ZAG = Zinc alpha glycoprotein, CBA = Cytometric bead array, MALDI TOF-MS = matrix assisted laser desorption ionization-time of flight, SELDI TOF-MS = surface-enhanced laser desorption ionization-time of flight, IVCM = in vivo confocal microscopy, AS-OCT = anterior segment optical coherence tomography, iTRAQ = Isobaric tags for relative and absolute quantitation, LC-MS = Liquid chromatography-mass spectrometry, LCN-1 = lipocalin 1, PIP = prolactin induced protein, NGF = Nerve growth factor, PRR4 = proline rich protein 4, VIP = Vasoactive intestinal peptide, ELISA = enzyme linked immunoassay, TNF-α = tumor necrosis factor alpha, PAC = perennial allergic conjunctivitis, SAC = seasonal allergic conjunctivitis, IC = impression cytology, RT-PCR = reverse transcription polymerase chain reaction, PCR = polymerase chain reaction, APCs = antigen-presenting cells, NK cells = natural killer cells, HEL = hexanoyl-lysine, 4-HNE = 4-hydroxy-2-nonenal, MDA = malondialdehyde.
Collapse
Affiliation(s)
- Mihail Zemba
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Mihai-Alexandru Ionescu
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Otilia-Maria Dumitrescu
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Mădălina Radu
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Alina-Cristina Stamate
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- ArenaMed Clinic Bucharest, Bucharest, Romania
| | - Sînziana Istrate
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Castro Mora MP, Palacio Varona J, Perez Riaño B, Laverde Cubides C, Rey-Rodriguez DV. Effectiveness of topical insulin for the treatment of surface corneal pathologies. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:220-232. [PMID: 36871851 DOI: 10.1016/j.oftale.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 03/07/2023]
Abstract
The Purpose is to identify, through a systematic literature review, the current evidence regarding the effectiveness of topical insulin treatment in ocular surface pathologies. A literature search was implemented in Medline (Pubmed), Embase and Web Of Science medical indexing databases by using keywords such as "insulin" AND "cornea" OR "corneal" OR "dry eye" in published papers in English or Spanish within the last eleven years (2011-2022). Nine papers were identified with 180 participants from the United States, Spain, Ireland, Canada, Portugal and Malaysia, with persistent refractory epithelial defects and secondary to vitrectomy, whose extension of the lesion was from 3,75mm2 to 65.47mm2. The preparation was dissolved with artificial tears and the insulin concentration ranged from 1 IU/ml to 100 IU/ml. In all cases, the resolution of the clinical picture was complete with a healing time from 2.5 days to 60.9 days, the latter being a secondary case to a difficult-to-control caustic burn. Topical insulin has been effective for the treatment of persistent epithelial defects. The intermediate action and low concentrations showed a shorter resolution time in neurotrophic ulcers and induced during vitreoretinal surgery.
Collapse
Affiliation(s)
| | | | - B Perez Riaño
- Universidad El Bosque, Bogotá, Cundinamarca, Colombia
| | | | | |
Collapse
|
6
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
7
|
Sustained Release Biocompatible Ocular Insert Using Hot Melt Extrusion Technology: Fabrication and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Labetoulle M, Benitez-del-Castillo JM, Barabino S, Herrero Vanrell R, Daull P, Garrigue JS, Rolando M. Artificial Tears: Biological Role of Their Ingredients in the Management of Dry Eye Disease. Int J Mol Sci 2022; 23:ijms23052434. [PMID: 35269576 PMCID: PMC8910031 DOI: 10.3390/ijms23052434] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Dry eye disease (DED) is the most common ocular surface disease, characterized by insufficient production and/or instability of the tear film. Tear substitutes are usually the first line of treatment for patients with DED. Despite the large variety of tear substitutes available on the market, few studies have been performed to compare their performance. There is a need to better understand the specific mechanical and pharmacological roles of each ingredient composing the different formulations. In this review, we describe the main categories of ingredients composing tear substitutes (e.g., viscosity-enhancing agents, electrolytes, osmo-protectants, antioxidants, lipids, surfactants and preservatives) as well as their effects on the ocular surface, and we provide insight into how certain components of tear substitutes may promote corneal wound healing, and/or counteract inflammation. Based on these considerations, we propose an approach to select the most appropriate tear substitute formulations according to the predominant etiological causes of DED.
Collapse
Affiliation(s)
- Marc Labetoulle
- Service d’Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France;
| | | | - Stefano Barabino
- Centro Superficie Oculare e Occhio Secco, ASST Fatebenefratelli-Sacco, Ospedale L. Sacco, Università di Milano, 20157 Milan, Italy;
| | - Rocio Herrero Vanrell
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain;
| | - Philippe Daull
- Ophthalmic Innovation Center, Santen SAS, 91058 Evry, France;
| | | | - Maurizio Rolando
- Ocular Surface Centre, ISPRE (Instituto di Medicina Oftalmica) Ophthalmic, 16129 Genoa, Italy;
| |
Collapse
|
9
|
Garofalo R, Kunnen C, Rangarajan R, Manoj V, Ketelson H. Relieving the symptoms of dry eye disease: update on lubricating eye drops containing hydroxypropyl-guar. Clin Exp Optom 2021; 104:826-834. [PMID: 34137675 DOI: 10.1080/08164622.2021.1925208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Hydroxypropyl-guar (HPG) is a thickening agent first added to lubricating eye drops in 2003. This agent, which enhances viscosity, has been used in the SYSTANE® family of lubricant eye drops (Alcon Laboratories, Inc., Fort Worth, TX, USA). HPG forms a partially linked gel with borate to prolong the retention of demulcents, such as polyethylene glycol and propylene glycol, on the eye. This helps to protect the ocular surface, thereby reducing the symptoms of dry eye disease (DED). The definition of DED has evolved with advances in research, leading to changes in HPG-containing eye care solutions. This article reviews current knowledge on the use of HPG-containing lubricating eye drops in the management of DED.
Collapse
Affiliation(s)
- Renee Garofalo
- Research & Development, Alcon Research, LLC, Fort Worth, TX, USA
| | - Carolina Kunnen
- Research & Development, Alcon Research, LLC, Fort Worth, TX, USA
| | | | | | - Howard Ketelson
- Research & Development, Alcon Vision, LLC, Fort Worth, TX, USA
| |
Collapse
|
10
|
Srinivasan S, Manoj V. A Decade of Effective Dry Eye Disease Management with Systane Ultra (Polyethylene Glycol/Propylene Glycol with Hydroxypropyl Guar) Lubricant Eye Drops. Clin Ophthalmol 2021; 15:2421-2435. [PMID: 34135570 PMCID: PMC8200152 DOI: 10.2147/opth.s294427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial ocular condition characterized by a loss of homeostasis of the tear film resulting in ocular symptoms of discomfort, irritation, and visual disturbance, all of which significantly impact the patients’ social and occupational quality of life. While management of DED depends on the severity of symptoms and signs, use of artificial tear products (ATPs) that replace or supplement the deficient natural tear film is the mainstay treatment option. In this review, we present a decade of evidence on Systane Ultra® (polyethylene glycol [PEG]/propylene glycol [PG] with hydroxypropyl guar [HP guar]) in effectively managing DED. The active demulcents in Systane Ultra®—PEG, PG, along with HP guar gelling technology—provide optimal ocular surface protection and lubrication to heal damaged areas of the cornea caused by DED and, therefore, are recommended for patients with both aqueous and/or mucin layer deficiencies. Over the years, several clinical studies have shown that PEG/PG with HP guar provides long-lasting relief from dry eye and has often been chosen as a standard or comparator against other ATPs. Here, we describe the salient features of PEG/PG with HP guar—its constituents and their mechanisms of action. Furthermore, we summarize results from a systematic literature search that identified 23 relevant publications further emphasizing on the effectiveness and safety of PEG/PG with HP guar in alleviating the signs and symptoms of DED.
Collapse
Affiliation(s)
- Sruthi Srinivasan
- Clinical Development and Medical Affairs, Alcon Research, LLC, Johns Creek, GA, USA
| | - Venkiteshwar Manoj
- Clinical Development and Medical Affairs, Alcon Research, LLC, Johns Creek, GA, USA
| |
Collapse
|
11
|
Inhibitory effect of host ocular microenvironmental factors on chlorhexidine digluconate activity. Antimicrob Agents Chemother 2021; 65:AAC.02066-20. [PMID: 33685899 PMCID: PMC8092908 DOI: 10.1128/aac.02066-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acanthamoeba spp. are free-living protozoan that cause a serious human eye disease called Acanthamoeba keratitis (AK). Several new and effective medical therapy for AK patients remains highly debated and therefore, CHG is still considered one of the first lines of treatment for AK patients. We hypothesized that ocular microenvironmental factors are responsible for Acanthamoeba drug resistance and clinical AK treatment failure. To investigate the influence of the ocular surface on CHG treatment, we tested the effect of several ocular elements on the anti-amoeba activity of CHG. The suspected inhibitory elements, including mucin, albumin, human and amoeba cell lysates, live and heat-killed bacteria, and cornea, were added to the amoebicidal activity platform, where amoeba was incubated with CHG at varying concentrations. Mucin showed a significant inhibitory effect on CHG activity against Acanthamoeba castellanii In contrast, albumin did not affect CHG treatment. Furthermore, human and amoeba cell lysates as well as live and heat-killed bacterial suspensions also significantly inhibited CHG activity. Additionally, we found that pig corneas also reduced CHG activity. In contrast, dry eye drops and their major component, propylene glycol, which is commonly used as eyewash material, did not have an impact on CHG activity. Our results demonstrate the effect of ocular microenvironmental factors on CHG activity and suggest that these factors may play a role in the development of amoeba resistance to CHG and treatment failure.
Collapse
|
12
|
Belalcázar-Rey S, Sánchez Huerta V, Ochoa-Tabares JC, Altamirano Vallejo S, Soto-Gómez A, Suárez-Velasco R, García-Félix F, Baiza-Durán L, Olvera-Montaño O, Muñoz-Villegas P. Efficacy and Safety of Sodium Hyaluronate/chondroitin Sulfate Preservative-free Ophthalmic Solution in the Treatment of Dry Eye: A Clinical Trial. Curr Eye Res 2020; 46:919-929. [PMID: 33289602 DOI: 10.1080/02713683.2020.1849733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To evaluate the efficacy of a preservative free sodium hyaluronate/chondroitin sulfate ophthalmic solution (SH/CS-PF) in patients with dry eye disease (DED).Methods: This was a randomized phase IV, multicentric, prospective, double-blind clinical trial. Intent-to-treat (ITT) and per-protocol (PP) analyses were performed. Patients were assigned to receive either SH/CS-PF, Systane® Ultra (PEG/PG) or Systane® Ultra PF (PEG/PG-PF) for 90 days. A total of 326 patients were included in the ITT, and 217 in the PP analysis. Efficacy endpoints were goblet cell density, Nelson's grades (conjunctival impression cytology), tear break-up time (TBUT), Ocular Surface Disease Index (OSDI), and Schirmer's test. Other parameters included were tolerability, measured by the ocular symptomatology; and safety, measured through corneal staining, intraocular pressure, visual acuity and adverse events.Results: In the ITT, there was a significant increase in mean goblet cell density in all treatments compared with their baseline (28.4% vs 21.4% and 30.8%), without difference between arms (p = .159). Eyes exposed to SH/CS-PF, PEG/PG and PEG/PG-PF showed Grade 0-I squamous metaplasia (85.5%, 87.9% and 93.2%, respectively). Similar improvements were observed for TBUT (1.24 ± 2.3s vs 1.27 ± 2.4s and 1.39 ± 2.3s) and OSDI scores at day 90 (-8.81 ± 8.6 vs -7.95 ± 9.2 and -8.78 ± 9.8), although no significant intergroup difference was found. Schirmer's test also presented improvement compared to baseline (1.38 ± 4.9 vs 1.50 ± 4.7 and 2.63 ± 5.9), with a significantly higher variation for PEG/PG-PF. There were no significant differences between treatments for any tolerability and safety parameter, nor between ITT and PP analyses for any outcome.Conclusions: The topical application of SH/CS-PF is as effective, safe and well tolerated as that of PEG/PG or PEG/PG-PF. The results suggest that SH/CS-PF may lead to normalization of clinical parameters and symptom alleviation in patients treated for DED.
Collapse
|
13
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|