1
|
Fujinami-Yokokawa Y, Yang L, Joo K, Tsunoda K, Liu X, Kondo M, Ahn SJ, Li H, Park KH, Tachimori H, Miyata H, Woo SJ, Sui R, Fujinami K. Occult Macular Dysfunction Syndrome: Identification of Multiple Pathologies in a Clinical Spectrum of Macular Dysfunction with Normal Fundus in East Asian Patients: EAOMD Report No. 5. Genes (Basel) 2023; 14:1869. [PMID: 37895218 PMCID: PMC10606510 DOI: 10.3390/genes14101869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Occult macular dystrophy (OMD) is the most prevalent form of macular dystrophy in East Asia. Beyond RP1L1, causative genes and mechanisms remain largely uncharacterised. This study aimed to delineate the clinical and genetic characteristics of OMD syndrome (OMDS). Patients clinically diagnosed with OMDS in Japan, South Korea, and China were enrolled. The inclusion criteria were as follows: (1) macular dysfunction and (2) normal fundus appearance. Comprehensive clinical evaluation and genetic assessment were performed to identify the disease-causing variants. Clinical parameters were compared among the genotype groups. Seventy-two patients with OMDS from fifty families were included. The causative genes were RP1L1 in forty-seven patients from thirty families (30/50, 60.0%), CRX in two patients from one family (1/50, 2.0%), GUCY2D in two patients from two families (2/50, 4.0%), and no genes were identified in twenty-one patients from seventeen families (17/50, 34.0%). Different severities were observed in terms of disease onset and the prognosis of visual acuity reduction. This multicentre large cohort study furthers our understanding of the phenotypic and genotypic spectra of patients with macular dystrophy and normal fundus. Evidently, OMDS encompasses multiple Mendelian retinal disorders, each representing unique pathologies that dictate their respective severity and prognostic patterns.
Collapse
Affiliation(s)
- Yu Fujinami-Yokokawa
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.F.-Y.)
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Division of Public Health, Yokokawa Clinic, Suita 564-0083, Japan
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan
- Southwest Hospital, Army Medical University, Chongqing 400715, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400715, China
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Seong Joon Ahn
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hisateru Tachimori
- Endowed Course for Health System Innovation, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroaki Miyata
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.F.-Y.)
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
2
|
Jin X, Chen L, Wang D, Zhang Y, Chen Z, Huang H. Novel compound heterozygous mutation in the POC1B gene underlie peripheral cone dystrophy in a Chinese family. Ophthalmic Genet 2018; 39:300-306. [PMID: 29377742 DOI: 10.1080/13816810.2018.1430239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To describe the clinical characteristics of a Chinese family with peripheral cone dystrophy (PCD) and identify the gene mutations causing PCD. METHODS The Chinese PCD pedigree underwent comprehensive ophthalmic examinations, including visual acuity, slit lamp examination, fundoscopy, visual field examination, autofluorescence, fluorescence fundus angiography and indocyanine green angiography, full-field electroretinograms, and spectral-domain optical coherence tomography. The targeted next-generation sequencing of COD or cone-rod dystrophy (CORD) genes was used to identify the causative mutation. RESULT The fundus characteristics of the Chinese patient were consistent with PCD. The novel compound heterozygous mutation, c.1354C>T and c.710A>G, in POC1B was identified in the patient, the mutations were segregated with the PCD phenotype in the family and were absent from ethnically matched control chromosomes. Prediction analysis demonstrated the novel missense mutation, POC1B c.710A>G, might be damaging. CONCLUSIONS PCD was a type of COD or CORD and the novel compound heterozygous mutation in POC1B was responsible for PCD phenotype in the family.
Collapse
Affiliation(s)
- Xin Jin
- a Department of Ophthalmology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China.,b Department of Ophthalmology , Chinese PLA General Hospital , Beijing , China
| | - Lanlan Chen
- a Department of Ophthalmology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Dajiang Wang
- b Department of Ophthalmology , Chinese PLA General Hospital , Beijing , China
| | - Yixin Zhang
- a Department of Ophthalmology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Zehua Chen
- a Department of Ophthalmology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Houbin Huang
- a Department of Ophthalmology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China.,b Department of Ophthalmology , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|