1
|
Tao S, Tao K, Cai X. Pan-cancer analysis reveals PDK family as potential indicators related to prognosis and immune infiltration. Sci Rep 2024; 14:5665. [PMID: 38453992 PMCID: PMC10920909 DOI: 10.1038/s41598-024-55455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Pyruvate dehydrogenase kinases (PDKs) play a key role in glucose metabolism by exerting negative regulation over pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibition of PDKs holds the potential to enhance PDC activity, prompting cells to adopt a more aerobic metabolic profile. Consequently, PDKs emerge as promising targets for condition rooted in metabolic dysregulation, including malignance and diabetes. However, a comprehensive exploration of the distinct contribution of various PDK family members, particularly PDK3, across diverse tumor types remain incomplete. This study undertakes a systematic investigation of PDK family expression patterns, forging association with clinical parameters, using data from the TCGA and GTEx datasets. Survival analysis of PDKs is executed through both Kaplan-Meier analysis and COX regression analysis. Furthermore, the extent of immune infiltration is assessed by leveraging the CIBERSORT algorithm. Our study uncovers pronounced genetic heterogeneity among PDK family members, coupled with discernible clinical characteristic. Significantly, the study establishes the potential utility of PDK family genes as prognostic indicators and as predictors of therapeutic response. Additionally, our study sheds light on the immune infiltration profile of PDK family. The results showed the intimate involvement of these genes in immune-related metrics, including immune scoring, immune subtypes, tumor-infiltrating lymphocytes, and immune checkpoints expression. In sum, the findings of this study offer insightful strategies to guide the therapeutic direction, aiming at leveraging the impact of PDK family genes in cancer treatment.
Collapse
Affiliation(s)
- Shigui Tao
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kunlin Tao
- Guiping People's Hospital, Guangxi, China
| | - Xiaoyong Cai
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Lizeth ANM, Vanessa BV, María Del Rocio TB, Margarita FC, Damián JM, Alfredo CO, Edgar CE, Placido RF. Hepatoprotective Effect Assessment of C-Phycocyanin on Hepatocellular Carcinoma Rat Model by Using Photoacoustic Spectroscopy. APPLIED SPECTROSCOPY 2024; 78:296-309. [PMID: 38224996 DOI: 10.1177/00037028231222508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary neoplasia of the liver with elevated mortality. Experimental treatment with antioxidants has a beneficial effect on the experimental models of HCC. Arthrospira maxima (spirulina) and its phycocyanin have antitumoral action on different tumoral cells. However, it is unknown whether phycocyanin is the responsible molecule for the antitumoral effect on HCC. Photoacoustic spectroscopy (PAS) stands out among other spectroscopy techniques for its versatility of samples analyzed. This technique makes it possible to obtain the optical absorption spectrum of solid or liquid, dark or transparent samples. Previous studies report that assessing liver damage in rats produced by the modified resistant hepatocyte model (MRHM) is possible by analyzing their blood optical absorption spectrum. This study aimed to investigate, by PAS, the effect of phycocyanin obtained from spirulina on hepatic dysfunction. The optical absorption spectra analysis of the rat blood indicates the damage level induced by the MRHM group, being in concordance with the carried out biological conventional studies results, indicating an increase in the activity of hepatic enzymes, oxidative stress, Bax/Bcl2 ratio, cdk2, and AKT2 expression results, with a reduction in p53 expression. Also, PAS results suggest that phycocyanin decreases induced damage, due to the prevention of the Bax, AKT2, and p53 altered expression and the tumor progression in a HCC rat model.
Collapse
Affiliation(s)
- Alvarado-Noguez Margarita Lizeth
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Col. San Pedro Zacatenco, Ciudad de México, México
| | - Blas-Valdivia Vanessa
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Alcaldía Gustavo A. Madero, Ciudad de México, México
| | - Thompson-Bonilla María Del Rocio
- Laboratorio de Medicina Genómica, Hospital Regional 1ro de Octubre, ISSSTE, Alcaldía Gustavo A. Madero, Ciudad de México, México
| | - Franco-Colín Margarita
- Laboratorio de Metabolismo I. Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Colonia Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero., Ciudad de México, México
| | - Jacinto-Méndez Damián
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Col. San Pedro Zacatenco, Ciudad de México, México
| | - Cruz-Orea Alfredo
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Col. San Pedro Zacatenco, Ciudad de México, México
| | - Cano-Europa Edgar
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Alcaldía Gustavo A. Madero, Ciudad de México, México
| | - Rojas-Franco Placido
- Laboratorio de Metabolismo I. Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Colonia Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero., Ciudad de México, México
| |
Collapse
|
3
|
Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188971. [PMID: 37640147 DOI: 10.1016/j.bbcan.2023.188971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Nana Zheng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Jiaqi Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
4
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
5
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
6
|
He R, Wen W, Fu B, Zhu R, Chen G, Bai S, Cao X, Wang H. CircKIF4A Is a Prognostic Factor and Modulator of Natural Killer/T-Cell Lymphoma Progression. Cancers (Basel) 2022; 14:cancers14194950. [PMID: 36230873 PMCID: PMC9562661 DOI: 10.3390/cancers14194950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary CircKIF4A is significantly upregulated in NKTL cell lines and its upregulation correlates with the poor prognosis of NKTL. CircKIF4A regulates PDK1 and BCL11A expressions by sponging miR-1231. Our data indicated that circKIF4A is oncogenic in NKTL and that it is a predictor of poor prognosis of NKTL. Abstract Background: Natural killer/T-cell lymphoma (NKTL) is difficult to treat. Circular RNAs (circ RNAs) have been implicated in tumorigenesis. However, the function of circKIF4A in NKTL has not been investigated. Methods: QPCR analysis was used to compare circKIF4A levels in NKTL cell lines versus normal cell lines. Kaplan–Meier survival analysis was used to assess the effect of circKIF4A on the prognosis of NKTL. The correlation between clinicopathological features and circKIF4A expression was examined using cox regression analysis. Luciferase reporter, RNA immunoprecipitation and immunohistochemistry assays were also used to investigate the mechanisms of circKIF4A in NKTL. Results: Our analyses revealed that circKIF4A is significantly upregulated in NKTL cell lines and that its upregulation correlates with the poor prognosis of NKTL. The silencing of circKIF4A significantly suppressed glucose uptake and lactate production in NKTL cells. Moreover, we showed that circKIF4A, PDK1, and BCL11A bind miR-1231 and that circKIF4A regulates PDK1 and BCL11A expressions by sponging miR-1231. Conclusions: During NKTL progression, circKIF4A regulated PDK1 and BCL11A levels by sponging miR-1231. Our data indicated that circKIF4A is oncogenic in NKTL and that it is a predictor of poor prognosis of NKTL.
Collapse
Affiliation(s)
- Rongfang He
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Wen
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bibo Fu
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Renjie Zhu
- East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Guanjun Chen
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shenrui Bai
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xi Cao
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence:
| |
Collapse
|
7
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Zhang W, Li L, Guo E, Zhou H, Ming J, Sun L, Hu G, Zhang L. Inhibition of PDK1 enhances radiosensitivity and reverses epithelial-mesenchymal transition in nasopharyngeal carcinoma. Head Neck 2022; 44:1576-1587. [PMID: 35394102 DOI: 10.1002/hed.27053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Radioresistance challenges the clinical outcomes of nasopharyngeal carcinoma (NPC). The 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a crucial kinase of PI3K/AKT signaling pathway which has been implicated in the process of radioresistance. However, the role of PDK1 in NPC remains largely unclear. METHODS The expression of PDK1 was determined by immunohistochemistry and Western blot. The effects of RNA interference and pharmacologic inhibitor of PDK1 in combination with irradiation were investigated. RESULTS Overexpression of PDK1 was correlated with poor prognosis in patients with NPC. PDK1 depletion enhanced radiosensitivity of NPC cells both in vitro and in vivo. Additionally, a specific PDK1 inhibitor also had the potential to enhance radiosensitivity in radioresistant NPC cells. Mechanistically, PDK1 depletion inhibited various targets of AKT including mTOR and GSK-3β and reversed the epithelial-mesenchymal transition. CONCLUSIONS These findings indicated that PDK1 might be a potential target for NPC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Oncology, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Ming
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Tseng H, Zeng Y, Lin YJ, Huang J, Lin C, Lee M, Yang F, Fang T, Mar A, Su J. A novel AMPK activator shows therapeutic potential in hepatocellular carcinoma by suppressing HIF1α-mediated aerobic glycolysis. Mol Oncol 2022; 16:2274-2294. [PMID: 35298869 PMCID: PMC9168760 DOI: 10.1002/1878-0261.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by rapid growth, early vascular invasion, and high metastasis. Currently available US Food and Drug Administration (FDA)-approved drugs show low therapeutic efficacy, limiting HCC treatment to chemotherapy. We designed and synthesized a novel small molecule, SCT-1015, that allosterically activated adenosine monophosphate-activated protein kinase (AMPK) to suppress the aerobic glycolysis in HCC. SCT-1015 was shown to bind the AMPK α and β-subunit interface, thereby exposing the kinase α domain to the upstream kinases, resulting in the increased AMPK activity. SCT-1015 dramatically reduced HCC cell growth in vitro and tumor growth in vivo. We further found that AMPK formed protein complexes with hypoxia-inducible factor 1-alpha (HIF1α) and that SCT-1015-activated AMPK promoted hydroxylation of HIF1α (402P and 564P), resulting in HIF1α degradation by the ubiquitin-proteasome system. With declined HIF1α abundance, many glycolysis-related enzymes were downregulated, suppressing aerobic glycolysis, and promoting oxidative phosphorylation. These results indicated that SCT-1015 channeled HCC cells into an unfavorable metabolic status. Overall, we reported SCT-1015 as a direct activator of AMPK signaling that held therapeutic potential in HCC.
Collapse
Affiliation(s)
- Hsing‐I Tseng
- Department of PharmacyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Institute of Biopharmaceutical SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Siang Zeng
- Department of PharmacyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department & Institute of PhysiologyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ying‐Chung Jimmy Lin
- Department of Life Science and Institute of Plant BiologyNational Taiwan UniversityTaipeiTaiwan
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan
| | - Jui‐Wen Huang
- Biomedical Technology and Device Research LabsIndustrial Technology Research InstituteHsinchuTaiwan
| | - Chih‐Lung Lin
- Biomedical Technology and Device Research LabsIndustrial Technology Research InstituteHsinchuTaiwan
| | - Meng‐Hsuan Lee
- Department of PharmacyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Fan‐Wei Yang
- Department of PharmacyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Te‐Ping Fang
- Department of PharmacyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ai‐Chung Mar
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jung‐Chen Su
- Department of PharmacyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
10
|
Liu K, Liu Q, Sun Y, Fan J, Zhang Y, Sakamoto N, Kuno T, Fang Y. Phosphoinositide-Dependent Protein Kinases Regulate Cell Cycle Progression Through the SAD Kinase Cdr2 in Fission Yeast. Front Microbiol 2022; 12:807148. [PMID: 35082773 PMCID: PMC8784684 DOI: 10.3389/fmicb.2021.807148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Aberration in the control of cell cycle contributes to the development and progression of many diseases including cancers. Ksg1 is a Schizosaccharomyces pombe fission yeast homolog of mammalian phosphoinositide-dependent protein kinase 1 (PDK1) which is regarded as a signaling hub for human tumorigenesis. A previous study reported that Ksg1 plays an important role in cell cycle progression, however, the underlying mechanism remains elusive. Our genomic library screen for novel elements involved in Ksg1 function identified two serine/threonine kinases, namely SAD family kinase Cdr2 and another PDK1 homolog Ppk21, as multicopy suppressors of the thermosensitive phenotype of ksg1-208 mutant. We found that overexpression of Ppk21 or Cdr2 recovered the defective cell cycle transition of ksg1-208 mutant. In addition, ksg1-208 Δppk21 cells showed more marked defects in cell cycle transition than each single mutant. Moreover, overexpression of Ppk21 failed to recover the thermosensitive phenotype of the ksg1-208 mutant when Cdr2 was lacking. Notably, the ksg1-208 mutation resulted in abnormal subcellular localization and decreased abundance of Cdr2, and Ppk21 deletion exacerbated the decreased abundance of Cdr2 in the ksg1-208 mutant. Intriguingly, expression of a mitotic inducer Cdc25 was significantly decreased in ksg1-208, Δppk21, or Δcdr2 cells, and overexpression of Ppk21 or Cdr2 partially recovered the decreased protein level of Cdc25 in the ksg1-208 mutant. Altogether, our findings indicated that Cdr2 is a novel downstream effector of PDK1 homologs Ksg1 and Ppk21, both of which cooperatively participate in regulating cell cycle progression, and Cdc25 is involved in this process in fission yeast.
Collapse
Affiliation(s)
- Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yanli Sun
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jinwei Fan
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Ethanol extracts of Balanophora laxiflora Hemsl inhibit hepatocellular carcinoma with the involvement of HKII-mediated glycolysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021; 10:cells10071715. [PMID: 34359884 PMCID: PMC8304710 DOI: 10.3390/cells10071715] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, low oxygen (O2) level, is a hallmark of solid cancers, especially hepatocellular carcinoma (HCC), one of the most common and fatal cancers worldwide. Hypoxia contributes to drug resistance in cancer through various molecular mechanisms. In this review, we particularly focus on the roles of hypoxia-inducible factor (HIF)-mediated metabolic reprogramming in drug resistance in HCC. Combination therapies targeting hypoxia-induced metabolic enzymes to overcome drug resistance will also be summarized. Acquisition of drug resistance is the major cause of unsatisfactory clinical outcomes of existing HCC treatments. Extra efforts to identify novel mechanisms to combat refractory hypoxic HCC are warranted for the development of more effective treatment regimens for HCC patients.
Collapse
|
13
|
Zuo Q, He J, Zhang S, Wang H, Jin G, Jin H, Cheng Z, Tao X, Yu C, Li B, Yang C, Wang S, Lv Y, Zhao F, Yao M, Cong W, Wang C, Qin W. PPARγ Coactivator-1α Suppresses Metastasis of Hepatocellular Carcinoma by Inhibiting Warburg Effect by PPARγ-Dependent WNT/β-Catenin/Pyruvate Dehydrogenase Kinase Isozyme 1 Axis. Hepatology 2021; 73:644-660. [PMID: 32298475 DOI: 10.1002/hep.31280] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/23/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1α (PGC1α) is a key regulator of mitochondrial biogenesis and respiration. PGC1α is involved in the carcinogenesis, progression, and metabolic state of cancer. However, its role in the progression of hepatocellular carcinoma (HCC) remains unclear. APPROACH AND RESULTS In this study, we observed that PGC1α was down-regulated in human HCC. A clinical study showed that low levels of PGC1α expression were correlated with poor survival, vascular invasion, and larger tumor size. PGC1α inhibited the migration and invasion of HCC cells with both in vitro experiments and in vivo mouse models. Mechanistically, PGC1α suppressed the Warburg effect through down-regulation of pyruvate dehydrogenase kinase isozyme 1 (PDK1) mediated by the WNT/β-catenin pathway, and inhibition of the WNT/β-catenin pathway was induced by activation of PPARγ. CONCLUSIONS Low levels of PGC1α expression indicate a poor prognosis for HCC patients. PGC1α suppresses HCC metastasis by inhibiting aerobic glycolysis through regulating the WNT/β-catenin/PDK1 axis, which depends on PPARγ. PGC1α is a potential factor for predicting prognosis and a therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Qiaozhu Zuo
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia He
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shu Zhang
- Liver Cancer InstituteZhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiChina
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guangzhi Jin
- Department of PathologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhuoan Cheng
- Shanghai Jiao Tong University School of Biomedical EngineeringShanghaiChina
| | - Xuemei Tao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chengtao Yu
- Shanghai Jiao Tong University School of Biomedical EngineeringShanghaiChina
| | - Botai Li
- Shanghai Jiao Tong University School of Biomedical EngineeringShanghaiChina
| | - Chen Yang
- Shanghai Medical College of Fudan UniversityShanghaiChina
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenming Cong
- Department of PathologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Nalairndran G, Hassan Abdul Razack A, Mai C, Fei‐Lei Chung F, Chan K, Hii L, Lim W, Chung I, Leong C. Phosphoinositide-dependent Kinase-1 (PDPK1) regulates serum/glucocorticoid-regulated Kinase 3 (SGK3) for prostate cancer cell survival. J Cell Mol Med 2020; 24:12188-12198. [PMID: 32926495 PMCID: PMC7578863 DOI: 10.1111/jcmm.15876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy and is the second leading cause of cancer among men globally. Using a kinome-wide lentiviral small-hairpin RNA (shRNA) library screen, we identified phosphoinositide-dependent kinase-1 (PDPK1) as a potential mediator of cell survival in PCa cells. We showed that knock-down of endogenous human PDPK1 induced significant tumour-specific cell death in PCa cells (DU145 and PC3) but not in the normal prostate epithelial cells (RWPE-1). Further analyses revealed that PDPK1 mediates cancer cell survival predominantly via activation of serum/glucocorticoid-regulated kinase 3 (SGK3). Knock-down of endogenous PDPK1 in DU145 and PC3 cells significantly reduced SGK3 phosphorylation while ectopic expression of a constitutively active SGK3 completely abrogated the apoptosis induced by PDPK1. In contrast, no such effect was observed in SGK1 and AKT phosphorylation following PDPK1 knock-down. Importantly, PDPK1 inhibitors (GSK2334470 and BX-795) significantly reduced tumour-specific cell growth and synergized docetaxel sensitivity in PCa cells. In summary, our results demonstrated that PDPK1 mediates PCa cells' survival through SGK3 signalling and suggest that inactivation of this PDPK1-SGK3 axis may potentially serve as a novel therapeutic intervention for future treatment of PCa.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyonFrance
| | - Kok‐Keong Chan
- School of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- Faculty of MedicineUniversity of Malaya Cancer Research InstituteUniversity of MalayaKuala LumpurMalaysia
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
15
|
Xu H, He Y, Ma J, Zhao Y, Liu Y, Sun L, Su J. Inhibition of pyruvate dehydrogenase kinase‑1 by dicoumarol enhances the sensitivity of hepatocellular carcinoma cells to oxaliplatin via metabolic reprogramming. Int J Oncol 2020; 57:733-742. [PMID: 32705170 PMCID: PMC7384842 DOI: 10.3892/ijo.2020.5098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
The Warburg effect is a unique metabolic feature of the majority of tumor cells and is closely related to chemotherapeutic resistance. Pyruvate dehydrogenase kinase 1 (PDK1) is considered a 'switch' that controls the fate of pyruvate in glucose metabolism. However, to date, to the best of our knowledge, there are only a few studies to available which had studied the reduction of chemotherapeutic resistance via the metabolic reprogramming of tumor cells with PDK1 as a target. In the present study, it was found dicoumarol (DIC) reduced the phosphorylation of pyruvate dehydrogenase (PDH) by inhibiting the activity of PDK1, which converted the metabolism of human hepatocellular carcinoma (HCC) cells to oxidative phosphorylation, leading to an increase in mitochondrial reactive oxygen species ROS (mtROS) and a decrease in mitochondrial membrane potential (MMP), thereby increasing the apoptosis induced by oxaliplatin (OXA). Furthermore, the present study elucidated that the targeting of PDK1 may be a potential strategy for targeting metabolism in the chemotherapy of HCC. In addition, DIC as an 'old drug' exhibits novel efficacy, bringing new hope for antitumor therapy.
Collapse
Affiliation(s)
- Huadan Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yichun He
- Department of Neurosurgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
16
|
Dang Y, Chen J, Feng W, Qiao C, Han W, Nie Y, Wu K, Fan D, Xia L. Interleukin 1β-mediated HOXC10 Overexpression Promotes Hepatocellular Carcinoma Metastasis by Upregulating PDPK1 and VASP. Am J Cancer Res 2020; 10:3833-3848. [PMID: 32206125 PMCID: PMC7069084 DOI: 10.7150/thno.41712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Metastasis and recurrence are the primary reasons for the high mortality rate of human hepatocellular carcinoma (HCC) patients. However, the exact mechanism underlying HCC metastasis remains unclear. The Homeobox (HOX) family proteins, which are a highly conserved transcription factor superfamily, play important roles in cancer metastasis. Here, we report a novel role of HOXC10, one of the most upregulated HOX genes in human HCC tissues, in promoting HCC metastasis. Methods: The expression of HOXC10 and its functional targets was detected by immunohistochemistry in two independent human HCC cohorts. Luciferase reporter and chromatin immunoprecipitation assays were used to measure the transcriptional regulation of target genes by HOXC10. The effect of HOXC10-mediated invasion and metastasis were analyzed by Transwell assays and by an orthotopic metastasis model. Results: Elevated expression of HOXC10 was positively correlated with the loss of tumor encapsulation and with higher tumor-nodule-metastasis (TNM) stage and poor prognosis in human HCC. Overexpression of HOXC10 promoted HCC metastasis by upregulating metastasis-related genes, including 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and vasodilator-stimulated phosphoprotein (VASP). Knockdown of PDPK1 and VASP inhibited HOXC10-enhanced HCC metastasis, whereas upregulation of PDPK1 and VASP rescued the decreased metastasis induced by HOXC10 knockdown. Interleukin-1β (IL-1β), which is the ligand of IL-1R1, upregulated HOXC10 expression through the c-Jun NH2-terminal kinase (JNK)/c-Jun pathway. HOXC10 knockdown significantly reduced IL-1β-mediated HCC metastasis. Furthermore, Anakinra, a specific antagonist of IL-1R1, inhibited IL-1β-induced HOXC10 upregulation and HCC metastasis. In human HCC tissues, HOXC10 expression was positively correlated with PDPK1, VASP and IL-1R1 expression, and patients with positive coexpression of HOXC10/PDPK1, HOXC10/VASP or IL-1R1/HOXC10 exhibited the poorest prognosis. Conclusions: Upregulated HOXC10 induced by IL-1β promotes HCC metastasis by transactivating PDPK1 and VASP expression. Thus, our study implicates HOXC10 as a prognostic biomarker, and targeting this pathway may be a promising therapeutic option for the clinical prevention of HCC metastasis.
Collapse
|
17
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
18
|
Zhang H, Zhuo C, Zhou D, Zhang F, Chen M, Xu S, Chen Z. Association between the expression of carbonic anhydrase II and clinicopathological features of hepatocellular carcinoma. Oncol Lett 2019; 17:5721-5728. [PMID: 31186798 DOI: 10.3892/ol.2019.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/07/2018] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to examine the molecular marker associated with the therapy and prognosis of hepatocellular carcinoma (HCC), and further investigate the association between its expression and the clinicopathological features of HCC. To select the core genes closely associated with HCC, differentially expressed genes (DEGs) were analyzed and screened from Gene Expression Omnibus datasets (GSE 36376) using a bioinformatics approach. Tumor and adjacent tissues were collected form 112 patients of HCC who were treated by radical resection. The expression levels of carbonic anhydrase II (CA2) in the tumor and adjacent tissues were determined using reverse transcription-quantitative polymerase chain reaction analysis and immunohistochemistry. The χ2 test was applied for observing the association between the expression of CA2 and clinicopathological features of patients with HCC. The effects of the expression of CA2 on the patients' overall survival (OS) and disease-free survival (DFS) were examined via Kaplan-Meier analysis. A total of 83 DEGs were screened and analyzed using gene network analysis, among which CA2 had direct interactions with more than one disease gene of HCC. The results of immunohistochemistry showed that CA2 was expressed at a lower level in the tumor tissues compared with the adjacent tissues (t=3.012, P=0.010). Single factor analysis revealed that the mRNA expression of CA2 was able to predict the recurrence of HCC, and was significantly associated with α-fetoprotein (AFP), microvascular invasion, tumor-node-metastasis (TNM) staging, and recurrence (P<0.05). The expression levels of AFP, CA2 and TNM staging were confirmed to be independent prognostic factors of HCC (P<0.05). Kaplan-Meier analysis demonstrated that the group with a high expression of CA2 showed increased DFS and OS, compared with the low expression group (P<0.05). These findings indicated that elevated CA2 increased DFS and OS of HCC, which suggested that CA2 may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Dong Zhou
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Fan Zhang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Minyong Chen
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Shaohua Xu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Zhaoshuo Chen
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
19
|
Emmanouilidi A, Fyffe CA, Ferro R, Edling CE, Capone E, Sestito S, Rapposelli S, Lattanzio R, Iacobelli S, Sala G, Maffucci T, Falasca M. Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:191. [PMID: 31088502 PMCID: PMC6518649 DOI: 10.1186/s13046-019-1191-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 11/02/2022]
Abstract
BACKGROUND The very aggressive nature and low survival rate of pancreatic ductal adenocarcinoma (PDAC) dictates the necessity to find novel efficacious therapies. Recent evidence suggests that phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) are key effectors of oncogenic KRAS in PDAC. Herein, we report the role and mechanism of action of PDK1, a protein kinase of the AGC family, in PDAC. METHODS PDAC cell lines were treated with selective PDK1 inhibitors or transfected with specific PDK1-targeting siRNAs. In vitro and in vivo assays were performed to investigate the functional role of PDK1 in PDAC. Specifically, anchorage-dependent and anchorage-independent growth was assessed in PDAC cells upon inhibition or downregulation of PDK1. Detailed investigation of the effect of PDK1 inhibition/downregulation on specific signalling pathways was also performed by Western blotting analysis. A xenograft tumour mouse model was used to determine the effect of pharmacological inhibition of PDK1 on PDAC cells growth in vivo. RESULTS Treatment with specific inhibitors of PDK1 impaired anchorage-dependent and anchorage-independent growth of pancreatic cancer cell lines, as well as pancreatic tumour growth in a xenograft model. Mechanistically, inhibition or downregulation of PDK1 resulted in reduced activation of the serum/glucocorticoid regulated kinase family member 3 and subsequent reduced phosphorylation of its target N-Myc downstream regulated 1. Additionally, we found that combination of sub-optimal concentrations of inhibitors selective for PDK1 and the class IB PI3K isoform p110γ inhibits pancreatic cancer cell growth and colonies formation more potently than each single treatment. CONCLUSIONS Our data indicate that PDK1 is a suitable target for therapeutic intervention in PDAC and support the clinical development of PDK1 inhibitors for PDAC.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Chanse A Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Charlotte E Edling
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Rossano Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Stefano Iacobelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy.,MediaPharma Srl, Via della Colonnetta, 50/A, 66100, Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia. .,Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK.
| |
Collapse
|
20
|
Wu J, Hu L, Wu F, Zou L, He T. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget 2018; 8:32332-32344. [PMID: 28415659 PMCID: PMC5458288 DOI: 10.18632/oncotarget.15974] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Several previous studies have reported the prognostic value of hexokinase 2 (HK2) in digestive system tumors. However, these studies were limited by the small sample sizes and the results were inconsistent among them. Therefore, we conducted a meta-analysis based on 15 studies with 1932 patients to assess the relationship between HK2 overexpression and overall survival (OS) of digestive system malignancies. The relationship of HK2 and clinicopathological features was also evaluated. Hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect size. Positive HK2 expression showed poor OS in all tumor types (HR = 1.75 [1.41-2.18], P < 0.001). When stratified by tumor type, the impact of HK2 overexpression on poor prognosis was observed in gastric cancer (HR = 1.77 [1.25-2.50], P < 0.001), hepatocellular carcinoma (HR = 1.87 [1.58-2.21], P < 0.001), and colorectal cancer (HR = 2.89 [1.62-5.15], P < 0.001), but not in pancreatic ductal adencarcinoma (HR = 1.11 [0.58-2.11], P = 0.763). Furthermore, high HK2 expression was significantly associated with some phenotypes of tumor aggressiveness, such as large tumor size (OR = 2.03 [1.10-3.74], P = 0.024), positive lymph node metastasis (OR = 2.05 [1.39-3.02], P < 0.001), advanced clinical stage (OR = 2.17 [1.21-3.89], P = 0.009) and high alpha fetoprotein level (OR = 1.47 [1.09-2.02] P = 0.013). In summary, HK2 might act as a prognostic indicator and a potential therapeutic target of these digestive system cancers.
Collapse
Affiliation(s)
- Jiayuan Wu
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Nutritional Department, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Liren Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Fenping Wu
- Department of Radiotherapy, The Seventh People's Hospital of Chengdu, The Oncology Hospital of Chengdu, Chengdu, People's Republic of China
| | - Lei Zou
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Taiping He
- School of Public Health, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
21
|
Li C, Lin C, Cong X, Jiang Y. PDK1-WNK1 signaling is affected by HBx and involved in the viability and metastasis of hepatic cells. Oncol Lett 2018; 15:5940-5946. [PMID: 29563998 DOI: 10.3892/ol.2018.8001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV)-encoded X antigen (HBx) contributes to the development of hepatocellular carcinoma (HCC). Although HBx has been implicated in the progression of HCC, its precise function in HBV-associated HCC remains unclear. In the present study, HBx affected 3-phosphoinositide-dependent protein kinase-1 (PDK1) and with-no-lysine (K) kinase (WNK1) signaling, which was identified to be involved in the viability and metastasis of hepatic cells. The phosphorylation of WNK1 was decreased when the hepatic cells were treated with a PDK1 inhibitor. The inhibition of PDK1 activity inhibited the viability and migration of hepatic cells. To the best of our knowledge, the present study is the first to identify the activation of PDK1 in HCC tissues, confirmed using western blot analysis. PDK1-WNK1 signaling may be a potential therapeutic target in HBV-associated liver cancer.
Collapse
Affiliation(s)
- Chaoying Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Cong Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Xianling Cong
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| |
Collapse
|
22
|
Gagliardi PA, Puliafito A, Primo L. PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 2018; 48:27-35. [DOI: 10.1016/j.semcancer.2017.04.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
23
|
Targeting PDK1 for Chemosensitization of Cancer Cells. Cancers (Basel) 2017; 9:cancers9100140. [PMID: 29064423 PMCID: PMC5664079 DOI: 10.3390/cancers9100140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite the rapid development in the field of oncology, cancer remains the second cause of mortality worldwide, with the number of new cases expected to more than double in the coming years. Chemotherapy is widely used to decelerate or stop tumour development in combination with surgery or radiation therapy when appropriate, and in many cases this improves the symptomatology of the disease. Unfortunately though, chemotherapy is not applicable to all patients and even when it is, there are many cases where a successful initial treatment period is followed by chemotherapeutic drug resistance. This is caused by a number of reasons, ranging from the genetic background of the patient (innate resistance) to the formation of tumour-initiating cells (acquired resistance). In this review, we discuss the potential role of PDK1 in the development of chemoresistance in different types of malignancy, and the design and application of potent inhibitors which can promote chemosensitization.
Collapse
|
24
|
Ren T, Zhu L, Cheng M. CXCL10 accelerates EMT and metastasis by MMP-2 in hepatocellular carcinoma. Am J Transl Res 2017; 9:2824-2837. [PMID: 28670372 PMCID: PMC5489884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Human malignant hepatocellular carcinoma (HCC) is a common tumor, which severely threatens human health and shortens longevity. The poor prognosis of HCC is primarily attributed to distant metastases. C-X-C motif chemokine 10 (CXCL10) regulates the control of several cellular and developmental processes including tumor cell proliferation, apoptosis, and cell metastasis. Previous studies have confirmed that CXCL10 functions as an oncogene in several cancers. However, the expression and biological functions of CXCL10 in HCC, especially with regard to metastasis, need further investigation. In this study, CXCL10 was found to be over expressed in invasive HCC cells and HCC clinical samples. While the over-expression of CXCL10 enhanced migration, invasion, and metastasis of HCC cells in vitro as well as in vivo, silencing of CXCL10 resulted in inhibition of HCC cell metastasis. Further, CXCL10 was found to accelerate epithelial-mesenchymal transition of HCC cells. The microarray analysis indicated that matrix metallopeptidase-2 (MMP-2) functions as a downstream factor of CXCL10. This study demonstrates that CXCL10 partakes in the metastasis of HCC by activating MMP-2 expression.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Biochemistry, Affiliated Hospital of Guiyang Medical College28 Guiyi Street, Guiyang 550004, Guizhou, China
| | - Lili Zhu
- The Affiliated Baiyun Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College28 Guiyi Street, Guiyang 550004, Guizhou, China
| |
Collapse
|