1
|
Bioinformatics Study Identified EGF as a Crucial Gene in Papillary Renal Cell Cancer. DISEASE MARKERS 2022; 2022:4761803. [PMID: 35655917 PMCID: PMC9155928 DOI: 10.1155/2022/4761803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Background Due to a lack of knowledge of the disease process, papillary renal cell carcinoma (PRCC) has a dismal outlook. This research was aimed at uncovering the possible biomarkers and the underlying principles in PRCC using a bioinformatics method. Methods We searched the Gene Expression Omnibus (GEO) datasets to obtain the GSE11151 and GSE15641 gene expression profiles of PRCC. We used the R package limma to identify the differentially expressed genes (DEGs). The online tool DAVID and ClusterProfiler package in R software were used to analyze Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway dominance, respectively. The STRING database was utilized to construct the PPI network of DEGs. Using the Cytoscape technology, a protein-protein interaction (PPI) network that associated with DEGs was created, and the hub genes were identified using the Cytoscape plug-in CytoHubba. The hub genes were subjected to a Kaplan-Meier analysis to identify their correlations with survival rates. Results From the selected datasets, a total of 240 common DEGs were identified in the PRCC, including 50 upregulated genes and 190 downregulated regulated genes. Renal growth, external exosome, binding of heparin, and metabolic processes were all substantially associated with DEGs. The CytoHubba plug-in-based analysis identified the 10 hub genes (ALB, KNG1, C3, CXCL12, EGF, TIMP1, VCAN, PLG, LAMC1, and CASR) from the original PPI network. The higher expression group of EGF was associated with poor outcome in patients with PRCC. Conclusions We revealed important genes and proposed biological pathways that may be implicated in the formation of PRCC. EGF might be a predictive biomarker for PRCC and therefore should be investigated as a novel treatment strategy.
Collapse
|
2
|
Hernández-Vega AM, Camacho-Arroyo I. Crosstalk between 17β-Estradiol and TGF-β Signaling Modulates Glioblastoma Progression. Brain Sci 2021; 11:brainsci11050564. [PMID: 33925221 PMCID: PMC8145480 DOI: 10.3390/brainsci11050564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential mechanism contributing to glioblastoma multiforme (GBM) progression, the most common and malignant brain tumor. EMT is induced by signaling pathways that crosstalk and regulate an intricate regulatory network of transcription factors. It has been shown that downstream components of 17β-estradiol (E2) and transforming growth factor β (TGF-β) signaling pathways crosstalk in estrogen-sensitive tumors. However, little is known about the interaction between the E2 and TGF-β signaling components in brain tumors. We have investigated the relationship between E2 and TGF-β signaling pathways and their effects on EMT induction in human GBM-derived cells. Here, we showed that E2 and TGF-β negatively regulated the expression of estrogen receptor α (ER-α) and Smad2/3. TGF-β induced Smad2 phosphorylation and its subsequent nuclear translocation, which E2 inhibited. Both TGF-β and E2 induced cellular processes related to EMT, such as morphological changes, actin filament reorganization, and mesenchymal markers (N-cadherin and vimentin) expression. Interestingly, we found that the co-treatment of E2 and TGF-β blocked EMT activation. Our results suggest that E2 and TGF-β signaling pathways interact through ER-α and Smad2/3 mediators in cells derived from human GBM and inhibit EMT activation induced by both factors alone.
Collapse
|
3
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Silvestrini VC, Lanfredi GP, Masson AP, Poersch A, Ferreira GA, Thomé CH, Faça VM. A proteomics outlook towards the elucidation of epithelial-mesenchymal transition molecular events. Mol Omics 2020; 15:316-330. [PMID: 31429845 DOI: 10.1039/c9mo00095j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main cause of death in cancer is the spread, or metastasis, of cancer cells to distant organs with consequent tumor formation. Additionally, metastasis is a process that demands special attention, as the cellular transformations make cancer at this stage very difficult or occasionally even impossible to be cured. The main process that converts epithelial tumor cells to mesenchymal-like metastatic cells is the Epithelial to Mesenchymal Transition (EMT). This process allows stationary and polarized epithelial cells, which are connected laterally to several types of junctions as well as the basement membrane, to undergo multiple biochemical changes that enable disruption of cell-cell adherence and apical-basal polarity. Moreover, the cells undergo important reprogramming to remodel the cytoskeleton and acquire mesenchymal characteristics such as enhanced migratory capacity, invasiveness, elevated resistance to apoptosis and a large increase in the production of ECM components. As expected, the alterations of the protein complement are extensive and complex, and thus exploring this by proteomic approaches is of particular interest. Here we review the overall findings of proteome modifications during EMT, mainly focusing on molecular signatures observed in multiple proteomic studies as well as coordinated pathways, cellular processes and their clinical relevance for altered proteins. As a result, an interesting set of proteins is highlighted as potential targets to be further investigated in the context of EMT, metastasis and cancer progression.
Collapse
Affiliation(s)
- Virgínia Campos Silvestrini
- Department of Biochemistry and Immunology - FMRP - University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
5
|
Low Dose of Paclitaxel Combined with XAV939 Attenuates Metastasis, Angiogenesis and Growth in Breast Cancer by Suppressing Wnt Signaling. Cells 2019; 8:cells8080892. [PMID: 31416135 PMCID: PMC6721645 DOI: 10.3390/cells8080892] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15% of overall breast cancer. A lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2 receptor) makes TNBC more aggressive and metastatic. Wnt signaling is one of the important pathways in the cellular process; in TNBC it is aberrantly regulated, which leads to the progression and metastasis. In this study, we designed a therapeutic strategy using a combination of a low dose of paclitaxel and a Wnt signaling inhibitor (XAV939), and examined the effect of the paclitaxel-combined XAV939 treatment on diverse breast cancer lines including TNBC cell lines (MDA-MB-231, MDA-MB-468, and BT549) and ER+ve cell lines (MCF-7 and T-47D). The combination treatment of paclitaxel (20 nM) and XAV939 (10 µM) exerted a comparable therapeutic effect on MDA-MB-231, MDA-MB-468, BT549, MCF-7, and T-47D cell lines, relative to paclitaxel with a high dose (200 nM). The paclitaxel-combined XAV939 treatment induced apoptosis by suppressing Bcl-2 and by increasing the cleavage of caspases-3 and PARP. In addition, the in vivo results of the paclitaxel-combined XAV939 treatment in a mice model with the MDA-MB-231 xenograft further confirmed its therapeutic effect. Furthermore, the paclitaxel-combined XAV939 treatment reduced the expression of β-catenin, a key molecule in the Wnt pathway, which led to suppression of the expression of epithelial-mesenchymal transition (EMT) markers and angiogenic proteins both at mRNA and protein levels. The expression level of E-cadherin was raised, which potentially indicates the inhibition of EMT. Importantly, the breast tumor induced by pristane was significantly reduced by the paclitaxel-combined XAV939 treatment. Overall, the paclitaxel-combined XAV939 regimen was found to induce apoptosis and to inhibit Wnt signaling, resulting in the suppression of EMT and angiogenesis. For the first time, we report that our combination approach using a low dose of paclitaxel and XAV939 could be conducive to treating TNBC and an external carcinogen-induced breast cancer.
Collapse
|
6
|
Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers (Basel) 2019; 11:cancers11030312. [PMID: 30845654 PMCID: PMC6468412 DOI: 10.3390/cancers11030312] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event by which cancer cells acquire an invasive phenotype through the activation of specific transcription factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so far. This review summarizes the current understanding of the interplay between autophagy and EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for targeting these processes in future therapeutical approaches.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| |
Collapse
|
7
|
Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, Cai J, Zhao Z, Liao Q, Wang J. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling. J Exp Clin Cancer Res 2019; 38:106. [PMID: 30819230 PMCID: PMC6396458 DOI: 10.1186/s13046-019-1061-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is crucial for metastasis and positively regulated by calcium-related signaling. The melastatin-related transient receptor potential 7 (TRPM7) regulates a non-selective cation channel and promotes cancer metastasis. However, the mechanisms underlying the action of TRPM7 in ovarian cancer are unclear. METHODS The expression of TRPM7 and EMT markers (Vimentin, N-cadherin, Twist and E-cadherin) in ovarian cancer samples was detected. TRPM7was knockdown by shRNA in Ovarian cancer cell lines to examine calcium [Ca2+]i, EMT markers and PI3K/AKT markers. Various cellular assays, such as invasion and migration, were performed in vitro, and further confirmed in vivo. RESULTS TRPM7 expression is negatively correlated with E-cadherin, but positively with N-cadherin, Vimentin and Twist expression in ovarian cancer samples. TRPM7 depletion inhibited the migration and invasion in SKOV3 and OVCAR3 cells. In addition, TRPM7 silencing decreased the lung metastasis of SKOV3 tumors and prolonged the survival of tumor-bearing mice. Similar to that of TRPM7 silencing, treatment with MK886, a potent 5-lipoxygenase inhibitor to reduce TRPM7 expression, and/or BAPTA-AM, an intracellular calcium chelator, significantly mitigated the Epidermal growth factor (EGF) or Insulin-like growth factors (IGF)-stimulated migration, invasion, and the EMT in ovarian cancer cells by decreasing the levels of intracellular calcium [Ca2+]i. Furthermore, treatment with LY2904002, a PI3K inhibitor, also inhibited the migration, invasion, and treatment with both LY2904002 and BAPTA-AM further enhanced their inhibition in ovarian cancer cells. Moreover, treatment with BAPTA-AM mitigated the IGF-stimulated migration, invasion, particularly in TRPM7-silenced ovarian cancer cells. Finally, TRPM7 silencing attenuated the PI3K/AKT activation, which was enhanced by BAPTA-AM, MK886 or LY2904002 treatment in ovarian cancer cells. CONCLUSIONS TRPM7 silencing inhibited the EMT and metastasis of ovarian cancer by attenuating the calcium-related PI3k/AKT activation. Our findings suggest that TRPM7 may be a therapeutic target for intervention of ovarian cancer.
Collapse
Affiliation(s)
- Lu Liu
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
- University of South China, Hengyang, 421001 People’s Republic of China
| | - Nayiyuan Wu
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Ying Wang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Xiaoyun Zhang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Bing Xia
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jie Tang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jingting Cai
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Zitong Zhao
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Qianjin Liao
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jing Wang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| |
Collapse
|
8
|
Song E, Song W, Ren M, Xing L, Ni W, Li Y, Gong M, Zhao M, Ma X, Zhang X, An R. Identification of potential crucial genes associated with carcinogenesis of clear cell renal cell carcinoma. J Cell Biochem 2018; 119:5163-5174. [PMID: 29227586 DOI: 10.1002/jcb.26543] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common genitourinary malignancy with high mortality. However, the molecular pathogenesis of ccRCC remains unclear and effective biomarkers for daily practice are still limited. Thus, we aimed to identify the potential crucial genes and pathways associated with carcinogenesis of ccRCC and further analyze the molecular mechanisms implicated in tumorigenesis. In the present study, expression profiles GSE 66270, GSE 53757, GSE 36895, and GSE 76351 were downloaded from GEO database, including 244 matched primary and adjacent normal tissues, furthermore, the level 3 RNAseq dataset (RNAseqV2 RSEM) of KIRC was also downloaded from The Cancer Genome Atlas (TCGA), which consist of 529 ccRCC tumors and 72 normal tissues. Then, differentially expressed genes (DEGs) and pathway enrichment were analyzed by using R software. A total of 129 up- and 123 down-regulated genes were identified, which were aberrantly expressed both in GEO and TCGA data. Second, Gene ontology (GO) analyses revealed that most of the DEGs were significantly enriched in integral component of membrane, extracellular exosome, plasma membrane, cell adhesion, and receptor binding. Signaling pathway analyses indicated that DEGs had common pathways in signal transduction, metabolism, and immune system. Third, hub genes were identified with protein-protein interaction (PPI) network, including PTPRC, TGFB1, EGF, MYC, ITGB2, CTSS, FN1, CCL5, KNG1, and CD86. Additionally, sub-networks analyse was also performed by using MCODE plugin. In conclusion, the novel DEGs and pathways in ccRCC identified in this study may provide new insight into the underlying molecular mechanisms that facilitates RCC carcinogenesis.
Collapse
Affiliation(s)
- Erlin Song
- Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Wenting Song
- Hilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China
| | - Minghua Ren
- Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Li Xing
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Wenjun Ni
- Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Yongxiang Li
- Department of Urology, The People's Hospital of Weifang, Weifang, Shandong, P. R. China
| | - Mancheng Gong
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, Guangdong, P. R. China
| | - Mingbo Zhao
- Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Haiding district, Beijing, P. R. China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Haiding district, Beijing, P. R. China
| | - Ruihua An
- Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| |
Collapse
|