1
|
Ma Q, Yu W, Li Z, Zhang X, Zhang L. Circ_0081723 enhances cervical cancer progression and modulates CREBRF via sponging miR-545-3p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8839-8852. [PMID: 38850307 DOI: 10.1007/s00210-024-03175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Circular RNAs (circRNAs) have been confirmed to be an important modulator and therapeutic target of cervical cancer (CC). The aim of this study is to explore the role and mechanism of circ_0081723 in CC progression. Circ_0081723, microRNA-545-3p (miR-545-3p), and CREB3 regulatory factor (CREBRF) levels were detected using quantitative real-time PCR (qRT-PCR) assay. CREBRF, ki-67, Bcl-2 related X protein (Bax), and E-cadherin expression levels were determined using western blot (WB) and immunohistochemistry (IHC) assays. Cell proliferation was assessed using Cell Counting Kit-8 (CCK-8), cell colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was used to measure cell apoptosis. Cell migration and invasion were examined using Transwell assay. Interaction between miR-545-3p and circ_0081723 or CREBRF was verified using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assays. The biological role of circ_0081723 on CC growth was examined using the xenograft tumor model in vivo. Circ_0081723 and CREBRF were increased, and miR-545-3p was decreased in CC tissues and cells. Circ_0081723 silencing suppressed CC cell growth and motility whereas boosted CC cell apoptosis. Besides, circ_0081723 acted as a molecular sponge for miR-545-3p, and circ_0081723 knockdown-induced effects were largely reversed by miR-545-3p downregulation in CC cells. Moreover, miR-545-3p repressed CC progression by targeting CREBRF. Circ_0081723 absence blocked xenograft tumor growth in vivo. Circ_0081723 stimulated CC cell malignant behaviors by regulating the miR-545-3p/CREBRF pathway, providing a possible circRNA-targeted therapy for CC.
Collapse
Affiliation(s)
- Qiongyan Ma
- Department of Gynaecology and Obstetrics, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Weiwei Yu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiulong Zhang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lihua Zhang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China.
| |
Collapse
|
2
|
Xiong W, Yang J. CircSEC24A induces KLF8 expression to promote the malignant progression of non-small cell lung cancer by regulating miR-1253. Thorac Cancer 2024. [PMID: 39465973 DOI: 10.1111/1759-7714.15450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism. METHODS RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay. Cell proliferation and apoptosis were investigated by colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry analysis. Glycolysis was evaluated by commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circSEC24A, miR-1253, and KLF8. Xenograft mouse model assay was used to evaluate the effect of circSEC24A on tumor tumorigenesis. RESULTS CircSEC24A and KLF8 were upregulated, while miR-1253 was downregulated in NSCLC. CircSEC24A knockdown inhibited proliferation and glycolysis but induced the apoptosis of NSCLC cells. CircSEC24A acted as a miR-1253 sponge and regulated NSCLC cell malignancy by targeting miR-1253. KLF8 was identified as a target of miR-1253, and its overexpression attenuated miR-1253-induced effects in NSCLC cells. Besides, circSEC24A upregulated KLF8 by sponging miR-1253. Further, circSEC24A knockdown suppressed NSCLC cell tumorigenesis in vivo. CONCLUSIONS CircSEC24A silencing inhibited NSCLC cell malignancy through the miR-1253/KLF8 pathway, providing a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China
| | - Jinhua Yang
- Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
3
|
Nagano T, Takada K, Hashinokuchi A, Matsudo K, Kinoshita F, Akamine T, Kohno M, Shimokawa M, Takenaka T, Oda Y, Yoshizumi T. Clinical significance of CD155 expression in surgically resected lung squamous cell carcinoma. Int J Clin Oncol 2024:10.1007/s10147-024-02640-x. [PMID: 39441454 DOI: 10.1007/s10147-024-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Cluster of differentiation 155 (CD155) is expressed in many tumor types. CD155 is involved in the immune avoidance of tumor cells and contributes to tumor development and progression. Therefore, CD155 is a novel target for cancer immunotherapy. The clinical significance of CD155 expression in lung squamous cell carcinoma (LUSC) has not been fully elucidated. MATERIALS AND METHODS We performed a retrospective analysis of 264 patients with surgically resected LUSC. Immunohistochemistry was used to evaluate CD155 expression. The association of CD155 expression with clinicopathological features and clinical outcomes was assessed. We also analyzed the relationship between CD155 expression and programmed cell death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes. RESULTS Among the 264 patients, 137 patients (51.9%) were classified in the high CD155 expression group. High CD155 expression was significantly associated with pleural invasion, vascular invasion, PD-L1 positivity, and high CD3, CD4, and CD8 expressions. In multivariate analysis, the presence of pleural invasion and PD-L1 positivity were independent predictors of high CD155 expression. Kaplan-Meier curve analysis showed that high CD155 expression was significantly associated with shorter disease-free survival and overall survival. In multivariate analysis, high CD155 expression was an independent poor prognostic factor for overall survival, but not for disease-free survival. Subgroup analyses revealed that the prognostic effect of CD155 expression was observed in the PD-L1 positive group but not the PD-L1 negative group. CONCLUSION Our analysis revealed that high CD155 expression significantly predicted poor prognosis in patients with surgically resected LUSC, especially in patients with PD-L1-positive tumors.
Collapse
Affiliation(s)
- Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, 1-3-46 Tenjin, Chuo-ku, Fukuoka, 810-0001, Japan.
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoto Matsudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Zhang L, Wang J, Gui F, Peng F, Deng W, Zhu Q. METTL3-mediated m6A modification of ZNF384 promotes hepatocellular carcinoma progression by transcriptionally activating ACSM1. Clin Transl Oncol 2024:10.1007/s12094-024-03701-3. [PMID: 39342516 DOI: 10.1007/s12094-024-03701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a lethal disease with a high mortality rate, and its development is influenced by various molecular mechanisms. Zinc finger protein 384 (ZNF384) has been reported to be involved in the progression of several cancers; however, its role in HCC remains elusive. METHODS mRNA expression levels were analyzed by quantitative real-time polymerase chain reaction, while western blotting and immunohistochemistry were performed to validate protein expression. Cell proliferation, apoptosis, and metabolic activities were examined using clonogenicity, flow cytometry, and specific assay kits. A xenograft mouse model was employed to assess the impact of acyl-CoA synthetase medium-chain family member 1 (ACSM1) depletion on HCC cell malignancy in vivo. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were conducted to explore the association between ZNF384 and ACSM1. RESULTS We found that ACSM1 and ZNF384 were significantly upregulated in HCC tissues and cells when compared with normal liver tissues and human liver immortalized cells. Knockdown of ACSM1 inhibited HCC cell proliferation and glucose metabolism and induced cell apoptosis. Furthermore, ACSM1 depletion suppressed the malignant progression of HCC cells in vivo. Our data indicated that ZNF384 transcriptionally activated ACSM1 in HCC cells. Overexpression of ACSM1 reversed the inhibitory effect of ZNF384 depletion on HCC cell malignancy. Further, methyltransferase-like 3 (METTL3) stabilized ZNF384 mRNA through m6A methylation. CONCLUSION METTL3-mediated m6A modification of ZNF384 contributed to the progression of HCC by transcriptionally activating ACSM1. This finding suggests potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Jinfu Wang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Fenfang Gui
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Fanzhou Peng
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Weiping Deng
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Qian Zhu
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China.
| |
Collapse
|
5
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Feng Q, Shen Z, Wang F, Shi C. Mediation of circ_0007142 on miR-128-3p/S100A14 pathway to stimulate the progression of cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03250-0. [PMID: 38951152 DOI: 10.1007/s00210-024-03250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 07/03/2024]
Abstract
A previous study has confirmed the upregulation of circ_0007142 expression in CC. Here, we aimed to investigate the effect and mechanism of circ_0007142 in CC progression. The expression of circ_0007142, microRNA-128-3p (miR-128-3p), S100 calcium-binding protein A14 (S100A14), and epithelial mesenchymal transition (EMT)-related markers was measured by qRT-PCR and Western blot. Cell proliferative, migratory, and invasion abilities were evaluated using cell counting Kit-8, cell colony formation, 5-ethynyl-2'-deoxyuridine, and transwell assays, respectively. The interaction among circ_0007142, miR-128-3p and S100A14 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo experiment was implemented to investigate the effect of circ_0007142 on tumor growth. CC tissues and cells displayed high expression of circ_0007142 and S100A14, and low expression of miR-128-3p in comparison to the controls. Knockdown of circ_0007142 resulted in the inhibition of cell proliferation, migration invasion, and EMT in vitro. In support, circ_0007142 deficiency hindered tumor growth and EMT in vivo. In rescue experiments, downregulation of miR-128-3p relieved circ_0007142 absence-mediated anticancer impacts. MiR-128-3p overexpression-induced inhibitory effects on cell growth and metastasis were attenuated by S100A14 overexpression. Importantly, circ_0007142 regulated S100A14 expression by sponging miR-128-3p. Circ_0007142 knockdown suppressed CC cell malignant behaviors by miR-128-3p/S100A14 pathway, providing a possible circRNA-targeted therapy for CC.
Collapse
Affiliation(s)
- Qinqin Feng
- Department of Obstetrics, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, China
| | - Zhangzhou Shen
- Medical School, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi, 435003, China
| | - Fen Wang
- Department of Obstetrics, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, China
| | - Cheng Shi
- Department of Obstetrics, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, China.
| |
Collapse
|
7
|
Guo T, Xiong W, Liu C, Zhu L, Xie L. CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p. Genesis 2024; 62:e23599. [PMID: 38764323 DOI: 10.1002/dvg.23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Wanjuan Xiong
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Chong Liu
- Department of Thoracic surgery, Wuhan Third Hospital, Wuhan, China
| | - Li Zhu
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Ling Xie
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
8
|
Que X, Fan J, Chen D, Nie Z, Chen P. Brevilin A Inhibits Prostate Cancer Progression by Decreasing PAX5-Activated SOX4. Mol Biotechnol 2024:10.1007/s12033-024-01183-w. [PMID: 38744788 DOI: 10.1007/s12033-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Brevilin A possesses inhibitory effects on the development of prostate cancer (PCa); however, the underlying mechanism remains unclear. The present work aims to analyze how Brevilin A regulates PCa cell malignancy. RNA expression of paired box 5 (PAX5) and SRY-box transcription factor 4 (SOX4) was analyzed by quantitative real-time polymerase chain reaction. Protein expression of PAX5, SOX4, and nuclear proliferation marker (Ki67) was detected by western blotting or immunohistochemistry assay. The viability, proliferation, apoptosis, and migratory and invasive abilities of PCa cells were investigated by cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays, respectively. The association between PAX5 and SOX4 was identified by dual-luciferase reporter assay and chromatin immunoprecipitation assay. Xenograft mouse model assay was used to reveal the effect of Brevilin A on tumor tumorigenesis in vivo. PAX5 and SOX4 expression were upregulated in PCa tissues and cells relative to normal prostate tissues and human prostate epithelial cells. Brevilin A treatment inhibited PAX5 protein expression in PCa cells. Additionally, Brevilin A inhibited proliferation, migration and invasion and induced apoptosis of PCa cells, whereas these effects were attenuated after PAX5 overexpression. SOX4 was transcriptionally activated by PAX5, and its introduction partially relieved the inhibitory effects of PAX5 knockdown on PCa cell malignancy. Moreover, Brevilin A delayed tumor formation in vivo. Brevilin A inhibited PCa progression by regulating SOX4 expression in a PAX5-dependent manner, providing a promising anti-tumor drug for PCa.
Collapse
Affiliation(s)
- Xinxiang Que
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China
| | - Jianqun Fan
- Ultrasound Imaging Department, Xiantao First People's Hospital, Xiantao, 433000, Hubei, China
| | - Desheng Chen
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China
| | - Zhen Nie
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China
| | - Peng Chen
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China.
| |
Collapse
|
9
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
10
|
He H, Chen Y, Liang H, Che W, Chen H, Chen Y, Peng F, Wu B. Circular RNA circCHSY1 silencing inhibits the malignant progression of esophageal squamous cell carcinoma. Discov Oncol 2024; 15:84. [PMID: 38514579 PMCID: PMC10957834 DOI: 10.1007/s12672-024-00935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND CircRNAs play a crucial role in the regulation of various cancers. This study aims to investigate the involvement of circCHSY1 in the development of esophageal squamous cell carcinoma (ESCC). METHODS RNA levels were quantified using qRT-PCR, and protein levels were measured by western blot. The stability of circCHSY1 was analyzed using RNase R. The functional effect of circCHSY1 on cell behavior was evaluated by CCK-8, EdU, flow cytometry, transwell, tube formation, and xenograft tumor model assays. The associations among circCHSY1, miR-1229-3p, and Tectonic-1 (TCTN1) were certified by bioinformatics analysis, dual-luciferase reporter assay, and RNA pull-down assay. RESULTS CircCHSY1 was up-regulated in both ESCC tissues and cell lines in comparison with the control groups. Knockdown of circCHSY1 inhibited the proliferation, migration, invasion, and tube formation and promoted apoptosis of ESCC cells. Mechanistically, circCHSY1 targeted miR-1229-3p, which was downregulated in ESCC tissues and cells. Inhibition of miR-1229-3p attenuated the effects mediated by circCHSY1 suppression. Besides, miR-1229-3p bound to TCTN1, and TCTN1 overexpression restored miR-1229-3p-induced effects in ESCC cells. Animal experiments revealed that circCHSY1 silencing suppressed tumor tumorigenesis in vivo. CONCLUSION CircCHSY1 contributed to ESCC cell malignancy, and the underlying mechanism involved the circCHSY1/miR-1229-3p/TCTN1 axis, providing potential therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Haiquan He
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Hanping Liang
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Weibi Che
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Huilong Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Fengyuan Peng
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Bomeng Wu
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China.
| |
Collapse
|
11
|
Lan ZZ, Sun FH, Chen C, Niu L, Shi JD, Zhang WY. CircPRDM5 inhibits the proliferation, migration, invasion, and glucose metabolism of gastric cancer cells by reducing GCNT4 expression in a miR-485-3p-dependent manner. Kaohsiung J Med Sci 2024; 40:231-243. [PMID: 38180297 DOI: 10.1002/kjm2.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.
Collapse
Affiliation(s)
- Zhang-Zhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Feng-Hua Sun
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chuan Chen
- Department of Research and Development, Shenzhen Cheerland Biotechnology Co., Ltd, Shenzhen, China
| | - Li Niu
- Department of Research and Development, CheerLand Clinical Laboratory Co., Ltd, Shenzhen, China
| | - Jing-Dong Shi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Yong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Shen M, Zhang Q, Pan W, Wang B. CircUCK2 promotes hepatocellular carcinoma development by upregulating UCK2 in a mir-149-5p-dependent manner. Discov Oncol 2024; 15:14. [PMID: 38245591 PMCID: PMC10799813 DOI: 10.1007/s12672-024-00863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) participate in the regulation of Hepatocellular Carcinoma (HCC) progression. The objective of this study was to explore the function and mechanism of circUCK2 in HCC development. METHODS The RNA levels of circUCK2, miR-149-5p and uridine-cytidine kinase 2 (UCK2) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). EdU incorporation assay and colony formation assay were respectively performed to analyze cell proliferation and colony formation. Wound healing assay and transwell assay were conducted for cell migration and invasion. Flow cytometry was used for cell apoptosis analysis. Western blot assay was conducted to determine the protein levels of E-cadherin, N-cadherin, matrix metallopeptidase 9 (MMP-9) and UCK2. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were conducted to confirm the interaction between miR-149-5p and circUCK2 or UCK2. The xenograft model was established to explore the role of circUCK2 in tumor growth in vivo. RESULTS CircUCK2 level was elevated in HCC, and circUCK2 depletion suppressed HCC cell proliferation, colony formation, migration and invasion and accelerated cell apoptosis. Mechanistically, circUCK2 could positively modulate UCK2 expression by interacting with miR-149-5p. Furthermore, the repressive effects of circUCK2 knockdown on the malignant behaviors of HCC cells were alleviated by UCK2 overexpression or miR-149-5p inhibition. The promoting effects of circUCK2 overexpression on HCC cell malignancy were alleviated by UCK2 silencing or miR-149-5p introduction. Additionally, circUCK2 knockdown hampered tumor growth in vivo. CONCLUSION CircUCK2 contributed to HCC malignant progression in vitro and in vivo via targeting miR-149-5p/UCK2 axis, demonstrating that circUCK2 might be a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Minghai Shen
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Qinghua Zhang
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Wanneng Pan
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Bei Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Shangcheng District, Hangzhou, 310023, China.
| |
Collapse
|
13
|
Dolbnya AD, Popov IA, Pekov SI. Molecular Biomarkers in Cholangiocarcinoma: Focus on Bile. Curr Top Med Chem 2024; 24:722-736. [PMID: 38303538 DOI: 10.2174/0115680266290367240130054142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.
Collapse
Affiliation(s)
- Andrey D Dolbnya
- Siberian State Medical University, Tomsk, 634050, Russian Federation
| | - Igor A Popov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
| | - Stanislav I Pekov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
| |
Collapse
|
14
|
Feng Z, Zhang T, Cheng S, Yin X, Zhou Y. CircGFPT1 regulates the growth and apoptosis of esophageal squamous cell carcinoma through miR-142-5p/HAX1 axis. Gen Thorac Cardiovasc Surg 2024; 72:41-54. [PMID: 37455293 DOI: 10.1007/s11748-023-01955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Currently, multiple circular RNAs (circRNAs) have been verified to act as essential regulators in the progression of esophageal squamous cell carcinoma (ESCC). However, there is no study regarding the role of circGFPT1 in the progression of cancers including ESCC. We aimed to investigate the role of circGFPT1 in ESCC progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to measure the expression of circGFPT1, miR-142-5p and HS1-associated protein X-1 (HAX1). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays were employed to evaluate cell proliferation. Cell migration and invasion were detected by wound-healing and transwell assays. Flow cytometry analysis was conducted to assess cell apoptosis. The protein expression of E-cadherin, N-cadherin, Vimentin, C-caspase3, HAX1 and nuclear proliferation marker (Ki67) was analyzed by western blot or immunohistochemistry assay. RESULTS CircGFPT1 was up-regulated in ESCC tissues and cells. Silencing of circGFPT1 repressed cell proliferation and induced cell apoptosis in ESCC cells. CircGFPT1 acted as a sponge of miR-142-5p. The effects of circGFPT1 knockdown on ESCC cell proliferation and apoptosis were reversed by miR-142-5p inhibition. HAX1 was confirmed to be a target gene of miR-142-5p. CircGFPT1 knockdown inhibited HAX1 expression by targeting miR-142-5p. Additionally, circGFPT1 knockdown hampered tumorigenesis in vivo. CONCLUSION CircGFPT1 promoted ESCC cell growth and repressed apoptosis by up-regulating HAX1 through sponging miR-142-5p.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Tianyi Zhang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Shaoyi Cheng
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Xunliang Yin
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China.
| |
Collapse
|
15
|
Zhao Y, Chen J, Xu S, Chen Y. CircMETTL15 induces TMTC3 production by absorbing miR-944 to promote hepatocellular carcinoma cell malignancy. J Biochem Mol Toxicol 2024; 38:e23567. [PMID: 37867458 DOI: 10.1002/jbt.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Previous data have suggested the involvement of circular RNA (circRNA) in hepatocellular carcinoma (HCC) progression. Up to now, the effect of circMETTL15 on HCC development remains unknown. This study aims to analyze the function of circMETTL15 in HCC development and the underlying mechanism. RNA expression of circMETTL15, miR-944, and transmembrane O-mannosyltransferase targeting cadherins 3 (TMTC3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot analysis assay or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine (EdU) assay, and cell colony formation assay. Cell migration and invasion were assessed by wound-healing assay and transwell assay, respectively. Angiogenic capacity was analyzed by tube formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the interplay between miR-944 and circMETTL15 or TMTC3. Xenograft mouse model assay was conducted to reveal the effect of circMETTL15 on tumor formation in vivo. CircMETTL15 and TMTC3 expression were significantly upregulated, while miR-944 expression was downregulated in HCC tissues and cells. CircMETTL15 knockdown led to decreased cell proliferation, migration, invasion, and tube formation. Besides, the inhibitors of miR-944, a target miRNA of circMETTL15, partially restored circMETTL15 silencing-mediated effects on the proliferation, migration, invasion, and tube formation of HCC cells. MiR-944 overexpression also inhibited HCC cell malignancy by targeting TMTC3. Furthermore, circMETTL15 absence inhibited tumor formation by regulating miR-944 and TMTC3 in vivo. In conclusion, circMETTL15 induced HCC development through the miR-944/TMTC3 pathway, raising the potential of circMETTL15 as a target for HCC therapy.
Collapse
Affiliation(s)
- Yajun Zhao
- Department of Hepatology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Jianbo Chen
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shuzhen Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yanwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
16
|
Chang X, Huang Z, Zhang Z, Pan W, Song C. Matrine inhibits hepatocellular carcinoma cell malignancy through the circ_0013290/miR-139-5p/MMP16 pathway. Histol Histopathol 2023; 38:1179-1192. [PMID: 36594718 DOI: 10.14670/hh-18-574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Previous studies have shown the anticancer effect of Matrine on hepatocellular carcinoma (HCC); however, the underlying mechanism is still indistinct. METHODS The expression of circular RNA_0013290 (circ_0013290), microRNA-139-5p (miR-139-5p), matrix metallopeptidase 16 (MMP16), CyclinD1 and N-cadherin was analyzed by quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry assay. Cell viability, proliferation, apoptosis, invasion and tube formation were analyzed by cell counting kit-8, 5-Ethynyl-2'-deoxyuridine, flow cytometry analysis, transwell invasion and tube formation assays, respectively. The associations among circ_0013290, miR-139-5p and MMP16 were predicted by starbase online database, and identified by dual-luciferase reporter and RNA pull-down assays. A xenograft mouse model assay was conducted to disclose the effects of circ_0013290 and Matrine on tumor tumorigenesis in vivo. RESULTS Circ_0013290 and MMP16 expression were significantly upregulated, while miR-139-5p was downregulated in HCC tissues and cells compared with the matched normal liver tissues and cells. Matrine treatment inhibited HCC cell proliferation, invasion and tube formation but induced cell apoptosis, accompanied by the decrease of CyclinD1 and N-cadherin expression; however, these effects were counteracted when circ_0013290 expression was increased. MiR-139-5p depletion or MMP16 introduction relieved Matrine-induced effects in HCC cells. The regulation of circ_0013290 toward HCC cell processes involved MMP16. With respect to the mechanism, circ_0013290 acted as a miR-139-5p sponge, and miR-139-5p targeted MMP16 in HCC cells. Besides, circ_0013290 regulated MMP16 expression through miR-139-5p. Further, circ_0013290 depletion enhanced the inhibitory effects of Matrine on tumor tumorigenesis. CONCLUSION Matrine inhibited HCC cell malignancy through the circ_0013290/miR-139-5p/MMP16 pathway, suggesting that Matrine is a potential therapeutic agent for HCC.
Collapse
Affiliation(s)
- Xinfeng Chang
- Department of Human Anatomy, Jiangsu Vocational College of Medicine, Jiangsu Province, China
| | - Zhengchun Huang
- Department of Human Anatomy, Gannan Medical University, Jiangsu Province, China
| | - Zhihua Zhang
- Department of Graduate, Gannan Medical University, Jiangsu Province, China
| | - Wen Pan
- Department of Physiology, Jiangsu Vocational College of Medicine, Jiangsu Province, China
| | - Chunhua Song
- Department of Surgery, Jiangsu Vocational College of Medicine, Jiangsu Province, China.
| |
Collapse
|
17
|
Wang Y, Tang S, Li L, Sun C, Liu Y, Zhao Y. Depletion of circPDSS1 inhibits ITGA11 production to confer cisplatin sensitivity through miR-515-5p in gastric cancer. J Chemother 2023; 35:514-526. [PMID: 36484486 DOI: 10.1080/1120009x.2022.2151702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Chemoresistance limits cisplatin (DDP)-mediated treatment for gastric cancer (GC). Circular RNA (circRNA) acts an important role in chemoresistance. However, the underlying mechanism of circPDSS1 regulating DDP sensitivity in GC remains unclear. The expression patterns of circPDSS1, miR-515-5p and integrin subunit alpha 11 (ITGA11) were analyzed by qRT-PCR. Protein expression was checked by Western blotting analysis. Cell viability was investigated by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was evaluated by colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. The analysis of cell apoptosis, migration and invasion was performed by flow cytometry analysis and transwell assays. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circPDSS1, miR-515-5p and ITGA11. In vivo assay was implemented using a xenograft mouse model assay. CircPDSS1 and ITGA11 expression were significantly upregulated, whereas miR-515-5p was downregulated in DDP-resistant GC tissues and cells in comparison with controls. CircPDSS1 depletion reduced DDP resistance, cell proliferation, migration and invasion but induced cell apoptosis in DDP-resistant GC cells. CircPDSS1 directly bound to miR-515-5p. CircPDSS1-mediated actions were dependent on the regulation of miR-515-5p. Besides, miR-515-5p was associated with ITGA11, and circPDSS1 regulated ITGA11 expression by binding to miR-515-5p. Overexpression of miR-515-5p improved DDP sensitivity owing to the downregulation of ITGA11. Further, circPDSS1 mediated DDP sensitivity by regulating miR-515-5p and ITGA11 in vivo. CircPDSS1 conferred DDP resistance through the miR-515-5p/ITGA11 axis in GC cells.
Collapse
Affiliation(s)
- Yongsen Wang
- Department of Digestive Medicine, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuting Tang
- Department of Internal Medicine, Wendeng Osteopathic Hospital of Shandong Province, Weihai, China
| | - Lingling Li
- Clinical College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaru Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujie Zhao
- Department of Digestive Medicine, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Zhou R, Chen S, Wu Q, Liu L, Wang Y, Mo Y, Zeng Z, Zu X, Xiong W, Wang F. CD155 and its receptors in cancer immune escape and immunotherapy. Cancer Lett 2023; 573:216381. [PMID: 37660884 DOI: 10.1016/j.canlet.2023.216381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
In recent years, there have been multiple breakthroughs in cancer immunotherapy, with immune checkpoint inhibitors becoming the most promising treatment strategy. However, available drugs are not always effective. As an emerging immune checkpoint molecule, CD155 has become an important target for immunotherapy. This review describes the structure and function of CD155, its receptors TIGIT, CD96, and CD226, and summarizes that CD155 expressed by tumor cells can upregulate its expression through the DNA damage response pathway and Ras-Raf-MEK-ERK signaling pathway. This review also elaborates the mechanism of immune escape after binding CD155 to its receptors TIGIT, CD96, and CD226, and summarizes the current progress of immunotherapy research regarding CD155 and its receptors. Besides, it also discusses the future direction of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Ruijia Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyin Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiwen Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyun Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Yu L, Zhang F, Wang Y. Circ_0005615 Regulates the Progression of Colorectal Cancer Through the miR-873-5p/FOSL2 Signaling Pathway. Biochem Genet 2023; 61:2020-2041. [PMID: 36920708 DOI: 10.1007/s10528-023-10355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
To determine the effects of circ_0005615 in CRC development and underneath mechanism. The expression levels of circ_0005615, microRNA-873-5p (miR-873-5p) and FOS-like antigen 2 (FOSL2) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of exosome makers, proliferation-related makers and FOSL2 were detected by western blot or immunohistochemistry assay. Cell proliferation was evaluated by cell counting kit-8 (CCK-8) and cell colony formation assays. Cell migration and invasion were demonstrated by a transwell assay. Cell apoptosis was investigated by flow cytometry analysis. The binding relationship between miR-873-5p and circ_0005615 or FOSL2 was predicted by circular RNA interactome and targetscan online databases, respectively, and identified by dual-luciferase reporter assay. The impacts of circ_0005615 silencing on tumor formation were determined by in vivo tumor formation assay. Circ_0005615 expression was dramatically upregulated in serum exosomes of CRC patients compared with the control group. The CRC patients with a high circ_0005615 expression had a poor survival rate. Circ_0005615 and FOSL2 expressions were apparently increased, while miR-873-5p was decreased in CRC tissues or cells relative to control groups. Circ_0005615 knockdown inhibited cell proliferation, migration, and invasion, whereas promoted cell apoptosis in CRC; however, miR-873-5p inhibitor attenuated these impacts. Additionally, circ_0005615 acted as a sponge of miR-873-5p and miR-873-5p bound to FOSL2. FOSL2 overexpression restrained the effects of miR-873-5p mimic on CRC progression. Furthermore, circ_0005615 knockdown suppressed tumor growth in vivo. Circ_0005615 modulated CRC malignant progression by controlling FOSL2 expression through sponging miR-873-5p. This finding lays a foundation for the study on circRNA-mediated CRC therapy.
Collapse
Affiliation(s)
- Lihua Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
| | - Feifei Zhang
- Department of General Surgery, Maternity and Child Health Care of Laizhou, No. 288 Wenhua East Street, Laizhou, 261400, Shandong, People's Republic of China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Xia Y, Hei N, Peng S, Cui Z. The role and mechanism of circ-BNC2 on the malignant progression of oral squamous cell carcinoma. Head Neck 2023; 45:2424-2437. [PMID: 37377048 DOI: 10.1002/hed.27442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a key part in the progression of oral squamous cell carcinoma (OSCC). However, the role of circ-BNC2 (circRNA ID hsa_circ_0086414) in OSCC progression is still unclear. METHODS Plasmid transfection was used to induce overexpression of circ-BNC2. RNA expression of circ-BNC2, microRNA-142-3p (miR-142-3p) and GNAS complex locus (GNAS) was detected by quantitative real-time polymerase chain reaction. Protein expression was assessed by western blot assay or immunohistochemistry assay. Cell proliferation was investigated by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay and flow cytometry analysis. Cell migratory and invasive abilities and cell apoptosis were assessed by transwell assay and flow cytometry analysis, respectively. Oxidative stress was evaluated by superoxide dismutase activity detection assay, lipid peroxidation malondialdehyde assay and cellular reactive oxygen species assay. The binding relationship between miR-142-3p and circ-BNC2 or GNAS was proved by dual-luciferase reporter assay and RNA immunoprecipitation assay. The impacts of circ-BNC2 overexpression on tumor growth in vivo were unveiled by a xenograft mouse model assay. RESULTS Circ-BNC2 expression was downregulated in OSCC tissues and cells when compared with adjacent healthy tissues and normal human oral keratinocytes. Circ-BNC2 overexpression repressed the proliferation, migration and invasion of OSCC cells but induced cell apoptosis and oxidative stress. Additionally, circ-BNC2 overexpression inhibited tumor growth in vivo. Furthermore, circ-BNC2 bound to miR-142-3p, and miR-142-3p targeted GNAS. MiR-142-3p mimic attenuated circ-BNC2 overexpression-mediated effects on the proliferation, migration, invasion, apoptosis and oxidative stress of OSCC cells. The regulation of miR-142-3p in OSCC cell tumor properties involved GNAS. Further, circ-BNC2 introduction promoted GNAS expression by inhibiting miR-142-3p. CONCLUSION Circ-BNC2 suppressed OSCC malignant progression by upregulating GNAS expression in a miR-142-3p-dependent manner, which suggested that circ-BNC2 might be a novel target for OSCC therapy.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Stomatology, Hengshui People's Hospital, Hengshui City, Hebei Province, China
| | - Naiheng Hei
- Department of Stomatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Shixiong Peng
- Department of Stomatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Zifeng Cui
- Department of Stomatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
21
|
Song R, Chai T, Liu J, Chu A, Sun C, Liu Z. Knockdown of circMFN2 inhibits cell progression and glycolysis by miR-198/CUL4B pathway in ovarian cancer. J Biochem Mol Toxicol 2023; 37:e23383. [PMID: 37158446 DOI: 10.1002/jbt.23383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Circular RNA (circRNA) regulates malignant tumors, including ovarian cancer (OC). The present research study aimed to reveal the biological mechanism of circRNA mitofusin 2 (circMFN2) in OC. Cell biological behaviors were investigated using clonogenicity assay, EdU assay, transwell assay, and flow cytometry analysis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were implemented to detect the levels of circMFN2, miR-198, Cullin 4B (CUL4B), and apoptosis-related proteins. Glycolysis was assessed by glucose assay kit, lactate assay kit, and ATP level detection kit. The relationships among miR-198, circMFN2, and CUL4B were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. The xenograft mice model was used to analyze tumor growth in vivo. The expression of circMFN2 and CUL4B was increased, while miR-330-5p was decreased in OC tissues or cells. The absence of CircMFN2 hindered cell proliferation, migration, invasion, and glycolysis and promoted apoptosis in OC cells. We found that circMFN2 promoted CUL4B expression via sponging miR-198. MiR-198 depletion reversed circMFN2 knockdown-induced effects in OC cells. Furthermore, CUL4B overexpression overturned the inhibitory effect of miR-198 in OC cells. And the absence of circMFN2 inhibited tumor growth in vivo. CircMFN2 repressed OC progression by regulating the miR-198/CUL4B axis.
Collapse
Affiliation(s)
- Rui Song
- Department of Tumor Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Chai
- Department of Tumor Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junqi Liu
- Department of Tumor Radiotherapy, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Alan Chu
- Department of Tumor Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Sun
- Department of Tumor Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongwen Liu
- Department of Tumor Radiotherapy, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Kingsak M, Meethong T, Jongkhumkrong J, Cai L, Wang Q. Therapeutic potential of oncolytic viruses in the era of precision oncology. BIOMATERIALS TRANSLATIONAL 2023; 4:67-84. [PMID: 38283919 PMCID: PMC10817786 DOI: 10.12336/biomatertransl.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 01/30/2024]
Abstract
Oncolytic virus (OV) therapy has been shown to be an effective targeted cancer therapy treatment in recent years, providing an avenue of treatment that poses no damage to surrounding healthy tissues. Not only do OVs cause direct oncolysis, but they also amplify both innate and adaptive immune responses generating long-term anti-tumour immunity. Genetically engineered OVs have become the common promising strategy to enhance anti-tumour immunity, safety, and efficacy as well as targeted delivery. The studies of various OVs have been accomplished through phase I-III clinical trial studies. In addition, the uses of carrier platforms of organic materials such as polymer chains, liposomes, hydrogels, and cell carriers have played a vital role in the potentially targeted delivery of OVs. The mechanism, rational design, recent clinical trials, applications, and the development of targeted delivery platforms of OVs will be discussed in this review.
Collapse
Affiliation(s)
- Monchupa Kingsak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Thongpon Meethong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Jinnawat Jongkhumkrong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, Lancaster, SC, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
23
|
Liu X, Xu C, Guo T, Zhan S, Quan Q, Li M, Wang Z, Zhang X, Guo L, Cao L. Clinical significance of CD155 expression and correlation with cellular components of tumor microenvironment in gastric adenocarcinoma. Front Immunol 2023; 14:1173524. [PMID: 37441080 PMCID: PMC10333512 DOI: 10.3389/fimmu.2023.1173524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction CD155 is recently emerging as a promising target in malignancies. However, the relationship between CD155 expression and tumor microenvironment (TME) cell infiltration in gastric adenocarcinoma (GAC) has rarely been clarified. Methods We measured CD155 expression in specimens of gastric precancerous disease and GAC by immunohistochemistry. The association of CD155 expression with GAC progression and cells infiltration in TME was evaluated through 268 GAC tissues and public dataset analysis. Results We showed that the expression of CD155 was positively correlated with the pathological development of gastric precancerous disease (r = 0.521, P < 0.0001). GAC patients with high CD155 expression had a poorer overall survival (P = 0.033). Moreover, CD155 expression correlated with aggressive clinicopathological features including tumor volume, tumor stage, lymph node involvement, and cell proliferation (P <0.05). Remarkably, CD155 expression positively related to the infiltration of CD68+ macrophages in TME (P = 0.011). Meanwhile, the positive correlation was observed between CD155 and CD31 (P = 0.026). In addition, patients with high CD155 expression combined with low CD3, CD4, CD8, IL-17, IFN-γ or CD19 expression as well as those with high CD155 and α-SMA expression showed significantly worse overall survival (P < 0.05). Conclusions CD155 may play a pivotal role in the development of GAC through both immunological and non-immunological mechanisms and be expected to become a novel target of immunotherapy in GAC patients.
Collapse
Affiliation(s)
- Xue Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenyang Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianwei Guo
- Department of Pathology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiuying Quan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengsi Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziyi Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Fang K, Deng Y, Yang P, Zhang Y, Luo D, Wang F, Cai Z, Liu Y. Circ_0079530 stimulates THBS2 to promote the malignant progression of non-small cell lung cancer by sponging miR-584-5p. Histol Histopathol 2023; 38:681-693. [PMID: 36382967 DOI: 10.14670/hh-18-545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Circ_0079530 has been confirmed to be a novel potential oncogene in non-small cell lung cancer (NSCLC). This study aims to explore the role and mechanism of circ_0079530 in NSCLC progression. METHODS Levels of circ_0079530, microRNA (miR)-584-5p, thrombospondin-2 (THBS2), PCNA, Bax, E-cadherin, and ki67 were detected by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. The proliferation of NSCLC cells was measured using cell counting kit 8 (CCK8) assay, colony formation assay, and EdU staining. Cell apoptosis and motility were respectively detected by flow cytometry and transwell assays. Interaction between miR-584-5p and circ_0079530 or THBS2 was predicted by bioinformatics analysis and confirmed via luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was used to analyze the role of circ_0079530 in tumor growth in vivo. RESULTS Circ_0079530 was highly expressed in NSCLC tissues and cell lines. Circ_0079530 overexpression facilitated proliferation, migration, and invasion whereas it restrained the apoptosis of NSCLC cells. Circ_0079530 silence showed the opposite effects on the above malignant biological behaviors. Mechanistic analysis showed that circ_0079530 functioned as a sponge of miR-584-5p to relieve the suppressive action of miR-584-5p on its target THBS2. Additionally, circ_0079530 knockdown impeded the growth of xenografts in vivo. CONCLUSION Circ_0079530 promoted NSCLC progression by regulating the miR-584-5p/THBS2 axis, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Kun Fang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yibin Deng
- Department of Pediatric, Sichuan Science City Hospital, Mianyang, PR China
| | - Ping Yang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yurong Zhang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Dan Luo
- Department of Gynaecology and Obstetrics (Science and Education Department), Sichuan Science City Hospital, Mianyang, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Zhilong Cai
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yang Liu
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China.
| |
Collapse
|
25
|
Zheng M, Xu L, Wei C, Guan W. CircRTN1 stimulates HMGB1 to regulate the malignant progression of papillary thyroid cancer by sponging miR-101-3p. Hormones (Athens) 2023; 22:281-293. [PMID: 36826778 DOI: 10.1007/s42000-023-00440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND The important role played by circular RNA (circRNA) in promoting the progression of papillary thyroid cancer (PTC) is attracting ever more attention among medical researchers. However, what the precise contribution is of circRTN1 in PTC progression remains unclear. The study was designed to analyze the role and mechanism of circRTN1 in regulating PTC progression. METHODS Human PTC cell lines (TPC-1 and IHH-4) and human thyroid normal cells (Nthy-ori 3-1) were used for in vitro assays. mRNA or protein expression of circRTN1, miR-101-3p, and high mobility group box 1 (HMGB1) were detected by quantitative real-time polymerase chain reaction or western blot. Cell proliferation was investigated by cell counting kit-8 assay, cell colony formation assay, and 5-ethynyl-2'-deoxyuridine assay. Wound-healing assay and transwell invasion assay were conducted to evaluate cell migration and invasion. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to verify the target relations between circRTN1, miR-101-3p, and HMGB1. A xenograft tumor model was established to demonstrate the effect of circRTN1 on tumor formation in vivo. An immunohistochemistry assay was used to detect protein expression of HMGB1, ki-67, E-cadherin, and vimentin. RESULTS In comparison with healthy thyroid tissues and cells, PTC tissues and cells displayed high circRTN1 RNA expression and high HMGB1 mRNA and protein expression but low miR-101-3p expression. Silencing of circRTN1 suppressed PTC cell proliferation, migration, and invasion in vitro. MiR-101-3p was a target of circRTN1, and the knockdown of miR-101-3p relieved circRTN1 absence-mediated suppressive effects on PTC cell malignancy. HMGB1 was identified as a target gene of miR-101-3p, and overexpressed HMGB1 almost reverted the inhibitory impacts induced by miR-101-3p mimic in PTC cells. Moreover, circRTN1 silencing hampered tumor formation in vivo. CONCLUSION CircRTN1 depletion impeded PTC cell malignancy via the miR-101-3p/HMGB1 pathway, which provided a possible circRNA-targeted therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Lingli Xu
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Cuifeng Wei
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Wenzhen Guan
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China.
| |
Collapse
|
26
|
Zhao L, Fan J, Zhang C, Zhang Z, Dong J. CircRANBP17 modulated KDM1A to regulate neuroblastoma progression by sponging miR-27b-3p. Open Med (Wars) 2023; 18:20230672. [PMID: 36941992 PMCID: PMC10024347 DOI: 10.1515/med-2023-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Neuroblastoma (NB) is a common childhood cancer. Circular RNA RAN binding protein 17 (circRANBP17) has been identified to participate in diverse tumor progression. This study aims to explore the function and mechanism of circRANBP17 in NB. The levels of circRANBP17, miR-27b-3p and KDM1A in NB tissues and cells were measured by qRT-PCR. Mouse model assay was performed to investigate the effect of circRANBP17 knockdown on tumor formation in vivo. The levels of circRANBP17 and KDM1A were significantly up-regulated, and the level of miR-27b-3p was strikingly down-regulated in NB tissues and cells (SK-N-SH and SK-N-AS). Functional studies indicated that miR-27b-3p inhibitor mitigated the inhibitory effects on cell proliferation, migration, invasion and the promoting effect on cell apoptosis in SK-N-SH and SK-N-AS cells induced by circRANBP17 knockdown. Also, miR-27b-3p regulated NB cell malignancy by targeting KDM1A. Further studies revealed that miR-27b-3p inhibitor reversed the low expression of KDM1A induced by circRANBP17 knockdown. In support, circRANBP17 knockdown led to inhibition of tumor formation in vivo. In conclusion, circRANBP17 modulated KDM1A to promote cell proliferation, migration, invasion and restrain cell apoptosis in NB by sponging miR-27b-3p, and the new regulatory network may provide a theoretical basis for the further study of NB.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215000, China
| | - Junying Fan
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhenjun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang
Road, Gusu District, Suzhou City, Jiangsu Province, 215000, China
| |
Collapse
|
27
|
Circular RNA circ_0005667 promotes cisplatin resistance of endometrial carcinoma cells by regulating IGF2BP1 through miR-145-5p. Anticancer Drugs 2022:00001813-990000000-00156. [PMID: 36728962 DOI: 10.1097/cad.0000000000001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Circular RNA (circRNA) plays a significant role in cisplatin (DDP) resistance. The purpose of this study was to explore the role of circ_0005667 in DDP resistance of endometrial carcinoma (EC) cells. METHODS The expression of circular RNA circ_0005667, microRNA-145-5p (miR-145-5p) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in DDP-sensitive and DDP-resistant EC tissues and EC cells was determined by quantitative real-time PCR (qRT-PCR). The expression of apoptosis-related proteins, drug resistance-related proteins and IGF2BP1 proteins were detected by western blot. The half-maximal inhibitory concentration (IC50) of DDP was determined using a cell counting kit-8 (CCK-8) assay. For functional assays, cell proliferation, migration, invasion and cell apoptosis were determined using 5-ethynyl-2'-deoxyuridine (EdU) assay, wound healing assay, transwell assay and flow cytometry assay, respectively. The binding relationship between miR-145-5p and circ_0005667 or IGF2BP1 was verified by dual-luciferase reporter assay. A xenograft experiment was applied to clarify the functional role of circ_0005667 in vivo. RESULTS Levels of circ_0005667 and IGF2BP1 were markedly increased, whereas miR-145-5p was downregulated in DDP-resistant EC tissues and cells. The circ_0005667 deficiency could enhance DDP sensitivity, inhibit cell proliferation, migration and invasion and promote cell apoptosis in DDP-resistant EC cells in vitro. Mechanistically, circ_0005667 modulated IGF2BP1 expression through sponging miR-145-5p. In addition, miR-145-5p depletion attenuated circ_0005667 silencing-induced effects in EC cells. The regulation of miR-145-5p in DDP resistance involved low IGF2BP1 expression. In vivo experiments revealed that circ_0005667 silencing could improve the sensitivity of the tumor to DDP. CONCLUSION Circ_0005667 enhanced DDP resistance in EC by elevating IGF2BP1 through sponging miR-145-5p.
Collapse
|
28
|
Zhang D, Liu J, Zheng M, Meng C, Liao J. Prognostic and clinicopathological significance of CD155 expression in cancer patients: a meta-analysis. World J Surg Oncol 2022; 20:351. [DOI: 10.1186/s12957-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
It has been previously reported that CD155 is often over-expressed in a variety of cancer types. In fact, it is known to be involved in cancer development, and its role in cancer has been widely established. However, clinical and mechanistic studies involving CD155 yielded conflicting results. Thus, the present study aimed to evaluate overall prognostic value of CD155 in cancer patients, using a comprehensive analysis.
Methods
Online databases were searched, data was collected, and clinical value of CD155 was evaluated by combining hazard ratios (HRs) or odds ratios (ORs).
Results
The present study involved meta-analysis of 26 previous studies that involved 4325 cancer patients. These studies were obtained from 25 research articles. The results of the study revealed that increased CD155 expression was significantly associated with reduced OS in patients with cancer as compared to low CD155 expression (pooled HR = 1.772, 95% CI = 1.441–2.178, P < 0.001). Furthermore, subgroup analysis demonstrated that the level of CD155 expression was significantly associated with OS in patients with digestive system cancer (pooled HR = 1.570, 95% CI = 1.120–2.201, P = 0.009), hepatobiliary pancreatic cancer (pooled HR = 1.677, 95% CI = 1.037–2.712, P = 0.035), digestive tract cancer (pooled HR = 1.512, 95% CI = 1.016–2.250, P = 0.042), breast cancer (pooled HR = 2.137, 95% CI = 1.448–3.154, P < 0.001), lung cancer (pooled HR = 1.706, 95% CI = 1.193–2.440, P = 0.003), head and neck cancer (pooled HR = 1.470, 95% CI = 1.160–1.862, P = 0.001). Additionally, a significant correlation was observed between enhanced CD155 expression and advanced tumor stage (pooled OR = 1.697, 95% CI = 1.217–2.366, P = 0.002), LN metastasis (pooled OR = 1.953, 95% CI = 1.253–3.046, P = 0.003), and distant metastasis (pooled OR = 2.253, 95% CI = 1.235–4.110, P = 0.008).
Conclusion
Altogether, the results of the present study revealed that CD155 acted as an independent marker of prognosis in cancer patients, and it could provide a new and strong direction for cancer treatment.
Collapse
|
29
|
Zhang H, Zhou Q, Jiang J. Circ_0027446 induces CLDN1 expression to promote papillary thyroid cancer cell malignancy by binding to miR-129-5p. Pathol Res Pract 2022; 238:154095. [PMID: 36058014 DOI: 10.1016/j.prp.2022.154095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Previous data have shown that circular RNA (circRNA) is a key regulator in papillary thyroid cancer (PTC). However, the role and the detailed mechanism of circ_0027446 in PTC progression have not been reported. METHODS Circ_0027446, miR-129-5p, claudin 1 (CLDN1), C-myc and MMP2 expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot or immunohistochemistry (IHC) assay. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay and cell colony formation assay. Cell apoptosis, invasion and migration were assessed by flow cytometry analysis, transwell assay and wound-healing assay, respectively. Dual-luciferase reporter assay was conducted to identify the associations among circ_0027446, miR-129-5p and CLDN1. The effect of circ_0027446 on PTC cell malignancy in vivo was revealed by a xenograft mouse model assay. RESULTS Circ_0027446 and CLDN1 expression were significantly upregulated, while miR-129-5p expression was downregulated in PTC tissues and cells. High circ_0027446 expression was closely associated with the poor prognosis of PTC patients. Circ_0027446 depletion inhibited PTC cell proliferation, migration and invasion but increased cell apoptosis. In addition, circ_0027446 acted as a miR-129-5p sponge, and miR-129-5p bound to CLDN1. Moreover, miR-129-5p inhibitors attenuated circ_0027446 depletion-induced effects in PTC cells. CLDN1 also participated in the regulation of miR-129-5p in PTC cell tumor properties. Importantly, circ_0027446 mediated CLDN1 expression by interacting with miR-129-5p. In vivo data showed that the decreased expression of circ_0027446 led to delayed tumor formation. CONCLUSION Circ_0027446 contributed to PTC cell tumor properties by regulating the miR-129-5p/CLDN1 pathway, showing circ_0027446 might be a therapeutic target in PTC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Ultrasound, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
| | - Qi Zhou
- Department of ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Jiang
- Department of ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Duan YH, Bian YL, Zhu JW. Generating Anti-TIGIT and CD155 Monoclonal Antibodies for Tumor Immunotherapy. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1755454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractMany studies have confirmed that the human poliovirus receptor (PVR; CD155) is related to tumor cell migration, invasion, and thus tumor progression. A PVR receptor binds its ligand T cell Ig and the ITIM domain (TIGIT) to inhibit the function of T and NK cells, thereby allowing tumors to evade immune surveillance. In this study, two IgG1 monoclonal antibodies, anti-CD155 and anti-TIGIT, were expressed by the mammalian transient transfection system, then, antibody-dependent cell-mediated cytotoxicity, antibody-binding affinity, and antitumor efficacy were evaluated subsequently in vitro. In this work, protein A affinity chromatography was used for antibodies' purification. Analysis methods included Western blot, enzyme-linked immunosorbent assay, and flow cytometry. Our data suggested that both the two monoclonal antibodies have a purity of higher than 90%, and bound tightly to the antigen with dissociation constant (K
d) and 50% effective concentrations (EC50) below micromolar range. Most notably, these antibodies promote antitumor activity of immune cells in vitro. Therefore, our study laid down the foundation for subsequent in vivo experiments for further evaluation.
Collapse
Affiliation(s)
- Yu-Hang Duan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan-lin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
32
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|
33
|
Lee BH, Kim JH, Kang KW, Lee SR, Park Y, Sung HJ, Kim BS. PVR (CD155) Expression as a Potential Prognostic Marker in Multiple Myeloma. Biomedicines 2022; 10:1099. [PMID: 35625835 PMCID: PMC9139015 DOI: 10.3390/biomedicines10051099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Poliovirus receptor (PVR, CD155) is upregulated during tumor progression, and PVR expression is associated with poor prognosis in cancer patients; however, prognostic implications for PVR in multiple myeloma (MM) have not been investigated. PVR plays an immunomodulatory role by interacting with CD226, CD96, and TIGIT. TIGIT is a checkpoint inhibitory receptor that can limit adaptive and innate immunity, and it binds to PVR with the highest affinity. We used immunohistochemistry, ELISA, qPCR, and flow cytometry to investigate the role of PVR in MM. PVR was highly expressed in patients with MM, and membrane PVR expression showed a significant correlation with soluble PVR levels. PVR expression was significantly associated with the Revised-International Staging System stage, presence of extramedullary plasmacytoma and bone lesion, percentage of bone marrow plasma cells (BMPCs), and β2-microglobulin levels, suggesting a possible role in advanced stages and metastasis. Furthermore, TIGIT expression was significantly correlated with the percentage of BMPCs. Patients with high PVR expression had significantly shorter overall and progression-free survival, and PVR expression was identified as an independent prognostic factor for poor MM survival. These findings indicate that PVR expression is associated with MM stage and poor prognosis, and is a potential prognostic marker for MM.
Collapse
Affiliation(s)
- Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Ji-Hea Kim
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| | - Ka-Won Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Se-Ryeon Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Hwa-Jung Sung
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Byung-Soo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| |
Collapse
|
34
|
Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS One 2022; 17:e0265908. [PMID: 35324958 PMCID: PMC8946673 DOI: 10.1371/journal.pone.0265908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The interaction of CD155 with its ligand, the T cell immunoreceptor with Ig and ITIM domains (TIGIT), is being studied owing to its potential to act as a target in the treatment of various solid tumors. However, the relationship between CD155 and TIGIT in colorectal cancer (CRC) prognosis is not known. We hypothesized that the TIGIT-CD155 pathway suppresses the attack of T cells on tumors, thereby affecting CRC prognosis. METHODS We examined the expression of CD155 and TIGIT using immunohistochemical staining in 100 consecutive patients with CRC who underwent complete resection of ≤Stage III tumors at Wakayama Medical University Hospital between January and December 2013. We assessed the correlation between CD155 and TIGIT expressions and prognosis as well as the clinicopathological background of CD155 and TIGIT. RESULTS Patients with high CD155 and TIGIT expressions showed worse prognosis than those with other levels of expression (p = 0.026). In multivariate analysis that also included the existing prognostic markers, high CD155 and TIGIT expressions were identified as independent poor prognostic factors. CONCLUSIONS The interaction between CD155 and TIGIT possibly plays an important role in the immunological mechanism of CRC. Therefore, it may be possible to effectively predict the postoperative prognosis of CRC by evaluating the combined expression of CD155 and TIGIT. The study findings suggest that CD155 and TIGIT can predict clinical outcomes, thereby contributing to the personalized care of CRC.
Collapse
|
35
|
Chen J, Xu L, Fang M, Xue Y, Cheng Y, Tang X. Hsa_circ_0060927 participates in the regulation of Caudatin on colorectal cancer malignant progression by sponging miR-421/miR-195-5p. J Clin Lab Anal 2022; 36:e24393. [PMID: 35373390 PMCID: PMC9102760 DOI: 10.1002/jcla.24393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Caudatin is extracted from radix cynanchi bungei and has an inhibitory effect on cancer progression. The study aims to reveal the impacts of hsa_circ_0060927 on Caudatin-mediated colorectal cancer (CRC) development and the underneath mechanism. METHODS The expression levels of hsa_circ_0060927, microRNA-421 (miR-421) and miR-195-5p were detected by quantitative real-time reverse transcription-polymerase chain reaction. The protein expression was analyzed by Western blot or immunohistochemistry assay. Cell viability and proliferation were analyzed by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide or 5-Ethynyl-29-deoxyuridine assay. Cell apoptosis was quantified by flow cytometry analysis. Cell migration and invasion were investigated by transwell assay. The putative associations among hsa_circ_0060927, miR-421 and miR-195-5p were predicted by the starbase online database, and identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. The impacts of Caudatin treatment on tumor growth in vivo were revealed by a xenograft tumor model assay. RESULTS Hsa_circ_0060927 expression was significantly upregulated, whereas miR-421 and miR-195-5p were downregulated in CRC tissues and cells compared with control groups. Hsa_circ_0060927 expression was closely associated with lymph node metastasis and tumor-node-metastasis stage. Caudatin treatment significantly decreased hsa_circ_0060927 expression but increased miR-421 and miR-195-5p expression. Caudatin exposure suppressed CRC cell proliferation, migration and invasion, and induced cell apoptosis; however, hsa_circ_0060927 overexpression hindered these impacts. Additionally, hsa_circ_0060927 was associated with miR-421/miR-195-5p. Depletion of miR-421 or miR-195-5p attenuated the influences of hsa_circ_0060927 silencing on CRC development. Furthermore, Caudatin treatment repressed tumor growth in vivo. CONCLUSION Caudatin inhibited CRC cell malignancy through the hsa_circ_0060927/miR-421/miR-195-5p pathway, which provided a potential therapeutic agent for CRC.
Collapse
Affiliation(s)
- Juan Chen
- Department of OncologyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Li Xu
- First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
| | - Mingzhi Fang
- Department of OncologyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yahong Xue
- Department of ColorectalNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yan Cheng
- Department of PharmacyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Xiuhong Tang
- Department of OncologyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
36
|
Tan X, Zhao J, Lou J, Zheng W, Wang P. Hsa_circ_0058129 regulates papillary thyroid cancer development via miR‐873‐5p/follistatin‐like 1 axis. J Clin Lab Anal 2022; 36:e24401. [PMID: 35373391 PMCID: PMC9102651 DOI: 10.1002/jcla.24401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/06/2023] Open
Abstract
Background Papillary thyroid cancer (PTC) is an endocrine malignancy with a high incidence. Circular RNAs (circRNAs) participate in regulating PTC. Here, we analyzed the role of hsa_circ_0058129 (circ_0058129) in PTC. Methods The expression of circ_0058129, fibronectin 1 (FN1) mRNA, microRNA‐873‐5p (miR‐873‐5p), and follistatin‐like 1 (FSTL1) was detected by qRT‐PCR and western blot. Cell proliferation was analyzed by CCK‐8, EdU, and flow cytometry analysis assays. Cell migration and invasion were evaluated by Transwell assay. The targeting relationship of miR‐873‐5p and circ_0058129 or FSTL1 was identified through dual‐luciferase reporter assay, RIP assay, and RNA pull‐down assay. Xenograft mouse model assay was implemented to determine the effect of circ_0058129 on tumor formation in vivo. Results The circ_0058129 and FSTL1 abundances were increased, while the miR‐873‐5p content was decreased in PTC tissues and cells compared with control groups. Circ_0058129 shortage inhibited PTC cell proliferation, migration, and invasion. Moreover, miR‐873‐5p repressed PTC cell malignancy by binding to FSTL1. Circ_0058129 targeted miR‐873‐5p to regulate FSTL1. Conclusion Circ_0058129 expedited PTC progression through the miR‐873‐5p/FSTL1 pathway.
Collapse
Affiliation(s)
- Xiangrong Tan
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Jiazheng Zhao
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Jianlin Lou
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Wen Zheng
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Peng Wang
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| |
Collapse
|
37
|
Jin A, Zhang C, Zheng W, Xian J, Yang W, Liu T, Chen W, Li T, Wang B, Pan B, Li Q, Cheng J, Wang P, Hu B, Zhou J, Fan J, Yang X, Guo W. CD155/SRC complex promotes hepatocellular carcinoma progression via inhibiting the p38 MAPK signalling pathway and correlates with poor prognosis. Clin Transl Med 2022; 12:e794. [PMID: 35384345 PMCID: PMC8982318 DOI: 10.1002/ctm2.794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy with poor prognosis. As a cell adhesion molecule, poliovirus receptor (PVR/CD155) is abnormally overexpressed in tumour cells, and related to tumour proliferation and invasion. However, the potential role and mechanism of CD155 have not yet been elucidated in HCC. METHODS Immunohistochemistry, RT-PCR and Western blot assays were used to determine CD155 expression in HCC cell lines and tissues. Cell Counting Kit-8 and colony formation assays were used to examine cell proliferation. Transwell and wound healing assays were used to evaluate cell migration and invasion. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cox regression and Kaplan-Meier analyses were performed to explore the clinical significance of CD155. The role of CD155 in vivo was evaluated by establishing liver orthotropic xenograft mice model. RNA sequencing, bioinformatics analysis and co-immunoprecipitation assay were used to explore the downstream signalling pathway of CD155. RESULTS CD155 was upregulated in HCC tissues and represented a promising prognostic indicator for HCC patients (n = 189) undergoing curative resection. High CD155 expression enhanced cell proliferation, migration and invasion, and contributed to cell survival in HCC. CD155 overexpression also induced epithelial-mesenchymal transition in HCC cells. CD155 function in HCC involved SRC/p38 MAPK signalling pathway. CD155 interacted with SRC homology-2 domain of SRC and promoted SRC activation, further inhibiting the downstream p38 MAPK signalling pathway in HCC. CONCLUSIONS CD155 promotes HCC progression via the SRC/p38 MAPK signalling pathway. CD155 may represent a predictor for poor postsurgery prognosis in HCC patients.
Collapse
Affiliation(s)
- An‐Li Jin
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Chun‐Yan Zhang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
| | - Wen‐Jing Zheng
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
- Department of Hepatobiliary SurgeryShenzhen Key LaboratoryGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesInternational Cancer CenterShenzhen University General HospitalShenzhen University Clinical Medical AcademyShenzhen UniversityShenzhenGuangdongP.R. China
| | - Jing‐Rong Xian
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Wen‐Jing Yang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Te Liu
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Wei Chen
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Tong Li
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Bei‐Li Wang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Bai‐Shen Pan
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Qian Li
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Jian‐Wen Cheng
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Peng‐Xiang Wang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Bo Hu
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Jian Zhou
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Jia Fan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Xin‐Rong Yang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Wei Guo
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| |
Collapse
|
38
|
Li H, Yin H, Yan Y. Circ_0041732 regulates tumor properties of triple-negative breast cancer cells by the miR-149-5p/FGF5 pathway. Int J Biol Markers 2022; 37:178-190. [PMID: 35341378 DOI: 10.1177/03936155221086599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancers with a high recurrence and mortality. The important factors promoting the TNBC process have not been fully identified. In this research, the role of a TNBC-related circular RNA (circRNA), circ_0041732, was revealed in TNBC cell tumor properties. METHODS The expression levels of circ_0041732, microRNA-149-5p (miR-149-5p) and fibroblast growth factor 5 (FGF5) were detected by quantitative real-time polymerase chain reaction. The protein expression was determined by Western blot analysis or immunohistochemistry assay. Cell proliferation was detected by cell counting kit-8 and cell colony formation assays. Cell apoptosis was analyzed by flow cytometry and caspase-3 activity assays. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. Cell angiogenic capacity was investigated by a tube formation assay. The targeting relationship between miR-149-5p and circ_0041732 or FGF5 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of circ_0041732 knockdown on tumor formation were determined by an in vivo assay. RESULTS Circ_0041732 and FGF5 expression were significantly upregulated, whereas miR-149-5p was downregulated in TNBC tissues and cells compared with normal breast tissues and cells, respectively. Circ_0041732 silencing inhibited TNBC cell proliferation, migration, invasion, and tube formation, but induced apoptosis. Additionally, circ_0041732 regulated TNBC cell tumor properties by binding to miR-149-5p. MiR-149-5p also modulated TNBC cell tumor properties by targeting FGF5. Furthermore, circ_0041732 knockdown hindered tumor formation in vivo. CONCLUSION Circ_0041732 silencing suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p. This finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui City, Jiangsu Province, China
| | - Hailin Yin
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui City, Jiangsu Province, China
| | - Yao Yan
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui City, Jiangsu Province, China
| |
Collapse
|
39
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
40
|
Wang J, Li J, Duan P, Dang Y, Shi T. Circ_0001588 Upregulates ERBB4 to Promote Glioma Malignant Progression Through Sponging miR-1281. Neurotox Res 2022; 40:89-102. [PMID: 34982356 DOI: 10.1007/s12640-021-00464-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Circular RNA (circRNA) plays a crucial part in glioma progression. However, the function of circ_0001588 in glioma development is still unknown. The study aims to reveal the role of circ_0001588 in glioma malignant progression and the inner molecular mechanism. The RNA expressions of circ_0001588, microRNA-1281 (miR-1281), and erb-b2 receptor tyrosine kinase 4 (ERBB4) were detected by qRT-PCR. Protein expression was checked by western blot analysis or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 and colony formation assays. Flow cytometry, transwell, and tube formation assays were used to detect cell apoptosis, cell migration, and invasion as well as angiogenesis, respectively. The binding relationship between miR-1281 and circ_0001588 or ERBB4 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. Mouse model assay was performed to confirm the effect of circ_0001588 knockdown on tumor formation in vivo. Circ_0001588 and ERBB4 expressions were significantly upregulated, while miR-1281 was downregulated in glioma tissues and cells compared with control groups. Circ_0001588 expression was closely related to tumor size and WHO grade of glioma. Decreased expression of circ_0001588 in glioma cells led to significant decreases of cell proliferation, migration, invasion, and tube formation and an increase of cell apoptosis. Additionally, downregulation of miR-1281, a target miRNA of circ_0001588, rescued circ_0001588 knockdown-mediated effects. MiR-1281 also inhibited glioma malignant progression by targeting ERBB4. Importantly, circ_0001588 regulated ERBB4 expression by interacting with miR-1281. Furthermore, circ_0001588 depletion suppressed tumor formation in vivo. Circ_0001588 acted as an oncogene in glioma malignant progression by miR-1281/ERBB4 pathway, suggesting the potential of circ_0001588 as a therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China
| | - Juan Li
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, Hubei Province, China
| | - Yanwei Dang
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China.
| | - Tao Shi
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, Hubei Province, China.
| |
Collapse
|
41
|
Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. Br J Cancer 2022; 126:10-23. [PMID: 34400801 PMCID: PMC8727557 DOI: 10.1038/s41416-021-01453-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer-hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)-are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.
Collapse
|
42
|
Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis. Diagnostics (Basel) 2021; 11:diagnostics11122370. [PMID: 34943606 PMCID: PMC8700640 DOI: 10.3390/diagnostics11122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
To increase the effectiveness of anticancer therapy based on immune checkpoint (IC) inhibition, some ICs are being investigated in addition to those used in clinic. We reviewed data on the relationship between PD-L1, B7-H3, B7-H4, IDO1, Galectin-3 and -9, CEACAM1, CD155, Siglec-15 and ADAM17 expression with cancer development in complex with the results of clinical trials on their inhibition. Increased expression of the most studied ICs—PD-L1, B7-H3, and B7-H4—is associated with poor survival; their inhibition is clinically significant. Expression of IDO1, CD155, and ADAM17 is also associated with poor survival, including gastric cancer (GC). The available data indicate that CD155 and ADAM17 are promising targets for immune therapy. However, the clinical trials of anti-IDO1 antibodies have been unsatisfactory. Expression of Galectin-3 and -9, CEACAM1 and Siglec-15 demonstrates a contradictory relationship with patient survival. The lack of satisfactory results of these IC inhibitor clinical trials additionally indicates the complex nature of their functioning. In conclusion, in many cases it is important to analyze the expression of other participants of the immune response besides target IC. The PD-L1, B7-H3, B7-H4, IDO1 and ADAM17 may be considered as candidates for prognosis markers for GC patient survival.
Collapse
|
43
|
Wang J, Yang K, Cao J, Li L. Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner. Bioengineered 2021; 12:10624-10637. [PMID: 34738502 PMCID: PMC8809977 DOI: 10.1080/21655979.2021.2000731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women. Increasing evidence suggests that circular RNA (circRNA) exerts critical functions in BC progression. However, the roles of circRNA septin 9 (circSEPT9) in BC development and the underneath mechanism remain largely unclear so far. In this work, the RNA levels of circSEPT9, microRNA-149-5p (miR-149-5p) and solute carrier family 1 member 5 (SLC1A5) were detected by quantitative real-time polymerase chain reaction. Western blot was performed to check protein expression. Glutamine uptake, cell proliferation and cell apoptosis were investigated by glutamine uptake, cell counting kit-8, cell colony formation, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis or DNA content quantitation assay. The interactions of miR-149-5p with circSEPT9 and SLC1A5 were identified by a dual-luciferase reporter assay. Mouse model assay was carried out to analyze the effect of circSEPT9 on tumor formation in vivo. Results showed that circSEPT9 and SLC1A5 expression were significantly upregulated, while miR-149-5p was downregulated in BC tissues and cells as compared with paracancerous normal breast tissues and human normal breast cells. Knockdown of circSEPT9 or SLC1A5 inhibited glutamine uptake and cell proliferation, but induced cell apoptosis in BC cells. SLC1A5 overexpression relieved circSEPT9 silencing-induced repression of BC cell malignancy. In mechanism, circSEPT9 regulated SLC1A5 expression by sponging miR-149-5p. In support, circSEPT9 knockdown led to delayed tumor tumorigenesis in vivo. In summary, these results indicates that circSEPT9 may act an oncogenic role in BC malignant progression by regulating miR-149-5p/SLC1A5 pathway, providing a novel mechanism responsible for BC development.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Kunxian Yang
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Junyu Cao
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Li Li
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| |
Collapse
|
44
|
Mettu NB, Ulahannan SV, Bendell JC, Garrido-Laguna I, Strickler JH, Moore KN, Stagg R, Kapoun AM, Faoro L, Sharma S. A Phase 1a/b Open‑Label, Dose‑Escalation Study of Etigilimab Alone or in Combination with Nivolumab in Patients with Locally Advanced or Metastatic Solid Tumors. Clin Cancer Res 2021; 28:882-892. [PMID: 34844977 DOI: 10.1158/1078-0432.ccr-21-2780] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE TIGIT is a co-inhibitory receptor of T cell and natural killer cell activity. Targeting TIGIT with or without PD-1/PD-L1 checkpoint inhibition may enhance anti-tumor immunity. PATIENTS AND METHODS This Phase 1a/b trial was a first-in-human, open label, multicenter, dose escalation and expansion study in patients with locally advanced or metastatic solid tumors. Using 3+3 design, patients underwent 14-day treatment cycles with anti-TIGIT antibody etigilimab alone (phase 1a; 0.3, 1.0, 3.0, 10.0, 20.0 mg/kg intravenously) or in combination with anti-PD-1 antibody nivolumab (phase 1b; 3.0, 10.0, 20.0 mg/kg etigilimab and 240 mg nivolumab). Primary objective was safety and tolerability. RESULTS Thirty-three patients were enrolled (Phase 1a, n=23; Phase 1b, n=10). There were no DLTs. MTD for single and combination therapy was not determined; maximum administered dose was 20 mg/kg. The most commonly reported adverse events (AEs) were rash (43.5%), nausea (34.8%) and fatigue (30.4%) in Phase 1a and decreased appetite (50.0%), nausea (50.0%) and rash (40%) in Phase 1b. Six patients experienced Grade {greater than or equal to}3 treatment-related AEs. In phase 1a, 7 patients (30.0%) had stable disease. In Phase 1b, 1 patient had a partial response; 1 patient had prolonged stable disease of nearly 8 months. Median progression-free survival was 56.0 days (Phase 1a) and 57.5 days (Phase 1b). Biomarker correlative analyses demonstrated evidence of clear dose-dependent target engagement by etigilimab. CONCLUSION Etigilimab had an acceptable safety profile with preliminary evidence of clinical benefit alone and in combination with nivolumab and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen N Moore
- Obstetrics and Gynecology, Stephenson Cancer Center, Stephenson Cancer Center at the University of Oklahoma Health Sciences Center/Sarah Cannon Research Institute
| | | | | | | | | |
Collapse
|
45
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
46
|
Zhang H, Zhang H, Zhu J, Liu H, Zhou Q. PESV represses non-small cell lung cancer cell malignancy through circ_0016760 under hypoxia. Cancer Cell Int 2021; 21:628. [PMID: 34838012 PMCID: PMC8626912 DOI: 10.1186/s12935-021-02336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancers, which is the most common malignant tumor worldwide. Polypeptide extract from scorpion venom (PESV) has been reported to inhibit NSCLC process. The present study aims to reveal the roles of PESV in NSCLC progression under hypoxia and the inner mechanism. Methods The expression levels of circular RNA 0016760 (circ_0016760) and microRNA-29b (miR-29b) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was determined by western blot and immunohistochemistry assays. Cell migration, invasion, proliferation and tube formation were investigated by transwell, cell colony formation, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assays. The impacts between PESV and circ_0016760 overexpression on tumor growth in vivo were investigated by in vivo tumor formation assay. Results Circ_0016760 expression was dramatically upregulated in NSCLC tissues and cells, compared with adjacent lung tissues and cells, respectively. PESV treatment downregulated circ_0016760 expression. Circ_0016760 silencing or PESV treatment repressed cell migration, invasion, proliferation and tube formation under hypoxia in NSCLC cells. Circ_0016760 overexpression restored the effects of PESV treatment on NSCLC process under hypoxia. Additionally, circ_0016760 acted as a sponge of miR-29b, and miR-29b bound to HIF1A. Meanwhile, miR-29b inhibitor impaired the influences of circ_0016760 knockdown on NSCLC process under hypoxia. Further, ectopic circ_0016760 expression restrained the effects of PESV exposure on tumor formation in vivo. Conclusion Circ_0016760 overexpression counteracted PESV-induced repression of NSCLC cell malignancy and angiogenesis under hypoxia through miR-29b/HIF1A axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02336-6.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China.
| | - Haojian Zhang
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Jiye Zhu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Huan Liu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Qin Zhou
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| |
Collapse
|
47
|
Triki H, Declerck K, Charfi S, Ben Kridis W, Chaabane K, Ben Halima S, Sellami T, Rebai A, Berghe WV, Cherif B. Immune checkpoint CD155 promoter methylation profiling reveals cancer-associated behaviors within breast neoplasia. Cancer Immunol Immunother 2021; 71:1139-1155. [PMID: 34608548 DOI: 10.1007/s00262-021-03064-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND CD155 immune checkpoint has recently emerged as a compelling immunotherapeutic target. Epigenetic DNA methylation changes are recognized as key molecular mechanisms in cancer development. Hence, the identification of methylation markers that are sensitive and specific for breast cancer may improve early detection and predict prognosis. We speculate that CD155 promoter methylation can be a valuable epigenetic biomarker, based upon strong indications for its immunoregulatory functions. METHODS Methylation analyses were conducted on 14 CpGs sites in the CD155 promoter region by bisulfite pyrosequencing. To elucidate the related gene expression changes, a transcriptional study using RT-qPCR was performed. Statistical analyses were performed to evaluate correlations of CD155 methylation profiles with mRNA expression together with clinical-pathological features, prognosis and immune infiltrate. RESULTS CD155 promoter methylation profile was significantly associated with SBR grade, tumor size, molecular subgroups, HER2 and hormonal receptors expression status. Low CD155 methylation rates correlated with better prognosis in univariate cox proportional hazard analysis and appeared as an independent survival predictor in cox-regression multivariate analysis. Further, methylation changes at CD155 specific CpG sites were consistent with CD155 membranous mRNA isoform expression status. Statistical analyses also showed a significant association with immune Natural Killer cell infiltrate when looking at the CpG7, CpG8, CpG9 and CpG11 sites. CONCLUSION Altogether, our results contribute to a better understanding of the impact of CD155 immune checkpoint modality expression in breast tumors, revealing for the first time that specific CpG sites from CD155 promoter may be a potential biomarker in breast cancer monitoring.
Collapse
Affiliation(s)
- Hana Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Slim Charfi
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Kais Chaabane
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Sawssan Ben Halima
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Tahya Sellami
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Boutheina Cherif
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
48
|
Nandi SS, Gohil T, Sawant SA, Lambe UP, Ghosh S, Jana S. CD155: A Key Receptor Playing Diversified Roles. Curr Mol Med 2021; 22:594-607. [PMID: 34514998 DOI: 10.2174/1566524021666210910112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Cluster of differentiation (CD155), formerly identified as poliovirus receptor (PVR) and later as immunoglobulin molecule involved in cell adhesion, proliferation, invasion and migration. It is a surface protein expressed mostly on normal and transformed malignant cells. The expression of the receptor varies based on the origin of tissue. The expression of the protein is determined by factors involved in sonic hedgehog pathway, Ras-MEK-ERK pathway and during stress conditions like DNA damage response. The protein uses alternate splicing mechanism, producing four isoforms - two being soluble (CD155β and CD155γ) and two being transmembrane protein (CD155α and CD155δ). Apart from being a viral receptor, researchers have identified CD155 having important roles in cancer research and cell signaling field. The receptor is recognized as biomarker for identifying cancerous tissue. The receptor interacts with molecules involved in cells defense mechanism. The immune-surveillance role of CD155 is being deciphered to understand the mechanistic approach it utilizes as onco-immunologic molecule. CD155 is a non-MHC-I ligand which helps in identifying non-self to NK cells via an inhibitory TIGIT ligand. The TIGIT-CD155 pathway is a novel MHC-I-independent education mechanism for cell tolerance and activation of NK cell. The receptor also has a role in metastasis of cancer and trans endothelial mechanism. In this review, authors discuss the virus-host interaction that occurs via single transmembrane receptor, the poliovirus infection pathway, which is being exploited as therapeutic pathway. The oncolytic virotherapy is now promising way for curing cancer.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Trupti Gohil
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sonali Ankush Sawant
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Upendra Pradeep Lambe
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad. India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt Ltd., Thane-West, Maharashtra-400604. India
| |
Collapse
|
49
|
Fang G, Wu Y, Zhang X. CircASXL1 knockdown represses the progression of colorectal cancer by downregulating GRIK3 expression by sponging miR-1205. World J Surg Oncol 2021; 19:176. [PMID: 34127015 PMCID: PMC8204566 DOI: 10.1186/s12957-021-02275-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common aggressive tumor that poses a heavy burden to human health. An increasing number of studies have reported that circular RNA (circRNA) is involved in the progression of CRC. In this study, the special profiles of circASXL1 (circ_0001136) in CRC progression were revealed. METHODS The expression of circASXL1, microRNA-1205 (miR-1205), and glutamate ionotropic receptor kainate type subunit 3 (GRIK3) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression was determined by Western blot or immunohistochemistry. Cell colony-forming ability was investigated by colony formation assay. Cell cycle and apoptosis were demonstrated using cell-cycle and cell-apoptosis analysis assays, respectively. Cell migration and invasion were detected by wound-healing and transwell migration and invasion assays, respectively. The binding sites between miR-1205 and circASXL1 or GRIK3 were predicted by circBank or miRDB online database, and identified by dual-luciferase reporter assay. The impact of circASXL1 on tumor formation in vivo was investigated by in vivo tumor formation assay. RESULTS CircASXL1 and GRIK3 expression were apparently upregulated, and miR-1205 expression was downregulated in CRC tissues and cells relative to control groups. CircASXL1 knockdown inhibited cell colony-forming ability, migration and invasion, whereas induced cell arrest at G0/G1 phase and cell apoptosis in CRC cells; however, these effects were attenuated by miR-1205 inhibitor. Additionally, circASXL1 acted as a sponge for miR-1205, and miR-1205 was associated with GRIK3. Furthermore, circASXL1 silencing hindered tumor formation by upregulating miR-1205 and downregulating GRIK3 expression. CONCLUSION CircASXL1 acted an oncogenic role in CRC malignant progression via inducing GRIK3 through sponging miR-1205. Our findings provide a theoretical basis for studying circASXL1-directed therapy for CRC.
Collapse
Affiliation(s)
- Guojiu Fang
- Department of General Surgery, Shanghai Fengxian Central Hospital, No. 6600, Nanfeng Road, Nanqiao New Town, Fengxian District, Shanghai, 201400, China
| | - Yibin Wu
- Department of Liver Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital, No. 6600, Nanfeng Road, Nanqiao New Town, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
50
|
Liu L, Wang Y, Geng C, Wang A, Han S, You X, Sun Y, Zhang J, Lu W, Zhang Y. CD155 Promotes the Progression of Cervical Cancer Cells Through AKT/mTOR and NF-κB Pathways. Front Oncol 2021; 11:655302. [PMID: 34164340 PMCID: PMC8216081 DOI: 10.3389/fonc.2021.655302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Expression of the immunoglobulin superfamily member CD155 was increased in a variety of human malignancies, but the role of CD155 in tumorigenesis and tumor development in cervical cancer has not been elucidated. In this study, immunohistochemistry and enzyme-linked immunosorbent assay analyses showed that CD155 expression gradually increases with the degree of cervical lesions. In vitro and in vivo, reducing the expression of CD155 inhibited cell proliferation, cell viability and tumor formation and arrested the cell cycle in G0/G1 phase. Antibody array-based profiling of protein phosphorylation revealed that CD155 knockdown can inhibited the AKT/mTOR/NF-κB pathway and activated autophagy and apoptosis; the opposite effects were observed upon CD155 has overexpression. We proved that there is an interaction between CD155 and AKT by immunoprecipitation. We further confirmed the mechanism between CD155 and AKT/mTOR/NF-κB through rescue experiments. AKT knockdown reversed the anti-apoptotic effects and activation of the AKT/mTOR/NF-κB pathway induced by CD155 overexpression. Our research demonstrated that CD155 can interact with AKT to form a complex, activates the AKT/mTOR/NF-κB pathway and inhibit autophagy and apoptosis. Thus, CD155 is a potential screening and therapeutic biomarker for cervical cancer.
Collapse
Affiliation(s)
- Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, China
| | - Chen Geng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Aihong Wang
- Department of Obstetrics and Gynaecology, Feicheng Hospital Affiliated to Shandong First Medical University, Tai'an, China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuewu You
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|