1
|
Yulak F, Filiz AK, Joha Z, Ergul M. Mechanism of anticancer effect of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor on HT-29 Cells. Med Oncol 2023; 40:341. [PMID: 37891359 DOI: 10.1007/s12032-023-02221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The PI3K pathway plays a crucial role in tumor cell proliferation across various cancers, including colon cancer, making it a promising treatment target. This study aims to investigate the antiproliferative activity of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor, on colon cancer and elucidate the underlying mechanisms. HT-29 colon cancer cells were treated with varying doses of ETP 45658 and its cytotoxic effect assessed using the XTT cell viability assay.ELISA was also used to measure TAS, TOS, Bax, BCL-2, cleaved caspase 3, cleaved PARP, and 8-oxo-dG levels. Flow cytometry was performed to investigate apoptosis, cell cycle, caspase 3/7 activity, and mitochondrial membrane potential. Additionally, following the administration of DAPI (4,6-diamidino-2-phenylindole) dye, the cells were visualized using an immunofluorescence microscope. It was observed that ETP-45658 exerted a dose-dependent and statistically significant antiproliferative effect on HT-29 colon cancer cells. Further investigations using the IC50 dose showed that ETP-45658 decreased TAS levels and increased TOS levels and revealed that it upregulated apoptotic proteins while downregulating anti-apoptotic proteins. Our findings also showed that it increased Annexin V binding, arrested the cell cycle at G0/G1 phase, induced caspase 3/7 activity, impaired mitochondrial membrane potential, and ultimately triggered apoptosis in HT-29 cells. ETP-45658 shows promise against colon cancer by inducing cell death, and oxidative stress, and arresting the cell cycle. Targeting the PI3K/AKT/mTOR pathway with ETP-45658 offers exciting potential for colon cancer treatment.
Collapse
Affiliation(s)
- Fatih Yulak
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Zıad Joha
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
2
|
Chocry M, Leloup L, Parat F, Messé M, Pagano A, Kovacic H. Gemcitabine: An Alternative Treatment for Oxaliplatin-Resistant Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14235894. [PMID: 36497380 PMCID: PMC9740936 DOI: 10.3390/cancers14235894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Resistance to treatments is one of the leading causes of cancer therapy failure. Oxaliplatin is a standard chemotherapy used to treat metastatic colorectal cancer. However, its efficacy is greatly reduced by the development of resistances. In a previous study, we deciphered the mechanisms leading to oxaliplatin resistance and highlighted the roles played by ROS production and the p38 MAPK pathway in this phenomenon. In this report, we studied the effects of different chemotherapy molecules on our oxaliplatin-resistant cells to identify alternative treatments. Among all the studied molecules, gemcitabine was the only one to present a major cytotoxic effect on oxaliplatin-resistant cancer cells both in vivo and in vitro. However, the combination of oxaliplatin and gemcitabine did not present any major interest. Indeed, the study of combination efficiency using Chou and Talalay's method showed no synergy between oxaliplatin and gemcitabine. Using PamGene technology to decipher gemcitabine's effects on oxaliplatin-resistant cells, we were able to show that gemcitabine counteracts chemoresistance by strongly inhibiting the Akt and src/p38 MAPK pathways, leading to apoptosis induction and cell death. In view of these results, gemcitabine could be an interesting alternative therapy for patients with colorectal cancer not responding to oxaliplatin-based protocols such as FOLFOX.
Collapse
Affiliation(s)
- Mathieu Chocry
- Institut de Neurophysiopathologie (INP, UMR 7051), CNRS, Faculté de Médecine, Aix-Marseille University, 13385 Marseille, France
| | - Ludovic Leloup
- Institut de Neurophysiopathologie (INP, UMR 7051), CNRS, Faculté de Médecine, Aix-Marseille University, 13385 Marseille, France
- Correspondence: ; Tel.: +33-(0)4-91-32-47-29
| | - Fabrice Parat
- Institut de Neurophysiopathologie (INP, UMR 7051), CNRS, Faculté de Médecine, Aix-Marseille University, 13385 Marseille, France
| | - Mélissa Messé
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Alessandra Pagano
- Institut de Neurophysiopathologie (INP, UMR 7051), CNRS, Faculté de Médecine, Aix-Marseille University, 13385 Marseille, France
| | - Hervé Kovacic
- Institut de Neurophysiopathologie (INP, UMR 7051), CNRS, Faculté de Médecine, Aix-Marseille University, 13385 Marseille, France
| |
Collapse
|
3
|
Bohusné Barta B, Simon Á, Nagy L, Dankó T, Raffay RE, Petővári G, Zsiros V, Sebestyén A, Sipos F, Műzes G. Survival of HT29 cancer cells is influenced by hepatocyte growth factor receptor inhibition through modulation of self-DNA-triggered TLR9-dependent autophagy response. PLoS One 2022; 17:e0268217. [PMID: 35551547 PMCID: PMC9098092 DOI: 10.1371/journal.pone.0268217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
HGFR activation drives the malignant progression of colorectal cancer, and its inhibition displays anti-autophagic activity. The interrelated role of HGFR inhibition and TLR9/autophagy signaling in HT29 cancer cells subjected to modified self-DNA treatments has not been clarified. We analyzed this complex interplay with cell metabolism and proliferation measurements, TLR9, HGFR and autophagy inhibitory assays and WES Simple Western blot-based autophagy flux measurements, gene expression analyses, immunocytochemistry, and transmission electron microscopy. The overexpression of MyD88 and caspase-3 was associated with enhanced HT29 cell proliferation, suggesting that incubation with self-DNAs could suppress the apoptosis-induced compensatory cell proliferation. HGFR inhibition blocked the proliferation-reducing effect of genomic and hypermethylated, but not that of fragmented DNA. Lowest cell proliferation was achieved with the concomitant use of genomic DNA, HGFR inhibitor, and chloroquine, when the proliferation stimulating effect of STAT3 overexpression could be outweighed by the inhibitory effect of LC3B, indicating the putative involvement of HGFR-mTOR-ULK1 molecular cascade in HGFR inhibitor-mediated autophagy. The most intense cell proliferation was caused by the co-administration of hypermethylated DNA, TLR9 and HGFR inhibitors, when decreased expression of both canonical and non-canonical HGFR signaling pathways and autophagy-related genes was present. The observed ultrastructural changes also support the context-dependent role of HGFR inhibition and autophagy on cell survival and proliferation. Further investigation of the influence of the studied signaling pathways and cellular processes can provide a basis for novel, individualized anti-cancer therapies.
Collapse
Affiliation(s)
- Bettina Bohusné Barta
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Ágnes Simon
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Lőrinc Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Regina Eszter Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Györgyi Műzes
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Chen YC, Lai YS, Hsuuw YD, Chang KT. Withholding of M-CSF Supplement Reprograms Macrophages to M2-Like via Endogenous CSF-1 Activation. Int J Mol Sci 2021; 22:3532. [PMID: 33805444 PMCID: PMC8037162 DOI: 10.3390/ijms22073532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophage colony-stimulating factor (M-CSF or CSF-1) is known to have a broad range of actions on myeloid cells maturation, including the regulation of macrophage differentiation, proliferation and survival. Macrophages generated by M-CSF stimulus have been proposed to be alternatively activated or M2 phenotype. M-CSF is commonly overexpressed by tumors and is also known to enhance tumor growth and aggressiveness via stimulating pro-tumor activities of tumor-associated macrophages (TAMs). Currently, inhibition of CSF-1/CSF-1R interaction by therapeutic antibody to deplete TAMs and their pro-tumor functions is becoming a prevalent strategy in cancer therapy. However, its antitumor activity shows a limited single-agent effect. Therefore, macrophages in response to M-CSF interruption are pending for further investigation. To achieve this study, bone marrow derived macrophages were generated in vitro by M-CSF stimulation for 7 days and then continuously grown until day 21 in M-CSF absence. A selective pressure for cell survival was initiated after withdrawal of M-CSF. The surviving cells were more prone to M2-like phenotype, even after receiving interleukin-4 (IL-4) stimulation. The transcriptome analysis unveiled that endogenous CSF-1 level was dramatically up-regulated and numerous genes downstream to CSF-1 covering tumor necrosis factor (TNF), ras-related protein 1 (Rap1) and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway were significantly modulated, especially for proliferation, migration and adhesion. Moreover, the phenomenal increase of miR-21-5p and genes related to pro-tumor activity were observed in parallel. In summary, withholding of CSF-1/CSF-1R interaction would rather augment than suspend the M-CSF-driven pro-tumor activities of M2 macrophages in a long run.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; christian--
| | - Yin-Siew Lai
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Yan-Der Hsuuw
- Department of Tropical Agriculture and International Cooperation, Pingtung 91201, Taiwan;
| | - Ko-Tung Chang
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
Shahi Thakuri P, Lamichhane A, Singh S, Gupta M, Luker GD, Tavana H. Modeling Adaptive Resistance of KRAS Mutant Colorectal Cancer to MAPK Pathway Inhibitors with a Three-Dimensional Tumor Model. ACS Pharmacol Transl Sci 2020; 3:1176-1187. [PMID: 33344895 DOI: 10.1021/acsptsci.0c00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Single-agent drug treatment of KRASmut colorectal cancers is often ineffective because the activation of compensatory signaling pathways leads to drug resistance. To mimic cyclic chemotherapy treatments of patients, we showed that intermittent treatments of 3D tumor spheroids of KRASmut colorectal cancer cells with inhibitors of mitogen-activated protein kinase (MAPK) signaling pathway temporarily suppressed growth of spheroids. However, the efficacy of successive single-agent treatments was significantly reduced. Molecular analysis showed compensatory activation of PI3K/AKT and STAT kinases and EGFR family proteins. To overcome the adaptation of cancer cells to MAPK pathway inhibitors, we treated tumor spheroids with a combination of MEK and EGFR inhibitors. This approach significantly blocked signaling of MAPK and PI3K/AKT pathways and prevented the growth of spheroids, but it was not effective against STAT signaling. Although the combination treatment blocked the matrix invasion of DLD1 cells, additional treatments with STAT inhibitors were necessary to prevent invasiveness of HCT116 cells. Overall, our drug resistance model elucidated the mechanisms of treatment-induced growth and invasiveness of cancer cells and allowed design-driven testing and identifying of effective treatments to suppress these phenotypes.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Megha Gupta
- Department of Arts and Sciences, The University of Akron, Akron, Ohio 44325, United States
| | - Gary D Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Li G, Kanagasabai T, Lu W, Zou MR, Zhang SM, Celada SI, Izban MG, Liu Q, Lu T, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Yan Q, Chen Z. KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis. Cancer Res 2020; 80:4633-4643. [PMID: 32868382 DOI: 10.1158/0008-5472.can-20-0505] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
KDM5B (lysine[K]-specific demethylase 5B) is frequently upregulated in various human cancers including prostate cancer. KDM5B controls H3K4me3/2 levels and regulates gene transcription and cell differentiation, yet the contributions of KDM5B to prostate cancer tumorigenesis remain unknown. In this study, we investigated the functional role of KDM5B in epigenetic dysregulation and prostate cancer progression in cultured cells and in mouse models of prostate epithelium-specific mutant Pten/Kdm5b. Kdm5b deficiency resulted in a significant delay in the onset of prostate cancer in Pten-null mice, whereas Kdm5b loss alone caused no morphologic abnormalities in mouse prostates. At 6 months of age, the prostate weight of Pten/Kdm5b mice was reduced by up to 70% compared with that of Pten mice. Pathologic analysis revealed Pten/Kdm5b mice displayed mild morphologic changes with hyperplasia in prostates, whereas age-matched Pten littermates developed high-grade prostatic intraepithelial neoplasia and prostate cancer. Mechanistically, KDM5B governed PI3K/AKT signaling in prostate cancer in vitro and in vivo. KDM5B directly bound the PIK3CA promoter, and KDM5B knockout resulted in a significant reduction of P110α and PIP3 levels and subsequent decrease in proliferation of human prostate cancer cells. Conversely, KDM5B overexpression resulted in increased PI3K/AKT signaling. Loss of Kdm5b abrogated the hyperactivation of AKT signaling by decreasing P110α/P85 levels in Pten/Kdm5b mice. Taken together, our findings reveal that KDM5B acts as a key regulator of PI3K/AKT signaling; they also support the concept that targeting KDM5B is a novel and effective therapeutic strategy against prostate cancer. SIGNIFICANCE: This study demonstrates that levels of histone modification enzyme KDM5B determine hyperactivation of PI3K/AKT signaling in prostate cancer and that targeting KDM5B could be a novel strategy against prostate cancer.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Mike R Zou
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee
| | - Michael G Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Lu
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, Connecticut.
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee.
| |
Collapse
|
7
|
Lim KE, Hoggatt AM, Bullock WA, Horan DJ, Yokota H, Pavalko FM, Robling AG. Pten deletion in Dmp1-expressing cells does not rescue the osteopenic effects of Wnt/β-catenin suppression. J Cell Physiol 2020; 235:9785-9794. [PMID: 32529635 DOI: 10.1002/jcp.29792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/06/2022]
Abstract
Skeletal homeostasis is sensitive to perturbations in Wnt signaling. Beyond its role in the bone, Wnt is a major target for pharmaceutical inhibition in a wide range of diseases, most notably cancers. Numerous clinical trials for Wnt-based candidates are currently underway, and Wnt inhibitors will likely soon be approved for clinical use. Given the bone-suppressive effects accompanying Wnt inhibition, there is a need to expose alternate pathways/molecules that can be targeted to counter the deleterious effects of Wnt inhibition on bone properties. Activation of the Pi3k/Akt pathway via Pten deletion is one possible osteoanabolic pathway to exploit. We investigated whether the osteopenic effects of β-catenin deletion from bone cells could be rescued by Pten deletion in the same cells. Mice carrying floxed alleles for Pten and β-catenin were bred to Dmp1-Cre mice to delete Pten alone, β-catenin alone, or both genes from the late-stage osteoblast/osteocyte population. The mice were assessed for bone mass, density, strength, and formation parameters to evaluate the potential rescue effect of Pten deletion in Wnt-impaired mice. Pten deletion resulted in high bone mass and β-catenin deletion resulted in low bone mass. Compound mutants had bone properties similar to β-catenin mutant mice, or surprisingly in some assays, were further compromised beyond β-catenin mutants. Pten inhibition, or one of its downstream nodes, is unlikely to protect against the bone-wasting effects of Wnt/βcat inhibition. Other avenues for preserving bone mass in the presence of Wnt inhibition should be explored to alleviate the skeletal side effects of Wnt inhibitor-based therapies.
Collapse
Affiliation(s)
- Kyung-Eun Lim
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - April M Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Whitney A Bullock
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel J Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hiroki Yokota
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Frederick M Pavalko
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
8
|
Helmy MW, Ghoneim AI, Katary MA, Elmahdy RK. The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-κB axis. Mol Biol Rep 2020; 47:2217-2230. [DOI: 10.1007/s11033-020-05327-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
|
9
|
Ciołczyk-Wierzbicka D, Gil D, Zarzycka M, Laidler P. mTOR inhibitor everolimus reduces invasiveness of melanoma cells. Hum Cell 2019; 33:88-97. [PMID: 31586300 PMCID: PMC6965047 DOI: 10.1007/s13577-019-00270-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin (mTOR) plays a key role in several cellular processes: proliferation, survival, invasion, and angiogenesis, and therefore, controls cell behavior both in health and in disease. Dysregulation of the mTOR signaling is involved in some of the cancer hallmarks, and thus the mTOR pathway is an important target for the development of a new anticancer therapy. The object of this study is recognition of the possible role of mTOR kinase inhibitors—everolimus single and in combination with selected downstream protein kinases inhibitors: LY294002 (PI3 K), U0126 (ERK1/2), GDC-0879 (B-RAF), AS-703026 (MEK), MK-2206 (AKT), PLX-4032 (B-RRAF) in cell invasion in malignant melanoma. Treatment of melanoma cells with everolimus led to a significant decrease in the level of both phosphorylated: mTOR (Ser2448) and mTOR (Ser2481) as well as their downstream effectors. The use of protein kinase inhibitors produced a significant decrease in metalloproteinases (MMPs) activity, as well as diminished invasion, especially when used in combination. The best results in the inhibition of both MMPs and cell invasiveness were obtained for the combination of an mTOR inhibitor— everolimus with a B-RAF inhibitor—PLX-4032. Slightly less profound reduction of invasiveness was obtained for the combinations of an mTOR inhibitor—everolimus with ERK1/2 inhibitor—U126 or MEK inhibitor—AS-703026 and in the case of MMPs activity decrease for PI3 K inhibitor—LY294002 and AKT inhibitor—MK-2206. The simultaneous use of everolimus or another new generation rapalog with selected inhibitors of crucial signaling kinases seems to be a promising concept in cancer treatment.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
10
|
Ciołczyk-Wierzbicka D, Zarzycka M, Gil D, Laidler P. mTOR inhibitor Everolimus-induced apoptosis in melanoma cells. J Cell Commun Signal 2019; 13:357-368. [PMID: 30848427 PMCID: PMC6732148 DOI: 10.1007/s12079-019-00510-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Melanoma is the most aggressive, therapy-resistant skin cancer. The mammalian target of rapamycin (mTOR), the serine/threonine kinase which integrates both intracellular and extracellular signals, plays a crucial role in coordinating the balance between the growth and death of cells. The object of this study is a comparison of the influence of mTOR inhibitor everolimus in the concentration range between 20 nM and 10 μM, used individually and in combination with selected downstream protein kinases inhibitors: LY294002 (PI3K), U0126 (ERK1/2), AS-703026 (MEK) and MK-2206 (AKT) on the expression of pro-survival proteins: p-Bcl-2 (S70), p-Bcl-2 (T56), Bcl-2, Bcl-xL, Mcl-1, activity of caspase-3, proliferation and induction of apoptosis in melanoma cells. Current results clearly show that the nanomolar concentration of the mTOR inhibitor everolimus in combination with the inhibitor of MAP kinase (AS-703026) or AKT kinase (MK-2206) is effective in inducing apoptosis and reducing proliferation of melanoma cells. The herein research results confirm the hypothesis on the important role of mTOR signaling in cancer progression, and gives hope that implementation of successful combination of its inhibitors will find recognition and application in cancer treatment in the near future.
Collapse
Affiliation(s)
| | - Marta Zarzycka
- Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Gil
- Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Piotr Laidler
- Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
11
|
Yang Q, Miyagawa M, Liu X, Zhu B, Munemasa S, Nakamura T, Murata Y, Nakamura Y. Methyl-β-cyclodextrin potentiates the BITC-induced anti-cancer effect through modulation of the Akt phosphorylation in human colorectal cancer cells. Biosci Biotechnol Biochem 2018; 82:2158-2167. [DOI: 10.1080/09168451.2018.1514249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
Methyl-β-cyclodextrin (MβCD) is an effective agent for the removal of plasma membrane cholesterol. In this study, we investigated the modulating effects of MβCD on the antiproliferation induced by benzyl isothiocyanate (BITC), an ITC compound mainly derived from papaya seeds. We confirmed that MβCD dose-dependently increased the cholesterol level in the medium, possibly through its removal from the plasma membrane of human colorectal cancer cells. The pretreatment with a non-toxic concentration (2.5 mM) of MβCD significantly enhanced the BITC-induced cytotoxicity and apoptosis induction, which was counteracted by the cholesterol supplementation. Although BITC activated the phosphoinositide 3-kinase (PI3K)/Akt pathway, MβCD dose-dependently inhibited the phosphorylation level of Akt. On the contrary, the treatment of MβCD enhanced the phosphorylation of mitogen activated protein kinases, but did not potentiate their BITC-induced phosphorylation. These results suggested that MβCD might potentiate the BITC-induced anti-cancer by cholesterol depletion and thus inhibition of the PI3K/Akt-dependent survival pathway.
Abbreviations: CDs: cyclodextrins; MβCD: methyl-β-cyclodextrin; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; PI3K: phosphoinositide 3-kinase; PDK1: phosphoinositide-dependent kinase-1; MAPK: mitogen activated protein kinase; ERK1/2: extracellular signal-regulated kinase1/2; JNK: c-Jun N-terminal kinase; PI: propidium iodide; FBS: fatal bovine serum; TLC: thin-layer chromatography; PBS(-): phosphate-buffered saline without calcium and magnesium; MEK: MAPK/ERK kinase; PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-trisphosphate
Collapse
Affiliation(s)
- Qifu Yang
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Miku Miyagawa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Xiaoyang Liu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Wu N, Jiang M, Han Y, Liu H, Chu Y, Liu H, Cao J, Hou Q, Zhao Y, Xu B, Xie X. O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5. J Cell Mol Med 2018; 23:1354-1362. [PMID: 30484950 PMCID: PMC6349181 DOI: 10.1111/jcmm.14038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
The RNA helicase p68 (DDX5), a key player in RNA metabolism, belongs to the DEAD box family and is involved in the development of colorectal cancer. Here, we found both DDX5 and O‐GlcNAcylation are up‐regulated in colorectal cancer. In addition, DDX5 protein level is significantly positively correlated with the expression of O‐GlcNAcylation. Although it was known DDX5 protein could be regulated by post‐translational modification (PTM), how O‐GlcNAcylation modification regulated of DDX5 remains unclear. Here we show that DDX5 interacts directly with OGT in the SW480 cell line, which is the only known enzyme that catalyses O‐GlcNAcylation in humans. Meanwhile, O‐GlcNAcylation could promote DDX5 protein stability. The OGT‐DDX5 axis affects colorectal cancer progression mainly by regulating activation of the AKT/mTOR signalling pathway. Taken together, these results indicated that OGT‐mediated O‐GlcNAcylation stabilizes DDX5, promoting activation of the AKT/mTOR signalling pathway, thus accelerating colorectal cancer progression. This study not only reveals the novel functional of O‐GlcNAcylation in regulating DDX5, but also reveals the carcinogenic effect of the OGT‐DDX5 axis in colorectal cancer.
Collapse
Affiliation(s)
- Nan Wu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yuying Han
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Haiming Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Hao Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Jiayi Cao
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Qiuqiu Hou
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yu Zhao
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Bing Xu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiao tong University, Xi'an, Shaanxi, China
| | - Xin Xie
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Ding C, Tang W, Wu H, Fan X, Luo J, Feng J, Wen K, Wu G. The PEAK1-PPP1R12B axis inhibits tumor growth and metastasis by regulating Grb2/PI3K/Akt signalling in colorectal cancer. Cancer Lett 2018; 442:383-395. [PMID: 30472186 DOI: 10.1016/j.canlet.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Pseudopodium enriched atypical kinase 1 (PEAK1), a novel non-receptor tyrosine kinase, was recently implicated in cancer pathogenesis. However, its functional role in colorectal cancer (CRC) is not well known. Herein, we demonstrated that PEAK1 was frequently downregulated in CRC and significantly associated with tumor size, differentiation status, metastasis, and clinical stage. PEAK1 overexpression suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo, whereas knockout had the opposite effects. Further evaluation revealed that PEAK1 expression was positively correlated with protein phosphatase 1 regulatory subunit 12B (PPP1R12B) in CRC cell lines and clinical tissues, and this protein was found to suppress activation of the Grb2/PI3K/Akt pathway. Moreover, PPP1R12B knockdown markedly abrogated PEAK1-mediated tumor suppressive effects, whereas its upregulation recapitulated the effects of PEAK1 knockout on cell behaviours and the activation of signalling. Mechanistically, PI3K and Akt inhibitors reversed impaired the effect of PEAK1 function on cell proliferation, migration, and invasion. Our results provide compelling evidence that the PEAK1-PPP1R12B axis inhibits colorectal tumorigenesis and metastasis through deactivation of the Grb2/PI3K/Akt pathway, which might provide a novel therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China; Center of Clinical Laboratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Wendong Tang
- Medical School of Southeast University, Nanjing, China
| | - Hailu Wu
- Medical School of Southeast University, Nanjing, China; Department of Gastroenterology, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jihong Feng
- Department of Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China; Center of Clinical Laboratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
14
|
Li D, Wang G, Jin G, Yao K, Zhao Z, Bie L, Guo Y, Li N, Deng W, Chen X, Chen B, Liu Y, Luo S, Guo Z. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int J Mol Med 2018; 43:630-640. [PMID: 30387805 DOI: 10.3892/ijmm.2018.3969] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is a common type of cancer worldwide and accounts for a significant number of cancer‑related deaths. Although surgical techniques and treatment strategies for colon cancer have advanced over the past two decades, the prognosis has not improved considerably. Resveratrol, a natural stilbene compound, possesses antioxidant, cardioprotective and anticancer properties. However, the role of resveratrol in colon cancer has not been fully elucidated. The present study demonstrated that resveratrol inhibited cell proliferation and colony growth in DLD1 and HCT15 colon cancer cells, but did not affect normal colon epithelial cells. The resveratrol‑mediated inhibition of cell proliferation correlated with an induction of apoptosis and with G1 phase cell cycle arrest in colon cancer cells. Additionally, resveratrol treatment decreased the protein expression levels of cyclin D1, cyclin E2 and BCL2 apoptosis regulator, while it increased BCL2 associated X and tumor protein p53, all of which are involved in the regulation of cell cycle and apoptosis. Notably, the results obtained from in silico computational screening identified AKT serine/threonine kinase 1 (AKT1) and AKT2 as novel targets of resveratrol. Computational docking suggested that there are three or four possible hydrogen bonds in the active pocket of AKT1 and AKT2 that contribute to the mode of action of resveratrol. The present study confirmed that resveratrol bound to AKT1 and AKT2 with a pull‑down assay. Furthermore, knockdown of AKT1 and AKT2 inhibited cell proliferation and colony growth, by attenuating cell cycle progression and increasing apoptosis in colon cancer cells, effects that were similar to those caused by resveratrol treatment. Taken together, the present results suggest that the targeting effects of resveratrol to AKT1 and AKT2 may be a potent strategy for chemoprevention or therapy for colon cancer.
Collapse
Affiliation(s)
- Dan Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Gangcheng Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Guoguo Jin
- Laboratory of Bone Tumor, Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Ke Yao
- China‑US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, P.R. China
| | - Zhenjiang Zhao
- Laboratory of Bone Tumor, Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Liangyu Bie
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Ning Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Wenying Deng
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xiaobin Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Beibei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yuanyuan Liu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Suxia Luo
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhiping Guo
- Fu Wai Hua Zhong Vascular Disease Hospital, Zhengzhou, Henan 450018, P.R. China
| |
Collapse
|
15
|
F-box and leucine-rich repeat protein 5 promotes colon cancer progression by modulating PTEN/PI3K/AKT signaling pathway. Biomed Pharmacother 2018; 107:1712-1719. [PMID: 30257389 DOI: 10.1016/j.biopha.2018.08.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
The hyper-activation of PI3K/AKT signaling is common in many kinds of malignant tumors and promotes cell growth. Moreover, FBXL5 is reported to play an important role in the progression of gastric cancer and cervical cancer. In this view, this study aims to explore the function of FBXL5 in the progression of colon cancer and determine if PI3K/AKT signaling pathway involves in this process. Western blotting, RT-PCR, and immunohistochemistry were used to detect the expression pattern of FBXL5 in colon cancer tissues and cell lines. Immunofluorescence, Duolink, and immunoprecipitation (IP) assays were performed to evaluate the interaction between FBXL5 and PI3K/AKT signaling. Results showed that FBXL5 was elevated in colon cancer tissues and cells, which had physical interaction with PTEN protein and negatively regulated its expression, whereas positively modulated PI3K, AKT and mTOR expression and their phosphorylation. Besides, FBXL5 promoted cell proliferation and tumorigenesis and inhibited apoptosis by modulating PTEN/PI3K/AKT signaling. In conclusion, this study demonstrated that FBXL5 functioned as an oncogene in the progression of colon cancer through regulating PTEN/PI3K/AKT signaling.
Collapse
|
16
|
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers and causes of cancer-related death worldwide. In patients with CRC, metastasis is a crucial problem that leads to treatment failure and is the primary cause of the lethality of colon cancer. Long noncoding RNAs (lncRNAs) have recently emerged as critical molecules in the development, cell growth, apoptosis, and metastasis of CRC. Method We investigated the transcriptome profiles of human lncRNAs in the primary tumor tissues and in the corresponding normal mucosa of two patients with CRC by using a microarray approach. The expression levels of lncRNAs were verified in colon cancer by real-time PCR. Using bioinformatics approach to illustrate putative biological function of Linc00659 in colon cancer. The effects of Linc00659 on cell growth, proliferation, cell cycle and apoptosis were studies by in vitro assays. Results Our data revealed that compared with adjacent normal tissues, 201 lncRNAs were deregulated (fold change ≥ 4 or ≤ 0.25) in CRC tissues. Among them, the expression levels of Linc00659 were significantly increased in colon cancer, and high expression levels were correlated with poor survival in patients with CRC. Bioinformatics analysis results indicated that Linc00659 was significantly coexpressed with cycle-related genes in CRC. Linc00659 expression knockdown could significantly suppress colon cancer cell growth by impairing cell cycle progression. In addition, our results showed that Linc00659 expression knockdown could accelerate cell apoptosis in colon cancer cells treated with chemotherapy drugs. Meanwhile, our results also demonstrated that silencing of Linc00659 expression leads to cell growth inhibition and induced apoptosis, possibly by suppressing PI3K-AKT signaling in colon cancer. Conclusion Linc00659 is a novel oncogenic lncRNA involved in colon cancer cell growth by modulating the cell cycle. Our findings give an insight into lncRNA regulation and provide an application for colon cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12943-018-0821-1) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Toton E, Romaniuk A, Konieczna N, Hofmann J, Barciszewski J, Rybczynska M. Impact of PKCε downregulation on autophagy in glioblastoma cells. BMC Cancer 2018; 18:185. [PMID: 29439667 PMCID: PMC5811983 DOI: 10.1186/s12885-018-4095-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background Several efforts have been focused on identification of pathways involved in malignancy, progression, and response to treatment in Glioblastoma (GB). Overexpression of PKCε was detected in histological samples from GB, anaplastic astrocytoma, and gliosarcoma and is considered an important marker of negative disease outcome. In multiple studies on GB, autophagy has been shown as a survival mechanism during cellular stress, contributing to resistance against anti-cancer agents. The main object of this research was to determine the influence of PKCε downregulation on the expression of genes involved in autophagy pathways in glioblastoma cell lines U-138 MG and U-118 MG with high PKCε level. Methods We conducted siRNA-mediated knockdown of PKCε in glioblastoma cell lines and studied the effects of autophagy pathway. The expression of autophagy-related genes was analyzed using qPCR and Western blot analysis was carried out to assess protein levels. Immunostaining was used to detect functional autophagic maturation process. Results We found that these cell lines exhibited a high basal expression of autophagy-related genes. Our results suggest that the loss of PKCε contributes to the downregulation of genes involved in autophagy pathways. Moreover, most of the changes we observed in Western blot analysis and endogenous immunofluorescence experiments confirmed dysfunction of autophagy programs. We found that knockdown of PKCε induced a decrease in the expression of Beclin1, Atg5, PI3K, whereas the expression of other autophagy-related proteins mTOR and Bcl2 was increased. Treatment of control siRNA glioma cells with rapamycin-induced autophagosome formation and increase in LC3-II level and caused a decrease in the expression of p62. Additionally, PKCε siRNA caused a diminution in the Akt phosphorylation at Ser473 and in the protein level in both cell lines. Moreover, we observed reduction in the adhesion of glioblastoma cells, accompanied by the decrease in total FAK protein level and phosphorylation. Conclusions Effects of down-regulation of PKCε in glioma cells raised the possibility that the expression of PKCε is essential for the autophagic signal transduction pathways in these cells. Thus, our results identify an important role of PKCε in autophagy and may, more importantly, identifyit as a novel therapeutic target.
Collapse
Affiliation(s)
- Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland.
| | - Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| | - Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| | - Johann Hofmann
- Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Jan Barciszewski
- NanoBioMedical Center, Adam Mickiewicz University in Poznan, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Maria Rybczynska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| |
Collapse
|