1
|
Bogomolova EA, Murashko MM, Stasevich EM, Uvarova AN, Zheremyan EA, Korneev KV, Kuprash DV, Demin DE. Thioridazine Induces Increase in Expression of the Pyruvate Transporter MPC1 Associated with Immune Infiltration in Malignant Tumors. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2025:10.1134/S001249662460060X. [PMID: 39920561 DOI: 10.1134/s001249662460060x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 02/09/2025]
Abstract
The MPC1 gene is involved in the transport of pyruvate into mitochondria, playing an important role in metabolic processes. Recently, it has been reported that higher MPC1 expression correlates with an increased number of immune cells in human cervical and lung cancers, indicating an enhanced antitumor immune response. Reduced MPC1 levels in gastric tumors are associated with a more severe disease course. Correlational analysis of the MPC1 gene in human lung, hippocampus and frontal cortex tissue samples based on data from the GTEx database revealed associations of this gene with schizophrenia, non-small cell lung cancer, and immune diseases. Our experiments showed that the mRNA level of the MPC1 gene in the non-small cell lung cancer cell line A549 increases 5-fold under the influence of the schizophrenia neuroleptic thioridazine. The observed elevation of MPC1 level may cause tumor infiltration by immune cells, complementing the previously reported data indicating the ability of thioridazine to slow cell growth, induce apoptosis and reduce the ability of cells to migrate.
Collapse
Affiliation(s)
- E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow oblast, Russia
| | - E M Stasevich
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow oblast, Russia
| | - A N Uvarova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - E A Zheremyan
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - K V Korneev
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - D V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - D E Demin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Qin X, Qiu B, Ge L, Wu S, Ma Y, Li W. Applying machine learning techniques to predict the risk of distant metastasis from gastric cancer: a real world retrospective study. Front Oncol 2024; 14:1455914. [PMID: 39703842 PMCID: PMC11655338 DOI: 10.3389/fonc.2024.1455914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Background Distant metastasis of gastric cancer can seriously affect the treatment strategy of gastric cancer patients, so it is essential to identify patients at high risk of distant metastasis of gastric cancer earlier. Method In this study, we retrospectively collected research data from 18,472 gastric cancer patients from the SEER database. We applied six machine learning algorithms to construct a model that can predict distant metastasis of gastric cancer. We constructed the machine learning model using 10-fold cross-validation. We evaluated the model using the area under the receiver operating characteristic curves (AUC), the area under the precision-recall curve (AUPRC), decision curve analysis, and calibration curves. In addition, we used Shapley's addition interpretation (SHAP) to interpret the machine learning model. We used data from 1595 gastric cancer patients in the First Hospital of Jilin University for external validation. We plotted the correlation heat maps of the predictor variables. We selected an optimal model and constructed a web-based online calculator for predicting the risk of distant metastasis of gastric cancer. Result The study included 18,472 patients with gastric cancer from the SEER database, including 4,202 (22.75%) patients with distant metastases. The results of multivariate logistic regression analysis showed that age, race, grade of differentiation, tumor size, T stage, radiotherapy, and chemotherapy were independent risk factors for distant metastasis of gastric cancer. In the ten-fold cross-validation of the training set, the average AUC value of the random forest (RF) model was 0.80. The RF model performed best in the internal test set and external validation set. The RF model had an AUC of 0.80, an AUPRC of 0.555, an accuracy of 0.81, and a precision of 0.78 in the internal test set. The RF model had a metric AUC of 0.76 in the external validation set, an AUPRC of 0.496, an accuracy of 0.82, and a precision of 0.81. Finally, we constructed a network calculator for distant metastasis of gastric cancer using the RF model. Conclusion With the help of pathological and clinical indicators, we constructed a well-performing RF model for predicting the risk of distant metastasis in gastric cancer patients to help clinicians make clinical decisions.
Collapse
Affiliation(s)
- Xinxin Qin
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Binxu Qiu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Litao Ge
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Song Wu
- Nanjing Luhe People’s Hostipal, General Surgery, Nanjing, China
| | - Yuye Ma
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zou H, Yin Y, Xiong K, Luo X, Sun Z, Mao B, Xie Q, Tan M, Kong R. Mitochondrial Pyruvate Carrier 1 as a Novel Prognostic Biomarker in Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2024; 23:15330338241282080. [PMID: 39360506 PMCID: PMC11452851 DOI: 10.1177/15330338241282080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Abnormal mitochondrial pyruvate carrier 1 (MPC1) expression plays a key role in tumor metabolic reprogramming and progression. Understanding its significance in non-small cell lung cancer (NSCLC) is crucial for identifying therapeutic targets. METHODS TIMER 2.0 was utilized to assess the expression of MPC1 in both normal and cancer tissues in pan-cancer. Overall survival (OS) differences between high and low MPC1 expression were analyzed in NSCLC using the Cancer Genome Atlas (TCGA) datasets. We also examined the expression of MPC1 in NSCLC cell lines using western blotting and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). In addition, the tissue samples and clinical information of 80 patients with NSCLC from our hospital were collected. Immunohistochemistry (IHC) was used to assess MPC1 expression, and OS was evaluated using Kaplan-Meier curves and the log-rank test. Univariate and multivariate Cox regression analyses were conducted to evaluate the prognostic values of the clinical characteristics and MPC1expression. RESULTS Analysis of public databases suggested that MPC1 was downregulated in NSCLC compared to that in normal lung tissue and predicted poor prognosis. In addition, the expression of MPC1 in NSCLC cell lines was lower than that in human bronchial epithelial (HBE) cells at both protein and mRNA levels. Further clinical analysis suggested that MPC1 expression was correlated with age, tumor T stage, and TNM stage. Kaplan-Meier analysis revealed that NSCLC patients with high MPC1 expression had a better prognosis, particularly in lung adenocarcinoma (LUAD), whereas no survival benefit was observed in lung squamous cell carcinoma (LUSC). Univariate and multivariate analyses suggested that MPC1 was an independent prognostic factor for patients with NSCLC. CONCLUSIONS MPC1 is poorly expressed in NSCLC, particularly in LUAD, which predicts a poor prognosis and may serve as an independent prognostic factor. Further studies on MPC1 may reveal new targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Hongbo Zou
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Yunfei Yin
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Kai Xiong
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Xuelian Luo
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Zhongju Sun
- Department of Oncology, Chongqing Beibei District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Bijing Mao
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Qichao Xie
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Mei Tan
- Department of Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, China
| | - Rui Kong
- Department of Oncology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
4
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Revealing therapeutic targets and mechanism of baicalin for anti-chronic gastritis using proteomic analysis of the gastric tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123214. [DOI: 10.1016/j.jchromb.2022.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
|
6
|
Xue C, Li G, Bao Z, Zhou Z, Li L. Mitochondrial pyruvate carrier 1: a novel prognostic biomarker that predicts favourable patient survival in cancer. Cancer Cell Int 2021; 21:288. [PMID: 34059057 PMCID: PMC8166087 DOI: 10.1186/s12935-021-01996-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial pyruvate carrier 1 (MPC1) is a key metabolic protein that regulates the transport of pyruvate into the mitochondrial inner membrane. MPC1 deficiency may cause metabolic reprogramming. However, whether and how MPC1 controls mitochondrial oxidative capacity in cancer are still relatively unknown. MPC1 deficiency was recently found to be strongly associated with various diseases and cancer hallmarks. We utilized online databases and uncovered that MPC1 expression is lower in many cancer tissues than in adjacent normal tissues. In addition, MPC1 expression was found to be substantially altered in five cancer types: breast-invasive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), and prostate adenocarcinoma (PRAD). However, in KIRC, LUAD, PAAD, and PRAD, high MPC1 expression is closely associated with favourable prognosis. Low MPC1 expression in BRCA is significantly associated with shorter overall survival time. MPC1 expression shows strong positive and negative correlations with immune cell infiltration in thymoma (THYM) and thyroid carcinoma (THCA). Furthermore, we have comprehensively summarized the current literature regarding the metabolic reprogramming effects of MPC1 in various cancers. As shown in the literature, MPC1 expression is significantly decreased in cancer tissue and associated with poor prognosis. We discuss the potential metabolism-altering effects of MPC1 in cancer, including decreased pyruvate transport ability; impaired pyruvate-driven oxidative phosphorylation (OXPHOS); and increased lactate production, glucose consumption, and glycolytic capacity, and the underlying mechanisms. These activities facilitate tumour progression, migration, and invasion. MPC1 is a novel cancer biomarker and potentially powerful therapeutic target for cancer diagnosis and treatment. Further studies aimed at slowing cancer progression are in progress.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
8
|
MPC1 Deficiency Promotes CRC Liver Metastasis via Facilitating Nuclear Translocation of β-Catenin. J Immunol Res 2020; 2020:8340329. [PMID: 32851100 PMCID: PMC7439788 DOI: 10.1155/2020/8340329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence has pointed out that metastasis is the leading cause of death in several malignant tumor, including CRC. During CRC, metastatic capacity is closely correlated with reprogrammed energy metabolism. Mitochondrial Pyruvate Carrier 1 (MPC1), as the carrier of transporting pyruvate into mitochondria, linked the glycolysis and TCA cycle, which would affect the energy production. However, the specific role of MPC1 on tumor metastasis in CRC remains unexplored. Here, by data mining of genes involved in pyruvate metabolism using the TCGA dataset, we found that MPC1 was significantly downregulated in CRC compared to nontumor tissues. Similar MPC1 expression pattern was also found in multiple GEO datasets. IHC staining in both human sample and AOM/DSS induced mouse CRC model revealed significant downregulation of MPC1. What is more, we found that MPC1 expression was gradually decreased in normal tissue, primary CRC, and metastasis CRC. Additionally, poor prognosis emerged in the MPC1 low expression patients, especially in patients with metastasis. Following, functional tests showed that MPC1 overexpression inhibited the motility of CRC cells in vitro and MPC1 silencing enhanced liver metastases in vivo. Furthermore, we uncovered that decreased MPC1 activated the Wnt/β-catenin pathway by promoting nuclear translocation of β-catenin to mediate the expression of MMP7, E-cadherin, Snail1, and myc. Collectively, our data suggest that MPC1 has the potential to be served as a promising biomarker for diagnosis and a therapeutic target in CRC.
Collapse
|
9
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
10
|
Oonthonpan L, Rauckhorst AJ, Gray LR, Boutron AC, Taylor EB. Two human patient mitochondrial pyruvate carrier mutations reveal distinct molecular mechanisms of dysfunction. JCI Insight 2019; 5:126132. [PMID: 31145700 PMCID: PMC6629238 DOI: 10.1172/jci.insight.126132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
The Mitochondrial Pyruvate Carrier (MPC) occupies a central metabolic node by transporting cytosolic pyruvate into the mitochondrial matrix and linking glycolysis with mitochondrial metabolism. Two reported human MPC1 mutations cause developmental abnormalities, neurological problems, metabolic deficits, and for one patient, early death. We aimed to understand biochemical mechanisms by which the human patient C289T and T236A MPC1 alleles disrupt MPC function. MPC1 C289T encodes two protein variants, a mis-spliced, truncation mutant (A58G) and a full length point mutant (R97W). MPC1 T236A encodes a full length point mutant (L79H). Using human patient fibroblasts and complementation of CRISPR-deleted, MPC1 null mouse C2C12 cells, we investigated how MPC1 mutations cause MPC deficiency. Truncated MPC1 A58G protein was intrinsically unstable and failed to form MPC complexes. The MPC1 R97W protein was less stable but when overexpressed formed complexes with MPC2 that retained pyruvate transport activity. Conversely, MPC1 L79H protein formed stable complexes with MPC2, but these complexes failed to transport pyruvate. These findings inform MPC structure-function relationships and delineate three distinct biochemical pathologies resulting from two human patient MPC1 mutations. They also illustrate an efficient gene pass-through system for mechanistically investigating human inborn errors in pyruvate metabolism.
Collapse
Affiliation(s)
- Lalita Oonthonpan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Adam J. Rauckhorst
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lawrence R. Gray
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Audrey C. Boutron
- Biochemistry Department, CHU Bicetre, Hôpitaux Paris-Sud, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Eric B. Taylor
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC)
- Abboud Cardiovascular Research Center
- Holden Comprehensive Cancer Center, and
- Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Zou H, Chen Q, Zhang A, Wang S, Wu H, Yuan Y, Wang S, Yu J, Luo M, Wen X, Cui W, Fu W, Yu R, Chen L, Zhang M, Lan H, Zhang X, Xie Q, Jin G, Xu C. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis 2019; 10:148. [PMID: 30770798 PMCID: PMC6377639 DOI: 10.1038/s41419-019-1324-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial pyruvate carrier 1 (MPC1), a key factor that controls pyruvate transportation in the mitochondria, is known to be frequently dysregulated in tumor initiation and progression. However, the clinical relevance and potential molecular mechanisms of MPC1 in lung adenocarcinoma (LAC) progression remain to be illustrated. Herein, MPC1 was lowly expressed in LAC tissues and significantly associated with favorable survival of patients with LAC. Functionally, MPC1 markedly suppressed stemness, invasion, and migration in vitro and spreading growth of LAC cells in vivo. Further study revealed that MPC1 could interact with mitochondrial signal transducer and activator of transcription 3 (mito-STAT3), disrupting the distribution of STAT3 and reducing cytoplasmic signal transducer and activator of transcription 3 (cyto-STAT3) as well as its phosphorylation, while the activation of cyto-STAT3 by IL-6 reversed the attenuated malignant progression in MPC1-overexpression LAC cells. Collectively, we reveal that MPC1/STAT3 axis plays an important role in the progression of LAC, and our work may promote the development of new therapeutic strategies for LAC.
Collapse
Affiliation(s)
- Hongbo Zou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Songtao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Chengdu Military General Hospital, Chengdu, China
| | - Hong Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mao Luo
- Department of Dermatology, Chongqing Yubei District People's Hospital, Chongqing, China
| | - Xianmei Wen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haitao Lan
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qichao Xie
- Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China. .,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Deng Y, Li H, Yin X, Liu H, Liu J, Guo D, Shi Z. C-Terminal Binding Protein 1 Modulates Cellular Redox via Feedback Regulation of MPC1 and MPC2 in Melanoma Cells. Med Sci Monit 2018; 24:7614-7624. [PMID: 30356033 PMCID: PMC6213824 DOI: 10.12659/msm.912735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recent studies have illustrated that the transcription co-repressor, C-terminal binding protein 1 (CtBP1), links the metabolic alterations to transcription controls in proliferation, EMT, genome stability, metabolism, and lifespan, but whether CtBP1 affects the cellular redox homeostasis is unexplored. This study was designed to investigate the mechanism of CtBP1-mediated transcription repression that contributes to the metabolic reprogramming. MATERIAL AND METHODS Knockdown of CtBP1 in both mouse MEF cells and human melanoma cells changed cell redox homeostasis. Further, chromatin immunoprecipitation (ChIP) and luciferase reporter assay were performed for identification of CtBP1 downstream targets, pyruvate carrier 1 and 2 genes (MPC1 and MPC2), which contribute to redox homeostasis and are transcriptionally regulated by CtBP1. Moreover, blockage of the cellular NADH level with the glycolysis inhibitor 2-Deoxy-D-Glucose (2-DG) rescued MPC1 and MPC2 expression. MTT assay and scratch assay were performed to investigate the effect of MPC1 and MPC2 expression on malignant properties of melanoma cells. RESULTS The data demonstrated that CtBP1 directly bound to the promoters of MPC1 and MPC2 and transcriptionally repressed them, leading to increased levels of free NADH in the cytosol and nucleus, thus positively feeding back CtBP1's functions. Consequently, restoring MPC1 and MPC2 in human tumor cells decreases free NADH and inhibits melanoma cell proliferation and migration. CONCLUSIONS Our data indicate that MPC1 and MPC2 are principal mediators that link CtBP1-mediated transcription regulation to NADH production. The discovery of CtBP1 as an NADH regulator in addition to being an NADH sensor shows that CtBP1 is at the center of tumor metabolism and transcription control.
Collapse
Affiliation(s)
- Yu Deng
- School of Medicine, Chengdu University, Chengdu, Sichuan, P.R. China
- Department of Dermatology, School of Medicine, University of Colorado Denver, Aurora, CO, U.S.A
| | - Hong Li
- Department of Dermatology, School of Medicine, University of Colorado Denver, Aurora, CO, U.S.A
| | - Xinyi Yin
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, U.S.A
| | - Hongbin Liu
- Department of Dermatology, School of Medicine, University of Colorado Denver, Aurora, CO, U.S.A
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jing Liu
- Department of Dermatology, School of Medicine, University of Colorado Denver, Aurora, CO, U.S.A
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Shi
- School of Medicine, Chengdu University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
13
|
Lee S, Park S, Lee H, Jeong D, Ham J, Choi EH, Kim SJ. ChIP-seq analysis reveals alteration of H3K4 trimethylation occupancy in cancer-related genes by cold atmospheric plasma. Free Radic Biol Med 2018; 126:133-141. [PMID: 30096431 DOI: 10.1016/j.freeradbiomed.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Cold atmospheric plasma (CAP) has gained attention for use in cancer treatment owing to its ability to preferentially induce cancer cell death; however, the involved molecular mechanism remains to be elucidated. Herein, an epigenetic effect of CAP on cancer cells was examined by performing a genome-wide ChIP-seq for H3K4me3 in MCF-7 breast cancer cell line. Consequently, 899 genes showed significantly changed methylation level at H3K4 with constructing "Cellular Compromise, DNA Replication, Recombination, Repair, and Cell Cycle" as the top network. Comparisons with expression array data revealed a coincidence between histone modification and gene expression for 18 genes, and the association was confirmed by ChIP-PCR and qRT-PCR for selected genes. The expression of the affected genes, such as HSCB and PRPS1, was recovered when a histone demethylase JARID1A was inhibited. Furthermore, JARID1A was induced by CAP via the reactive oxygen species signaling. The two genes are known as oncogenes and show a higher expression in breast cancer tissue, and this was supported by the decreased colony formation ability of MCF-7 cells when the cells were treated with siRNAs against each gene. Taken together, these data indicate that CAP inhibits cancer cell proliferation by modulating the methylation level of H3K4 corresponding to oncogenes.
Collapse
Affiliation(s)
- Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|