1
|
Khaleel AQ, Jasim SA, Menon SV, Kaur M, Sivaprasad GV, Rab SO, Hjazi A, Kumar A, Husseen B, Mustafa YF. siRNA-based knockdown of lncRNAs: A new modality to target tumor progression. Pathol Res Pract 2024; 266:155746. [PMID: 39657398 DOI: 10.1016/j.prp.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
This study examines the potential of small interfering RNA (siRNA) as a therapeutic agent for cancer targeting long non-coding RNAs (lncRNAs). The article begins with an analysis of the structure and biogenesis of lncRNA. It explains the diverse functions of lncRNAs in cancer, establishing a foundation for assessing approaches to inhibit these molecules. The analysis focuses on the consequences of lncRNA suppression through siRNA on signaling pathways associated with cancer, connecting theoretical understanding to practical applications. An evaluation of ongoing clinical trials and applications contributes to the discourse by revealing the potential for siRNA-mediated interventions to be practiced. Furthermore, an evaluation of the advantages and disadvantages of this therapeutic approach offers a nuanced viewpoint. In conclusion, the paper synthesizes significant discoveries and outlines potential avenues for future research, contributing to the dialogue surrounding personalized cancer therapeutics and precision medicine. Future challenges in using siRNA to target lncRNAs in oncology include optimizing delivery systems for efficient tumor cell uptake, minimizing off-target effects, enhancing RNA stability for a longer therapeutic window, and overcoming barriers in the tumor microenvironment. Addressing these factors is essential for the practical application of siRNA-based cancer therapies.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar 31001, Iraq.
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
2
|
Lin NC, Hsia SM, Vu Nguyen TH, Wang TH, Sun KT, Chiu KC, Shih YH, Shieh TM. The association between the expression level of nuclear paraspeckle assembly transcript 1 and the survival rate of head and neck cancer patients after treatment. J Dent Sci 2024; 19:2074-2081. [PMID: 39347098 PMCID: PMC11437243 DOI: 10.1016/j.jds.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exhibits diverse and complicated functions in cancer progression. Despite reports suggesting both tumor-suppressive and oncogenic effects in various cancers, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study aimed to investigate the association between NEAT1 expression levels and survival outcomes in HNSCC patients. Materials and methods Paired tissue samples of tumor and non-cancerous matching tissues (NCMT) from 92 HNSCC patients were collected. NEAT1 expression was analyzed using RT-qPCR. Clinical characteristics, treatment received, and survival rates of the patients were assessed to determine the correlation with NEAT1 expression and explore its association with alcohol, betel quid, and cigarette use. Additionally, we examined the effect of arecoline on NEAT1 expression in normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). Results The study revealed a significant downregulation of NEAT1 expression in oral cancer tissues compared to NCMT. Meanwhile, arecoline increased NEAT1 expression in NHOK and NHOF cells. However, patients with downregulated NEAT1 expression exhibited higher overall survival rates, particularly in those who did not receive chemotherapy or radiotherapy. Conclusion NEAT1 expression levels are associated with survival outcomes in HNSCC patients, with upregulated expression indicating a worse prognosis, suggesting this lncRNA might contribute to cancer aggressiveness, especially in the absence of active treatment. These findings indicate NEAT1 may serve as a potential prognostic biomarker in HNSCC, but further research is required to elucidate its role in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Nan-Chin Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Thanh-Hien Vu Nguyen
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Ting Sun
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
4
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
5
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
6
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
7
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
8
|
Braga EA, Fridman MV, Burdennyy AM, Filippova EA, Loginov VI, Pronina IV, Dmitriev AA, Kushlinskii NE. Regulation of the Key Epithelial Cancer Suppressor miR-124 Function by Competing Endogenous RNAs. Int J Mol Sci 2022; 23:13620. [PMID: 36362406 PMCID: PMC9655303 DOI: 10.3390/ijms232113620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | |
Collapse
|
9
|
Karam RA, Amer MM, Zidan HE. Long Noncoding RNA NEAT1 Expression and Its Target miR-124 in Diabetic Ischemic Stroke Patients. Genet Test Mol Biomarkers 2022; 26:398-407. [PMID: 36027040 DOI: 10.1089/gtmb.2021.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Diabetes mellitus is a known risk factor for stroke and may be linked to poorer post-stroke outcomes. However, the underlying molecular mechanisms remain to be fully identified. In this study we assessed the association of the lncRNA Nuclear enriched abundant transcript 1 (NEAT1)'s expression and its target miRNA-124 with acute ischemic stroke (AIS) in type II diabetic patients (T2DM). Methods and Results: Diabetic patients with stroke, non-diabetics with stroke, diabetics without stroke, and controls were recruited. NEAT1 and miR-124 expression levels in plasma samples from the participants were investigated using real-time reverse transcription-polymerase chain reaction (RT-qPCR). C reactive protein (CRP) and tumor necrosis factor alpha (TNF-α) were measured using an enzyme linked immunosorbent assay (ELISA) technique. In the DM+AIS group, NEAT1 expression was considerably higher, compared with AIS group and with control group. In comparison to the AIS-only patients, DM patients and controls, miR-124 expression was considerably lower in the DM+AIS group. NEAT1 was shown to have good predictive value for AIS risk in diabetics, based on Receiver Operating Characteristic (ROC) curve analysis. In both the DM+AIS and the AIS group, NEAT1 levels was strongly linked with the National Institutes of Health Stroke Scale (NIHSS) score. Also, a significant positive correlation was observed between NEAT1 expression and the inflammatory markers CRP and TNF-α and significant negative association with miRNA-124 in patient groups. Conclusion: In diabetic patients, the lncRNA NEAT1 may influence the incidence, severity, inflammation, and prognosis of AIS. NEAT1 expression levels could be used as a diagnostic marker of stroke in diabetic patients.
Collapse
Affiliation(s)
- Rehab A Karam
- Biochemistry Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Mona M Amer
- Neurology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Huang L, Sun C, Peng R, Liu Z. The Effect of LncRNA H19 on Human Dental Pulp Cells Through Tumor Growth Factor- β1 (TGF- β1)/Smad Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pulp tissue is located in the pulp cavity of tooth and has the ability of nutrition, feeling, and defense. Human dental pulp cells (hDPCs) are the main cells of pulp with the ability to self-renew and multi-directional differentiation. LncRNA H19 is involved in the regulation of
human dental pulp stem cells, but the specific mechanism has not been elucidated. hDPCs were isolated and cultured in vitro to measure vimentin expression by immunohistochemistry (IHC). hDPCs were randomly assigned into control group, negative control (NC) group and lncRNA H19 overexpression
group followed by measuring lncRNA H19, DSPP, and DMP-1 mRNA expression, cell proliferation, ALP activity, BMP-2 expression by ELISA, TGF-β1, Smad2, and Smad4 expression by Western blot. hDPCs were positive for vimentin staining and confirmed to be derived from mesenchymal. Transfection
of pcDNA3.1-LncRNA H19 plasmid significantly increased LncRNA H19 expression, promoted cell proliferation, enhanced ALP activity, upregulated DSPP and DMP-1, elevated BMP-2 expression in cell supernatant, as well as promoted TGF-β1, Smad2, and Smad4 expressions compared with control
(P < 0.05). In conclusion, lncRNA H19 facilitates hDPCs differentiation into odontoblasts by promoting cell proliferation and increasing BMP-2 secretion via regulating TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Li Huang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Chuankong Sun
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Ruobing Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Zhiming Liu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
11
|
Zhou H, Wang Y, Liu Z, Zhang Z, Xiong L, Wen Y. Recent advances of NEAT1-miRNA interactions in cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:153-162. [PMID: 35538025 PMCID: PMC9827865 DOI: 10.3724/abbs.2021022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With high incidence rate, cancer is the main cause of death in humans. Non-coding RNAs, as novel master regulators, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play important roles in the regulation of tumorigenesis. lncRNA NEAT1 has recently gained much attention, as it is dysregulated in a broad spectrum of cancers, where it acts as either an oncogene or a tumor suppressor gene. Accumulating evidence shows that NEAT1 is correlated with the process of carcinogenesis, including proliferation, invasion, survival, drug resistance, and metastasis. NEAT1 is considered to be a biomarker and a novel therapeutic target for the diagnosis and prognosis of different cancer types. The mechanisms by which NEAT1 plays a critical role in cancers are mainly via interactions with miRNAs. NEAT1-miRNA regulatory networks play significant roles in tumorigenesis, which has attracted much attention from researchers around the world. In this review, we summarize the interaction of NEAT1 with miRNAs in the regulation of protein-coding genes in cancer. A better understanding of the NEAT1-miRNA interactions in cancer will help develop new diagnostic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wen
- Correspondence address. Tel: +86-731-85294099; E-mail:
| |
Collapse
|
12
|
Ren D, Lu J, Han X, Xiong W, Jiang H, Wei Y, Wang Y. LINC00641 contributes to nasopharyngeal carcinoma cell malignancy through FOXD1 upregulation at the post-transcriptional level. Biochem Cell Biol 2021; 99:750-758. [PMID: 34767742 DOI: 10.1139/bcb-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common tumor in the head and neck and is prevalent in China, especially in the southern regions. Molecular mechanisms have attracted much attention in NPC research. FOXD1 has been reported to be a tumor promoter in various cancers. The present study was designed to explore the function of FOXD1 in NPC cells. Functional analyses, including the trypan blue staining assay, EdU and JC-1 assay, and flow cytometry analysis, revealed that FOXD1 facilitated NPC cell proliferation and inhibited NPC cell apoptosis. Next, by means of "starBase" database and mechanism analyses, such as RIP assay, RNA pull-down assay and luciferase reporter assay, miR-378a-3p was found to target FOXD1 and negatively regulate FOXD1 expression in NPC cells. Moreover, miR-378a-3p plays a suppressive role in NPC cells. LINC00641 was identified as a sponge of miR-378a-3p and positively modulated FOXD1 expression in NPC cells. Finally, a series of rescue assays indicated that LINC00641 accelerated NPC cell proliferation and hindered NPC cell apoptosis through FOXD1 upregulation. In conclusion, the present study demonstrated an innovative ceRNA mechanism of LINC00641/miR-378a-3p/FOXD1 in NPC cells, which might provide new insights into NPC treatment.
Collapse
Affiliation(s)
- Dan Ren
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinlong Lu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xing Han
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Weiming Xiong
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - He Jiang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yunzhong Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yongli Wang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
13
|
Li K, Yao T, Zhang Y, Li W, Wang Z. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential. Int J Biol Sci 2021; 17:3428-3440. [PMID: 34512157 PMCID: PMC8416723 DOI: 10.7150/ijbs.62728] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNA) that is upregulated in a variety of human cancer types. Increasing evidence has shown that the elevation of NEAT1 in cancer cells promotes cell growth, migration, and invasion and inhibits cell apoptosis. It is also known that lncRNAs act as a competing endogenous RNA (ceRNA) by sponging microRNAs (miRNAs) to alter the expression levels of their target genes in the development of cancers. Therefore, it is important to understand the molecular mechanisms underlying this observation. In this review, specific emphasis was placed on NEAT1's role in tumor development. We also summarize and discuss the feedback roles of NEAT1/miRNA/target network in the progression of various cancers. As our understanding of the role of NEAT1 during tumorigenesis improves, its therapeutic potential as a biomarker and/or target for cancer also becomes clearer.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Tongyue Yao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
14
|
Ye J, Liao Q, Zeng X, Liu C, Ding Y, Liu X, Zeng L, Guan T, Yuan Y. MicroRNA-124-3p inhibited progression of nasopharyngeal carcinoma by interaction with PCDH8 and the inactivation of PI3K/AKT/mTOR pathway. J Cancer 2021; 12:4933-4944. [PMID: 34234863 PMCID: PMC8247379 DOI: 10.7150/jca.57152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterised by distinct geographical distribution and is particularly prevalent in Asian countries. But the mechanisms related to the progression of nasopharyngeal carcinoma (NPC) are not completely understood. MiR-124-3p functions as a tumor suppressor in many kinds of human cancers. Here, we explored the effects and mechanism of miR-124-3p on the proliferation and colony formation in NPC. In our study, we reported that miR-124-3p was significantly downregulated in NPC tissues and cell lines. Overexpression miR-124-3p decreased NPC cell proliferation and colony formation abilities. Meanwhile, knockdown miR-124-3p increased proliferation and colony formation abilities. Additionally, dual-luciferase assay showed that miR-124-3p could positively regulated PCDH8 by targeting its 3'-UTR. Overexpression of PCDH8 could partially rescue the proliferation and colony formation role of miR-124-3p inhibitor. Our study indicated that miR-124-3p played a tumor suppressor by directly interacting with PCDH8 and inhibiting the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Overall, we found that miR-124-3p inhibited the activation of the PI3K/AKT/mTOR signaling pathway in NPC by interacting with PCDH8. Thus, PCDH8 may be a potential molecular target that impeded NPC proliferation and colony formation.
Collapse
Affiliation(s)
- Jiacai Ye
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Quanxing Liao
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zeng
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Ding
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Liu
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Lisi Zeng
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Tianpei Guan
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
16
|
STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3. Biosci Rep 2021; 40:221717. [PMID: 31868202 PMCID: PMC6960067 DOI: 10.1042/bsr20193299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were viewed as crucial participants in the pathogenesis of abdominal aortic aneurysm (AAA). LncRNA NEAT1 was recognized as an oncogenic gene in various diseases. However, its function and mechanism in AAA were not precisely documented. Here, we explored the functional role and molecular mechanism of NEAT1 in AAA. Functionally, the effect of NEAT1 on the proliferation was assessed by CCK-8 and EdU assay, while its impact on the apoptosis was evaluated through caspase-3/9 activity and TUNEL assays. As a result, we found that NEAT1 knockdown enhanced the proliferation and impaired the apoptosis of vascular smooth muscle cells (VSMCs). Reversely, overexpressed NEAT1 exerted anti-proliferation and pro-apoptosis effects in VSMCs. Mechanically, we found that STAT3 acted as a transcription factor and contributed to NEAT1 transcription by ChIP and luciferase reporter assays. In addition, NEAT1 was confirmed as a sponge of miR-4688 and thereby increase the expression of TULP3 in VSMCs via RIP assay and RNA pull-down assay. Rescue experiments indicted that TULP3 overexpressing countervailed the impact of NEAT1 depletion on AAA biological processes. Conclusively, lncRNA NEAT1 induced by STAT3 was identified as a ceRNA and facilitated AAA formation by targeting miR-4688/TULP3 axis.
Collapse
|
17
|
Long Noncoding RNA OIP5-AS1 Promotes the Disease Progression in Nasopharyngeal Carcinoma by Targeting miR-203. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9850928. [PMID: 33628831 PMCID: PMC7884132 DOI: 10.1155/2021/9850928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/02/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of malignancy generated from the nasopharyngeal epithelium. Recently, long noncoding RNA (lncRNA) has been shown to be involved in the regulation of many signaling pathways and is closely associated with carcinogenesis and tumor progression. However, the precise role of lncRNA Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in NPC is not well understood. Here, we find that OIP5-AS1 is overexpressed in NPC patient specimens and NPC cell lines. Further investigations reveal that knockdown of OIP5-AS1 significantly inhibits the proliferation, migration, and invasion and accelerates the apoptosis of NPC cells in vitro. Consistent with these findings, NPC progression is significantly slowed in mice when OIP5-AS1 is knocked down. Interestingly, there is a functional link between OIP5-AS1 and microRNA-203 (miR-203), a tumor suppressor, in NPC cells. In conclusion, our data demonstrate that OIP5-AS1 plays an important role in the development and progression of NPC by targeting miR-203 and therefore provide a promising target for the treatment of NPC.
Collapse
|
18
|
Liu W, Zhang Y, Luo B. Long Non-coding RNAs in Gammaherpesvirus Infections: Their Roles in Tumorigenic Mechanisms. Front Microbiol 2021; 11:604536. [PMID: 33519750 PMCID: PMC7843584 DOI: 10.3389/fmicb.2020.604536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression at the epigenetic, transcriptional, or posttranscriptional level by interacting with protein, DNA, and RNA. Emerging evidence suggests that various lncRNAs are abnormally expressed and play indispensable roles in virus-triggered cancers. Besides, a growing number of studies have shown that virus-encoded lncRNAs participate in tumorigenesis. However, the functions of most lncRNAs in tumors caused by oncogenic viruses and their underlying mechanisms remain largely unknown. In this review, we summarize current findings regarding lncRNAs involved in cancers caused by Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV). Additionally, we discuss the contribution of lncRNAs to tumor occurrence, development, invasion, and metastasis; the roles of lncRNAs in key signaling pathways and their potential as biomarkers and therapeutic targets for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 2021; 135:111198. [PMID: 33412388 DOI: 10.1016/j.biopha.2020.111198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-124 (miR-124) is a copious miRNA in the brain, but it is expressed in a wide range of human/animal tissues participating in the pathogenesis of several disorders. Based on its important function in the development of the nervous system, abnormal expression of miR-124 has been detected in nervous system diseases including Alzheimer's disease, Parkinson's disease, Hypoxic-Ischemic Encephalopathy, Huntington's disease, and ischemic stroke. In addition to these conditions, miR-124 contributes to the pathogenesis of cardiovascular disorders, hypertension, and atherosclerosis. Besides, it has been shown to be down-regulated in a wide range of human cancers such as colorectal cancer, breast cancer, gastric cancer, glioma, pancreatic cancer, and other types of cancer. Yet, few studies have reported upregulation of miR-124 in some cancer types. In the current study, we describe the role of miR-124 in these malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
NEAT1 and Paraspeckles in Cancer Development and Chemoresistance. Noncoding RNA 2020; 6:ncrna6040043. [PMID: 33143162 PMCID: PMC7712271 DOI: 10.3390/ncrna6040043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNA were previously thought to be biologically useless molecules arising from simple transcriptional noise. These are now known to be an integral part of cellular biology and pathology. The wide range of RNA molecules have a diverse range of structures, functions, and mechanisms of action. However, structural long non-coding RNAs (lncRNAs) are a particular class of ncRNA that are proving themselves more and more important in cellular biology, as the exact structures that such RNAs form and stabilise become more understood. Nuclear Enriched Abundant Transcript 1 (NEAT1) is a specific structural RNA emerging as a critical component in the progress and development of cancer. NEAT1 forms part of multiple biological pathways, acting through a diverse group of mechanisms. The most important of these is the formation of the paraspeckle, through which it can influence the stability of a tumour to develop resistance to drugs. This review will thus cover the range of effects by which NEAT1 interacts with cancer progression in order to describe the various roles of NEAT1 in chemoresistance, as well as to identify drug targets that protein research alone could not provide.
Collapse
|
21
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
22
|
Ding H, Cui L, Wang C. Long noncoding RNA LIFR-AS1 suppresses proliferation, migration and invasion and promotes apoptosis through modulating miR-4262/NF-κB pathway in glioma. Neurol Res 2020; 43:210-219. [PMID: 33070767 DOI: 10.1080/01616412.2020.1836465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM This study aimed to explore the role of lncRNA leukemia inhibitory factor receptor antisense RNA 1 (LIFR-AS1) on glioma and its underlying molecular mechanism. METHODS The expression of LIFR-AS1 and miR-4262 was detected by quantitative real-time polymerase chain reaction (qRT-RCR) in both glioma tissues and cell lines. Colony formation assay, 5-ethynyl-20-deoxyuridine (EdU) assay, flow cytometry and transwell assay were respectively conducted to detect cell clones, proliferation, apoptosis, migration and invasion. The effect of LIFR-AS1 on the chemoresistance to temozolomide (TMZ) of glioma cells was also analyzed. In addition, dual-luciferase reporter gene assay was performed to evaluate the luciferase activity. The expressions of nuclear factor-κB (NF-κB) p65, p-NF-κB p65 and inhibitor of κBα (IκBα) in glioma cells were measured by western blot. RESULTS LIFR-AS1 was lowly expressed and miR-4262 was highly expressed in glioma tissues and cell lines. LIFR-AS1 overexpression inhibited the proliferation, migration and invasion and promoted apoptosis of glioma cells. LIFR-AS1 overexpression also reduced the chemoresistance to TMZ of glioma cells. Moreover, LIFR-AS1 overexpression suppressed the activation of NF-κB signaling pathway in glioma cells. miR-4262 was the target gene of LIFR-AS1. We also found that miR-4262 abrogated the functions of LIFR-AS1 on cell proliferation, apoptosis, migration and invasion of glioma cells in the NF-κB pathway. CONCLUSION LIFR-AS1 could suppress the proliferation, migration and invasion and promote the apoptosis through modulating miR-4262/NF-κB pathway in glioma.
Collapse
Affiliation(s)
- HaiTao Ding
- Department of Neurosurgery, Linyi Central Hospital , Linyi, Shandong, P.R. China
| | - Lihai Cui
- Department of Neurology, The Second People's Hospital of Liaocheng Affiliated to Shandong First Medical University , Liaocheng, Shandong, P.R. China
| | - Changmei Wang
- Department of Geriatrics, Jinan Central Hospital , Ji'nan, Shandong, P.R. China
| |
Collapse
|
23
|
He K, Zhu ZB, Shu R, Hong A. LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and Notch signaling pathway. World J Surg Oncol 2020; 18:261. [PMID: 33023572 PMCID: PMC7542398 DOI: 10.1186/s12957-020-02028-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND lncRNAs and VEGF have been shown to have close connections with oral squamous cell carcinoma (OSCC). We explored the interaction between lncRNA NEAT1 and VEGF-A in OSCC. METHODS RT-qPCR was implemented to measure levels of lncRNA NEAT1 and VEGF-A in OSCC cell lines and normal cell lines. Cell functions then were checked after regulating the expressions of lncRNA NEAT1 and VEGF-A separately. Cell viabilities were examined with CCK-8 and apoptosis rate was checked with flow cytometry. Meanwhile, EMT-related genes E-cadherin, N-cadherin, Vimentin, and Snail and Notch signaling genes Notch1, Notch2, and Jagged were evaluated by RT-qPCR. IMR-1 was applied for impeding Notch signaling pathway. Later, cell viabilities, apoptosis, and EMT were assessed. RESULTS Expressions of lncRNA NEAT1 and VEGF-A were both increased significantly in OSCC cell lines especially in TSCC1 cell line. Suppression of lncNRA NEAT1 was associated with lower cell viabilities and EMT and higher apoptosis rate in the TSCC1 cell line. Meanwhile, knockdown of VEGF-A significantly repressed cell viabilities and EMT in the TSCC1 cell line. Magnifying functions of inhibited lncRNA NEAT1 Notch signaling pathway was obviously activated with overexpressions of lncRNA NEAT1 and VEGF-A. Adding IMR-1 significantly downregulated cell viabilities and EMT and sharply increased apoptosis in the context of lncRNA NEAT1 and VEGF-A overexpression. CONCLUSION LncRNA NEAT1 may upregulate proliferation and EMT and repress apoptosis through activating VEGF-A and Notch signaling pathway in vitro, suggesting an underlying regulatory factor in OSCC. Nevertheless, further research is necessary to gain a greater understanding of lncRNA NEAT1 and connections with VEGF-A in vivo and in clinical study.
Collapse
Affiliation(s)
- Ke He
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, 610015, China
| | - Zhi-Bin Zhu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, 610015, China
| | - Rui Shu
- Department of Orthodontics and Pediatric Dentistry, West China School of Stomatology State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.
| | - Ai Hong
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|
24
|
Liu J, Liu D, Zhao B, Jia C, Lv Y, Liao J, Li K. Long non-coding RNA NEAT1 mediates MPTP/MPP +-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson's disease. Open Life Sci 2020; 15:665-676. [PMID: 33817255 PMCID: PMC7747504 DOI: 10.1515/biol-2020-0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence suggests that dysregulation of long non-coding RNAs is closely associated with various human diseases, including Parkinson's disease (PD). However, the role of nuclear-enriched abundant transcript 1 (NEAT1) in the PD process remains unclear. The number of TH+ cells was reduced, and the expression levels of NEAT1 and Krüppel-like factor 4 (KLF4) were increased in the midbrain of MPTP-HCl-treated mice. In addition, the expression of cleaved-caspase-3 (cleaved-casp-3) and Bax (apoptosis-related proteins) was increased, while the expression of Bcl-2 (anti-apoptotic protein) was reduced in MPTP-HCl-treated mice. The expression levels of NEAT1 and KLF4 were increased in MPP+-treated SH-SY5Y cells. Knockdown of NEAT1 promoted cell viability and decreased apoptosis in MPP+-treated SH-SY5Y cells, which could be reversed by upregulating KLF4. KLF4 was verified as a direct target of miR-124, and miR-124 could particularly bind to NEAT1. Downregulation of NEAT1 significantly increased cell viability and decreased apoptosis by regulating miR-124 expression in MPP+-treated SH-SY5Y cells. Additionally, interference of NEAT1 increased the number of TH+ cells and miR-124 expression, while reduced apoptosis and expression of KLF4 in vivo. NEAT1 knockdown increased cell viability and suppressed apoptosis in PD via regulating the miR-124/KLF4 axis, providing a promising avenue for the treatment of PD.
Collapse
Affiliation(s)
- Jiyao Liu
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| | - Defang Liu
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| | - Bo Zhao
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| | - Cunwei Jia
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| | - Yunli Lv
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| | - Jun Liao
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| | - Kai Li
- Department of Neurology, Anning Branch of the 940th Hospital of Joint Logistic Support Force of PLA, No. 1026, East-Anning Road, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Zhao L, Zhou N, Zhao P. Expression level of NEAT1 differentiates benign and malignant thyroid nodules by regulating NEAT1/miR‑9/PTEN and NEAT1/miR‑124/PDCD6 signalling. Int J Mol Med 2020; 46:1661-1670. [PMID: 32901835 PMCID: PMC7521579 DOI: 10.3892/ijmm.2020.4721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 05/12/2020] [Indexed: 01/22/2023] Open
Abstract
The incidence of thyroid nodules has been increasing worldwide; however, there are currently no feasible and robust methods to differentiate malignant thyroid nodules from benign thyroid nodules. The present study aimed to establish a practical method to determine the malignancy of thyroid nodules. Reverse transcription-quantitative PCR and western blot analyses were performed to compare the levels of long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1), microRNA (miR)-9, miR-124, PTEN and programmed cell death protein 6 (PDCD6) in the peripheral blood and thyroid tissue samples between patients with malignant and benign thyroid nodules. Additionally, a regulatory relationship between NEAT1, miR-124, miR-9, PTEN and PDCD6 was established in the present study. The diagnostic value of NEAT1, miR-124 and miR-9 was determined using a ROC analysis. The expression levels of NEAT1, PTEN and PDCD6 in peripheral blood and thyroid tissue samples collected from the benign group were higher compared with those in the malignant group, whereas the expression levels of miR-124 and miR-9 were lower in the benign group. In the peripheral blood, NEAT1 expression exhibited an area under the curve (AUC) value of 0.8546, whereas miR-124 and miR-9 expression had AUC values of 0.7657 and 0.7019, respectively. In the thyroid tissue, NEAT1, miR-124, and miR-9 had AUC values of 0.9304, 0.8221 and 0.7757, respectively. Additionally, miR-9 and miR-124 expression levels in BCPaP and SW579 cells was decreased after transfection with a NEAT1 expression vector compared with those in cells transfected with the control vector, whereas the expression of PTEN and PDCD6 was upregulated. By contrast, transfection with short hairpin RNA targeting NEAT1 notably increased the expression of miR-9 and miR-124 while downregulating the expression of PTEN and PDCD6 compared with that in the control cells. In conclusion, the results of the present study demonstrated that the dysregulation of NEAT1 expression may be used to differentiate benign and malignant thyroid nodules.
Collapse
Affiliation(s)
- Li Zhao
- Department of Ultrasound, Southwest University Hospital, Chongqing 400715, P.R. China
| | - Na Zhou
- Department of Abdominal Ultrasound, Xinjiang Autonomous Region Hospital of Traditional Chinese Medicine, Urumchi, Xinjiang 830000, P.R. China
| | - Ping Zhao
- Department of Ultrasound, Shangluo Central Hospital, Shangluo, Shaanxi 726000, P.R. China
| |
Collapse
|
26
|
Shen X, Zhao W, Zhang Y, Liang B. Long Non-Coding RNA-NEAT1 Promotes Cell Migration and Invasion via Regulating miR-124/NF-κB Pathway in Cervical Cancer. Onco Targets Ther 2020; 13:3265-3276. [PMID: 32368085 PMCID: PMC7173957 DOI: 10.2147/ott.s220306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to investigate the regulatory role of lncRNA-NEAT1 on cervical cancer (CC) and the underlying molecular mechanisms. Methods The expression of lncRNA-NEAT1 and miR-124 was detected in CC tissues and cells (HeLa and SiHa cells) by qRT-RCR. The relation between lncRNA-NEAT1 expression and clinical parameters of CC patients was explored. The cell migration and invasion were detected by wound healing assay and transwell assay. The cell proliferation was detected by CCK-8 and anchorage-independent colony assay. The targeting relation between miR-124 and lncRNA-NEAT1 was predicted by TargetScan and identified by dual luciferase reporter gene and RNA pull-down assay. The expression of metastasis- (MMP-2 and MMP), EMT- (E-cadherin, N-cadherin and Vimentin), and NF-κB pathway-related factors (NF-κB p65, p-NF-κB p65 and IκBα) was detected by Western blot. Results The expression of lncRNA-NEAT1 was upregulated in CC tissues and cells and positively correlated with TNM stage and lymph node metastasis. Overexpression of lncRNA-NEAT1 promoted the proliferation, migration and invasion, influenced the expression of EMT markers, and activated NF-κB pathway in HeLa and SiHa cells. Silencing of lncRNA-NEAT1 exhibited opposite effects on HeLa and SiHa cells. LncRNA-NEAT1 could negatively regulate its target miR-124. MiR-124 reversed the effects of lncRNA-NEAT1 on the migration, invasion, EMT and NF-κB pathway of HeLa cells. Conclusion LncRNA-NEAT1 promoted the migration and invasion of CC cells via regulating miR-124/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaofang Shen
- Department of Obstetrics-Gynecology, Dongying City People's Hospital, Dongying City, Shandong Province 257091, People's Republic of China
| | - Wei Zhao
- Department of Obstetrics-Gynecology, Dongying City People's Hospital, Dongying City, Shandong Province 257091, People's Republic of China
| | - Yumei Zhang
- Department of Obstetrics-Gynecology, Dongying City Dongying District People's Hospital, Dongying City, Shandong Province 257000, People's Republic of China
| | - Bin Liang
- Department of Obstetrics-Gynecology, Dongying City Dongying District People's Hospital, Dongying City, Shandong Province 257000, People's Republic of China
| |
Collapse
|
27
|
Duan MY, Li M, Tian H, Tang G, Yang YC, Peng NC. Down-regulation of lncRNA NEAT1 regulated by miR-194-5p/DNMT3A facilitates acute myeloid leukemia. Blood Cells Mol Dis 2020; 82:102417. [PMID: 32179410 DOI: 10.1016/j.bcmd.2020.102417] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE miR-194-5p and NEAT1 have been reported to be associated with multiple malignancies, but their roles in acute myeloid leukemia (AML) remains not fully understood. METHODS Bone marrow samples were collected for monocyte separation. qRT-PCR assay was performed to investigate the expression patterns of NEAT1 and miR-194-5p in AML. CCK-8, soft agar colony formation, flow cytometry and transwell assays were employed to explore the biological functions of NEAT1 or miR-194-5p. Methylation PCR was performed to monitor the methylation of NEAT1. Luciferase reporter assay was subjected to verify the relationship between miR-194-5p and DNMT3A. Immunofluorescence and western blotting were performed to detect the alterations of protein expression. RESULTS NEAT1 and miR-194-5p were both down-regulated in AML. Overexpression of either NEAT1 or miR-194-5p repressed proliferation, induced apoptosis and restrained migration and invasion of AML cells. There was a negative correlation between NEAT1 and DNMT3A in AML. Knockdown of DNMT3A dramatically decreased the methylation of NEAT1. Moreover, DNMT3A was identified as a downstream target of miR-194-5p. Furthermore, down-regulation of DNMT3A rescued the impacts on the malignant phenotypes of NEAT1 inhibition by miR-194-5p inhibitor. CONCLUSION Altogether, down-regulation of NEAT1 mediated by miR-194-5p/DNMT3A axis promotes AML progression, which might provide therapeutic targets in AML treatment.
Collapse
Affiliation(s)
- Ming-Yue Duan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Ming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Hui Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Gen Tang
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 528038, PR China
| | - Yu-Cong Yang
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Nian-Cai Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, PR China.
| |
Collapse
|
28
|
Yao K, Yu Y, Li F, Jin P, Deng C, Zhang H. Integrative analysis of an lncRNA‑associated competing endogenous RNA network in human trabecular meshwork cells under oxidative stress. Mol Med Rep 2020; 21:1606-1614. [PMID: 32016457 PMCID: PMC7003033 DOI: 10.3892/mmr.2020.10955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are a group of non‑coding transcripts of >200 nucleotides. They can act as competing endogenous RNAs (ceRNAs) and suppress microRNA (miRNA) function by preventing them from binding to and interacting with target mRNAs. However, the specific role of the lncRNA‑associated ceRNA network in the pathogenesis of glaucoma has not yet been elucidated. To study this, data were downloaded from the Gene Expression Omnibus database (GSE126170), which contained three human trabecular meshwork cell (HTMC) samples treated with 300 µm hydrogen peroxide and three control samples treated with vehicle. Differentially expressed lncRNAs and mRNAs of HTMCs were obtained using the R package limma. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of differentially expressed mRNAs were performed using the R package clusterProfiler. Finally, the ceRNA network was constructed using the mircode, miRDB, miRTarBase and TargetScan databases, and visualized using Cytoscape v3.6.1. The results showed that 70 lncRNAs and 558 mRNAs were identified to be significantly dysregulated (|log2FoldChange| >1 and adjusted P<0.05) in HTMCs under oxidative stress compared to those in HTMCs under control conditions. Moreover, 24 lncRNAs, 24 miRNAs and 40 mRNAs were closely connected, and were part of the ceRNA network. Among these, the expression levels of 19 lncRNAs were upregulated, and those of 5 lncRNAs were downregulated. To conclude, using bioinformatics analysis, the differential expression profiles of lncRNAs were reported and a lncRNA‑associated ceRNA network in HTMCs under oxidative stress was constructed. These results may bring to light a new pathological mechanism or a potential therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yixian Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fei Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peiming Jin
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
29
|
Li X, Ye S, Lu Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma. J Clin Lab Anal 2019; 34:e23023. [PMID: 31876058 PMCID: PMC6977114 DOI: 10.1002/jcla.23023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to explore the association of long non‐coding RNA nuclear‐enriched abundant transcript 1 (lncRNA NEAT1) with exacerbation risk, lung function, and inflammatory cytokines in asthma. Methods A total of 170 patients with asthma in exacerbation, 170 patients with asthma in remission, and 170 healthy controls (HCs) were enrolled, and their plasma samples were collected. The expressions of lncRNA NEAT1 and microRNA‐124 (miRNA‐124) in plasma were detected by real‐time quantitative polymerase chain reaction; inflammatory cytokines in plasma were measured by the Enzyme‐linked immunosorbent assay (ELISA); and pulmonary ventilation function was detected by examination of forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC). Results LncRNA NEAT1 expression was upregulated in asthma patients in exacerbation compared with HCs and asthma patients in remission, and receiver operating characteristic curve exhibited that it was of good value in distinguishing asthma patients in exacerbation from HCs (AUC: 0.869 (0.830‐0.908)) and asthma patients in remission (AUC: 0.775 (0.724‐0.825)). Furthermore, lncRNA NEAT1 was positively correlated with exacerbation severity, TNF‐α, IL‐1β, and IL‐17, but negatively correlated with IL‐10, FEV1/FVC and FEV1%predicted in asthma patients. Additionally, lncRNA NEAT1 was negatively correlated with miR‐124, and miR‐124 was negatively associated with exacerbation risk, exacerbation severity, and inflammation, but positively associated with lung function in asthma patients. Conclusion Circulating lncRNA NEAT1 exhibits potential to be a new biomarker for elevated exacerbation risk and severity of asthma.
Collapse
Affiliation(s)
- Xueying Li
- Department of respiratory and critical care medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Ye
- Department of respiratory and critical care medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of respiratory and critical care medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Yang B, Jia L, Ren H, Jin C, Ren Q, Zhang H, Hu D, Zhang H, Hu L, Xie T. LncRNA DLX6-AS1 increases the expression of HIF-1α and promotes the malignant phenotypes of nasopharyngeal carcinoma cells via targeting MiR-199a-5p. Mol Genet Genomic Med 2019; 8:e1017. [PMID: 31782911 PMCID: PMC6978402 DOI: 10.1002/mgg3.1017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the expression of long-chain noncoding growth stasis specific protein 6 antisense RNA1 (lncRNA DLX6-AS1) in nasopharyngeal carcinoma (NPC) tissues and cells, and its regulatory effect on malignant phenotypes of NPC cells. METHODS The expressions of DLX6-AS1, miR-199a-5p, and HIF-1α mRNA in NPC issues and cells were detected by qRT-PCR. The proliferation, metastasis, and invasion of cells were monitored via MTT and transwell assay. The interactions between DLX6-AS1 and miR-199a-5p, miR-199a-5p and HIF-1α were verified by luciferase activity assay. Western blot was performed to determine the regulatory effect of DLX6-AS1 and miR-199a-5p on HIF-1α protein. RESULTS The expression of lncRNA DLX6-AS1 was up-regulated in NPC tissues and cells. The proliferation, migration, and invasion of NPC were enhanced by overexpressed DLX6-AS1 but inhibited by DLX6-AS1 knockdown. In addition, DLX6-AS1 can be used as a kind of ceRNA to regulate miR-199a-5p and, thereby modulating the expression of HIF-1α. CONCLUSION We found that DLX6-AS1 was a cancer-promoting lncRNA to facilitate the progression of NPC, and its underlying mechanism was suppressing miR-199a-5p expression. This study can provide novel clues for the treatment of NPC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Jia
- Department of Nephrology, the Central Hospital of Wuhan, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Ren
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Caibao Jin
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qingrong Ren
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Haiyuan Zhang
- School of Medicine, Yangtze University, Jinzhou, P.R. China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Liu Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
31
|
Min F, Chu G. Retracted
: Long noncoding RNA PCAT‐1 knockdown prevents the development of ovarian cancer cells via microRNA‐124‐3p. J Cell Biochem 2019; 121:1963-1972. [DOI: 10.1002/jcb.29431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Fengying Min
- Department of Gynecology Jining No. 1 People's Hospital Jining Shandong China
| | - Guoyan Chu
- Department of Gynecology and Obstetrics Shengli Oilfield Central Hospital Dongying Shandong China
| |
Collapse
|
32
|
Zheng YJ, Zhao JY, Liang TS, Wang P, Wang J, Yang DK, Liu ZS. Long noncoding RNA SMAD5-AS1 acts as a microRNA-106a-5p sponge to promote epithelial mesenchymal transition in nasopharyngeal carcinoma. FASEB J 2019; 33:12915-12928. [PMID: 31557058 DOI: 10.1096/fj.201900803r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial cancer of the head and neck with high prevalence in southern China, which is accompanied by notable invasiveness and metastasis. Long noncoding RNAs (lncRNAs) participate in the progression of various cancers including NPC. Microarray-based analysis identified highly expressed lncRNA mothers against decapentaplegic homolog 5 (SMAD5)-antisense RNA 1 (AS1) related to NPC. Interestingly, it is found that SMAD5-AS1 competitively bound to microRNA (miR)-106a-5p to regulate SMAD5. Herein, the study aimed to clarify the role of SMAD5-AS1/miR-106a-5p/SMAD5 axis in the process of epithelial mesenchymal transition (EMT) in NPC. SMAD5-AS1 was highly expressed and miR-106a-5p was poorly expressed in NPC tissues and cell lines. The NPC cells were treated with a series of small interfering RNAs, mimics, or inhibitors to explore the effects of SMAD5-AS1, SMAD5, and miR-106a-5p on EMT, cell proliferation, migration, and invasion in NPC. Of note, SMAD5-AS1 silencing or miR-106a-5p overexpression reduced expression of N-cadherin, matrix metallopeptidase 9, Snail, and Vimentin while elevating E-cadherin expression, thus inhibiting EMT, cell proliferation, migration, and invasion in NPC by down-regulation of SMAD5. Moreover, SMAD5 silencing could reduce the ability of EMT induced by SMAD5-AS1 up-regulation. SMAD5-AS1 silencing or miR-106a-5p elevation inhibited tumorigenesis in nude mice. Taken together, SMAD5-AS1 silencing suppressed EMT, cell proliferation, migration, and invasion in NPC by elevating miR-106a-5p to down-regulate SMAD5, which provided a novel therapeutic target for NPC treatment.-Zheng, Y.-J., Zhao, J.-Y., Liang, T.-S., Wang, P., Wang, J., Yang, D.-K., Liu, Z.-S. Long noncoding RNA SMAD5-AS1 acts as a microRNA-106a-5p sponge to promote epithelial mesenchymal transition in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ying-Juan Zheng
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Yi Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Song Liang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao-Ke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
HOXA11-AS promotes the migration and invasion of hepatocellular carcinoma cells by inhibiting miR-124 expression by binding to EZH2. Hum Cell 2019; 32:504-514. [DOI: 10.1007/s13577-019-00269-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
|
34
|
He F, Zhang C, Huang Q. Long noncoding RNA nuclear enriched abundant transcript 1/miRNA-124 axis correlates with increased disease risk, elevated inflammation, deteriorative disease condition, and predicts decreased survival of sepsis. Medicine (Baltimore) 2019; 98:e16470. [PMID: 31393351 PMCID: PMC6708900 DOI: 10.1097/md.0000000000016470] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We aimed to investigate the correlation of long noncoding RNA nuclear enriched abundant transcript 1 (lnc-NEAT1), microRNA-124 (miR-124) and lnc-NEAT1/miR-124 axis with disease risk, severity, inflammatory cytokines, and survival of sepsis.Eighty-two patients with sepsis and 82 healthy controls (HCs) were consecutively enrolled. Blood samples were collected for detection of lnc-NEAT1 and miR-124 expressions (using RT-qPCR) and measurement of inflammatory cytokines expressions (by ELISA). Severity and organ failure were assessed by acute physiology and chronic health evaluation II (APACHE II) score and sequential organ failure assessment (SOFA) score, and survival was assessed.Lnc-NEAT1 expression was increased while miR-124 expression was decreased in patients with sepsis compared to HCs, and both of them were able to distinguish patients with sepsis from HCs. For disease condition, lnc-NEAT1 positively associated with APACHE II score, SOFA score, and expressions of C-reactive protein (CRP), procalcitonin, tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β), whereas miR-124 negatively correlated with APACHE II score, SOFA score and levels of serum creatinine (Scr), CRP, TNF-α, IL-1β, interleukin-6 (IL-6) and interleukin-17 (IL-17). Regarding prognosis, lnc-NEAT1 was upregulated but miR-124 was downregulated in nonsurvivors compared to survivors. Additionally, lnc-NEAT1 negatively correlated with miR-124. Besides, lnc-NEAT1/miR-124 axis was increased in patients with sepsis compared to HCs, and positively associated with APACHE II score, SOFA score, and levels of Scr, CRP, TNF-α, IL-1β, IL-6, and IL-17, while negatively correlated with survival. Most importantly, lnc-NEAT1/miR-124 axis presented numerically increased predictive value for sepsis risk and survival compared to each index alone.Lnc-NEAT1/miR-124 axis correlates with increased sepsis risk, and associates with higher inflammation, deteriorative disease condition, and decreased survival in patients with sepsis.
Collapse
Affiliation(s)
- Fuyun He
- Department of Intensive Care Unit
| | - Chengju Zhang
- Department of Anesthesiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | | |
Collapse
|
35
|
Ji Y, Wang M, Li X, Cui F. The Long Noncoding RNA NEAT1 Targets miR-34a-5p and Drives Nasopharyngeal Carcinoma Progression via Wnt/β-Catenin Signaling. Yonsei Med J 2019; 60:336-345. [PMID: 30900419 PMCID: PMC6433575 DOI: 10.3349/ymj.2019.60.4.336] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been deemed an oncogene in many human cancers. However, the underlying mechanism of NEAT1 in nasopharyngeal carcinoma (NPC) progression remains largely unclear. MATERIALS AND METHODS Quantitative real-time PCR assay was performed to assess the expression of NEAT1 and miR-34a-5p in NPC tissues and cells. Western blot analysis was used to observe cell epithelial to mesenchymal transition (EMT) and the activation of Wnt/β-catenin signaling in 5-8F cells. MiRNA directly interacting with NEAT1 were verified by dual-luciferase reporter assay and RNA immunoprecipitation. Cell proliferation ability was determined by CCK-8 assay, and cell migration and invasion capacities were assessed by transwell assays. An animal model was used to investigate the regulatory effect of NEAT1 on tumor growth in vivo. RESULTS Our data revealed that NEAT1 is upregulated, while miR-34a-5p is downregulated in NPC tissues and cell lines. NEAT1 knockdown repressed tumor growth in vitro and in vivo. Additionally, we discovered that NEAT1 directly binds to miR-34a-5p and suppresses miR-34a-5p expression. Moreover, NEAT1 knockdown exerted suppression effects on cell proliferation, migration, invasion, and EMT by miR-34a-5p. NEAT1 knockdown blocked Wnt/β-catenin signaling via miR-34a-5p. CONCLUSION Our study demonstrated that NEAT1 targets miR-34a-5p at least partly to drive NPC progression by regulating Wnt/β-catenin signaling, suggesting a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Yuqing Ji
- Ear-Nose-Throat Department, Xingtai People's Hospital, Xingtai, China
| | - Man Wang
- Ear-Nose-Throat Department, Xingtai People's Hospital, Xingtai, China
| | - Xueshen Li
- Ear-Nose-Throat Department, Xingtai People's Hospital, Xingtai, China
| | - Fusheng Cui
- CT/MRI Department, Xingtai People's Hospital, Xingtai, China.
| |
Collapse
|
36
|
Zhang W, Du M, Wang T, Chen W, Wu J, Li Q, Tian X, Qian L, Wang Y, Peng F, Fei Q, Chen J, He X, Yin L. Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1. Am J Cancer Res 2019; 9:779-790. [PMID: 31106003 PMCID: PMC6511644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023] Open
Abstract
Recently, long non-coding RNAs (lncRNAs) have been reported as the vital regulators of various cancers including nasopharyngeal carcinoma (NPC). An increasing number of studies have suggested that lncRNA LINC01133 is dysregulated and involved in human carcinogenesis. However, the roles of LINC01133 in NPC remain largely unknown. In this work, we demonstrated that LINC01133 was significantly downregulated in NPC tissues and cell lines. Loss and gain of function experiments provided evidence that LINC01133 inhibited NPC cell proliferation, invasion and migration both in vitro and in vivo. Besides, Fluorescence in situ hybridization (FISH) assay was performed to determine the localization of LINC01133 and LINC01133 was observed mainly distributed in the nucleus. Importantly, RNA pull-down and RIP assays showed that LINC01133 directly combined with YBX1, and YBX1 can partly reverse the repression of NPC cell proliferation, migration, and invasion caused by LINC01133. Collectively, our exploration indicate that LINC01133 inhibits the malignant-biological behavior of NPC cells by binding to YBX1, thereby suggesting a novel biomarker for the NPC prognosis and treatment.
Collapse
Affiliation(s)
- Wenjun Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Tingting Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Wei Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Jing Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Qian Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Xiaokang Tian
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
- Xuzhou Medical University209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Luxi Qian
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Yan Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Qian Fei
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Jie Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
- Xuzhou Medical University209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research42 Bai Zi Ting Road, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Li B, Gu W, Zhu X. NEAT1 mediates paclitaxel-resistance of non-small cell of lung cancer through activation of Akt/mTOR signalling pathway. J Drug Target 2019; 27:1061-1067. [PMID: 30782035 DOI: 10.1080/1061186x.2019.1585437] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of paclitaxel-resistance is a main problem during non-small cell lung cancer (NSCLC) chemotherapy. Nuclear paraspeckle assembly transcript 1 (NEAT1) is an oncogenic long non-coding RNA (lncRNA) which has been proved to be aberrantly upregulated in many human malignancies. In this study, we investigated the mechanism by which NEAT1 contributed to paclitaxel-resistance in NSCLC. NEAT1 was upregulated significantly in paclitaxel-resistant NSCLC cell line, compared with other NSCLC cell lines and normal bronchial epithelial (BE) cell line. Knockdown of NEAT1 could reverse the paclitaxel-resistance through induction of apoptosis by increasing cleaved PARP and cleaved caspase-3 expression. Moreover, NEAT1 was associated with Akt/mTOR signalling pathway activation by increasing expression of p-Akt, p-mTOR, Bcl-2 and decreasing expression of Bax. In conclusion, these results demonstrated that NEAT1 underlay paclitaxel-resistance in NSCLC.
Collapse
Affiliation(s)
- Baiying Li
- Department of Tuberculosis, Hangzhou Red Cross Hospital , Hangzhou , Zhejiang , PR China
| | - Wenyue Gu
- Department of Pathology, Yancheng Hospital Affiliated Southeast University , Yancheng , Jiangsu , PR China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital , Hangzhou , Zhejiang , PR China
| |
Collapse
|
38
|
Liu Z, Wu K, Wu J, Tian D, Chen Y, Yang Z, Wu A. NEAT1 is a potential prognostic biomarker for patients with nasopharyngeal carcinoma. J Cell Biochem 2019; 120:9831-9838. [PMID: 30618186 DOI: 10.1002/jcb.28263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) has been found to be dysregulated and associated with clinical progression in various human cancers. The clinical and prognostic value of NEAT1 in nasopharyngeal carcinoma (NPC) was still controversial. The aim of our study was to provide more sufficient evidence that NEAT1 expression is correlated with overall survival in patients with NPC. NEAT1 expression was detected in NPC tissue samples, and the relationship between NEAT1 expression and clinical parameters, including prognosis, was analyzed. The meta-analysis was performed to further assess the prognostic significance of NEAT1 expression in patients with NPC. In our study, we found that the levels of NEAT1 expression were increased in NPC clinical tissue specimens, and associated with advanced M classification and clinical stages. Moreover, the Kaplan-Meier analysis suggested that the levels of NEAT1 expression were negatively associated with the overall survival of patients with NPC. Furthermore, univariate and multivariate Cox regression analyses showed that NEAT1 high-expression was an independent unfavorable prognostic factor in patients with NPC. Finally, we conducted a meta-analysis including 297 patients with NPC from the three studies, and found the pooled HR (95% confidence interval [CI]) was 1.64 (95% CI: 0.68-3.93) for the random effects model and 2.04 (95% CI: 1.42-2.95) for the fixed effect model. In conclusion, NEAT1 is a potential prognostic biomarker for NPC, but more studies are needed to further verify the prognostic value of NEAT1 in patients with NPC.
Collapse
Affiliation(s)
- Zhuoxing Liu
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Kunpeng Wu
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Jian Wu
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Dan Tian
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Yue Chen
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Zhixiong Yang
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Aibing Wu
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
39
|
Yang X, Mo W, Fang Y, Wei G, Wei M, Dang Y, Chen G, Hu K, Wei D. Up-regulation of Polo-like Kinase 1 in nasopharyngeal carcinoma tissues: a comprehensive investigation based on RNA-sequencing, gene chips, and in-house tissue arrays. Am J Transl Res 2018; 10:3924-3940. [PMID: 30662640 PMCID: PMC6325506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a highly invasive malignancy which has unique characteristics when found among individuals from certain ethnic or geographic populations. The role and molecular mechanism of Polo-like kinase 1 (PLK1) in NPC remain yet to be clarified. Hence, the aim of this study is to identify the clinical implications of PLK1 in NPC based on gene chip, tissue microarray, and other silico approaches. METHODS Relevant data related to PLK1 levels in NPC was screened for by searching in SRA, GEO, ArrayExpress, Oncomine and throughout the existing literature on this topic. The raw data about gene chips were normalized by using an RMA algorithm provided by "Limma" package. Furthermore, the "SVA" package of R software was used to remove the batch effect and data from the same platform were merged into one part. The differential expression levels of PLK1 between NPC and non-NPC tissues were extracted and analyzed with the Student's t-test. Meta-analyses were used to calculate the standard mean difference and sROC. Furthermore, in-house immunohistochemistry was performed with tissue microarrays. Weighted correlation network analysis was used to identify the PLK1-related genes. Several bioinformatic evaluations, including the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interactions, were also performed to assess the PLK1-related pathways. RESULTS The tissue microarray and gene chips indicated that the PLK1 levels clearly had an up-regulating trend as compared to the non-cancerous controls. These trends were observed in both the single study and the comprehensive meta-analysis. The area under the sROC curve in the NPC tissues was 0.87, with pooled sensitivity and specificity at 0.950 and 0.710, respectively, based on 393 NPC tissues and 83 non-cancerous controls. A total of 144 genes were identified as co-expressed genes of PLK1 in NPC and were mainly enriched in the "cell cycle" pathway. Among the genes related to the cell cycle, CDK1, CCNA2 and CCNB2 were all closely related to PLK1 expression level. CONCLUSIONS PLK1 may play a potential oncogenic role in the tumorigenesis and development of NPC. Since several PLK1 inhibitors have been developed, it is believed that the PLK1 inhibitors have great therapeutic potential in clinic applications for NPC patients.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Weijia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yeying Fang
- Department of Radiation Oncology, Radiation Oncology Clinical Medical Research Center of Guangxi, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ganguan Wei
- Department of ENT and HN Surgery, NO. 303 Hospital of PLA52 Zhiwu Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Minda Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Kai Hu
- Department of Radiation Oncology, Radiation Oncology Clinical Medical Research Center of Guangxi, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Danming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
40
|
Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis. Mol Oncol 2018; 13:46-60. [PMID: 30430751 PMCID: PMC6322192 DOI: 10.1002/1878-0261.12404] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
Altered expression levels of the long noncoding RNA (lncRNA) nuclear‐enriched abundant transcript 1 (NEAT1) have been reported in different types of cancer. More than half of the NEAT1 studies in cancer have been published within the last 2 years. In this review, we discuss very recent developments and insights into NEAT1 contribution to carcinogenesis. Summarizing the literature, it becomes obvious that NEAT1 is a lncRNA highly de‐/upregulated in a variety of cancer entities, in which it primarily acts as a competing endogenous RNA (ceRNA) which sponges tumor‐suppressive microRNA (miRNA). The sponged miRNA lose their ability to degrade, silence, or hamper translation of their downstream—mostly oncogenic—target transcripts, ultimately promoting carcinogenesis. This role of NEAT1 function in tumorigenesis suggests it may be a prognostic biomarker as well as potential therapeutic target, pending the completion of further studies into the underlying mechanisms.
Collapse
Affiliation(s)
- Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Austria.,Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Austria
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Austria.,Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Austria.,Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
LINC00210 as a miR-328-5p sponge promotes nasopharyngeal carcinoma tumorigenesis by activating NOTCH3 pathway. Biosci Rep 2018; 38:BSR20181168. [PMID: 30341249 PMCID: PMC6240715 DOI: 10.1042/bsr20181168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/26/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022] Open
Abstract
As a kind of essential regulators, long noncoding RNAs (lncRNAs) have attracted a lot of attention in recent years. Nevertheless, the function of lncRNA in nasopharyngeal carcinoma (NPC) remains poorly understood. In the present study, we explained the role and mechanism of LINC00210 in NPC progression. We found that LINC00210 expression was up-regulated in NPC samples. Besides, its overexpression was positively correlated with NPC metastasis while predicting poor prognosis. Based on functional experiments, we revealed that LINC00210 contributed to NPC cell proliferation and invasion in vitro, and promotes tumor growth in vivo. Mechanistically, we identified that LINC00210 was located in the cytoplasm of NPC cells and served as the miR-328-5p sponge. Furthermore, we showed that miR-328-5p targets the 3′ untranslated region (3′-UTR) of NOTCH3. Through inhibiting miR-328-5p activity, LINC00210 promoted NOTCH3 expression in NPC, leading to activation of NOTCH3 signaling pathway. In conclusion, our study indicates LINC00210 promotes NPC progression through modulating proliferation and invasion.
Collapse
|
42
|
Dong P, Xiong Y, Yue J, Hanley SJB, Kobayashi N, Todo Y, Watari H. Long Non-coding RNA NEAT1: A Novel Target for Diagnosis and Therapy in Human Tumors. Front Genet 2018; 9:471. [PMID: 30374364 PMCID: PMC6196292 DOI: 10.3389/fgene.2018.00471] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (NEAT1, a long non-coding RNA) is frequently overexpressed in human tumors, and higher NEAT1 expression is correlated with worse survival in cancer patients. NEAT1 drives tumor initiation and progression by modulating the expression of genes involved in the regulation of tumor cell growth, migration, invasion, metastasis, epithelial-to-mesenchymal transition, stem cell-like phenotype, chemoresistance and radioresistance, indicating the potential for NEAT1 to be a novel diagnostic biomarker and therapeutic target. Mechanistically, NEAT1 functions as a scaffold RNA molecule by interacting with EZH2 (a subunit of the polycomb repressive complex) to influence the expression of downstream effectors of EZH2, it also acts as a microRNA (miRNA) sponge to suppress the interactions between miRNAs and target mRNAs, and affects the expression of miR-129 by promoting the DNA methylation of the miR-129 promoter region. Knockdown of NEAT1 via small interfering RNA or short hairpin RNA inhibits the malignant behavior of tumor cells. In this review, we highlight the latest insights into the expression pattern, biological roles and mechanisms underlying the function and regulation of NEAT1 in tumors, and especially focus on its clinical implication as a new diagnostic biomarker and an attractive therapeutic target for cancers.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Department of Gynecology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sharon J B Hanley
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yukiharu Todo
- Division of Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center (NHO), Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
Yong W, Yu D, Jun Z, Yachen D, Weiwei W, Midie X, Xingzhu J, Xiaohua W. Long noncoding RNA NEAT1, regulated by LIN28B, promotes cell proliferation and migration through sponging miR-506 in high-grade serous ovarian cancer. Cell Death Dis 2018; 9:861. [PMID: 30154460 PMCID: PMC6113267 DOI: 10.1038/s41419-018-0908-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/06/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) has been reported frequently in specific cancers, including high-grade serous ovarian cancer (HGSOC). The purpose of the present study was to explore the clinical significance and underlying mechanisms of a significantly dysregulated lncRNA (NEAT1) in HGSOC. Our results showed that elevated NEAT1 expression in human HGSOC specimens correlated with a poor prognosis. Functional experiments demonstrated that knockdown of NEAT1 significantly prohibited ovarian cancer cell proliferation and invasion in vitro and restrained tumor growth in vivo. LIN28B was identified by bioinformatics analysis along with experimental evidence as a direct actor that enhanced NEAT1 stability. A rescue functional assay confirmed that the LIN28B/NEAT1 axis contributed to oncogenic functions in ovarian cancer cells. Moreover, gene expression profile data and dual luciferase reporter assay results demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for miR-506 to promote cell proliferation and migration. Taken together, our results showed that NEAT1, stabilized by LIN28B, promoted HGSOC progression by sponging miR-506. Thus, NEAT1 can be regarded as a vital diagnostic biomarker for HGSOC and a therapeutic target.
Collapse
Affiliation(s)
- Wu Yong
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deng Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhu Jun
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duan Yachen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weng Weiwei
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xu Midie
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ju Xingzhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wu Xiaohua
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Biosci Rep 2018; 38:BSR20180375. [PMID: 29654165 PMCID: PMC6435545 DOI: 10.1042/bsr20180375] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Aberrant expressions of long non-coding RNAs (lncRNAs) are the culprits of carcinogenesis via regulating the tumor suppressor or oncogene. LncRNA nuclear enriched abundant transcript 1 (NEAT1) has been identified to be an oncogene to promote tumor growth and metastasis of many cancers. However, the clinical significance and function of NEAT1 in osteosarcoma (OS) remain to be discovered. We here collected OS tissues (n=40) and adjacent non-tumor tissues (n=20) to determine the expression of NEAT1 and its clinical significance. NEAT1 was overexpressed in OS tissues, which positively correlated with tumor size, Enneking stage, and distant metastasis of OS patients. The elevated level of NEAT1 was confirmed in OS cell lines including MG63 and HOS in vitro. Knockdown of NEAT1 by two siRNAs induced impaired cell vitalities, promoted the apoptosis, and G0/G1 arrest in two cell lines, which was associated with inhibited anti-apoptosis signals BCL-2 pathway and cell cycle-related cyclin D1 (CCND1) signals. Moreover, the tumor suppressor miR-34c was negatively regulated and inhibited by NEAT1 in OS. Suppression of miR-34c could up-regulate the expressions of its target genes BCL-2 and CCND1 to antagonize the effects of NEAT1 knockdown. Furthermore, overexpressed NEAT1 reduced the sensitivity of cisplatin (DDP) and inhibited DDP-induced apoptosis and cell cycle arrest via miR-34c. The results in vivo also confirmed that knockdown of NEAT1 sensitized the OS cells to DPP-induced tumor regression, delayed the tumor growth with reduced levels of Ki-67, BCL-2, and cyclin D1 signals, suggesting that NEAT1 is an oncogene and chemotherapy resistant factor in OS.
Collapse
|
45
|
Pomatto MAC, Gai C, Deregibus MC, Tetta C, Camussi G. Noncoding RNAs Carried by Extracellular Vesicles in Endocrine Diseases. Int J Endocrinol 2018; 2018:4302096. [PMID: 29808089 PMCID: PMC5902008 DOI: 10.1155/2018/4302096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are essential and fine regulators of important biological processes. Their role is well documented also in the endocrine system, both in physiological and pathological conditions. Increasing interest is arising about the function and the importance of noncoding RNAs shuttled by extracellular vesicles (EVs). In fact, EV membrane protects nucleic acids from enzyme degradation. Nowadays, the research on EVs and their cargoes, as well as their biological functions, faces the lack of standardization in EV purification. Here, the main techniques for EV isolation are discussed and compared for their advantages and vulnerabilities. Despite the possible discrepancy due to methodological variability, EVs and their RNA content are reported to be key mediators of intercellular communication in pathologies of main endocrine organs, including the pancreas, thyroid, and reproductive system. In particular, the present work describes the role of RNAs contained in EVs in pathogenesis and progression of several metabolic dysfunctions, including obesity and diabetes, and their related manifestations. Their importance in the establishment and progression of thyroid autoimmunity disorders and complicated pregnancy is also discussed. Preliminary studies highlight the attractive possibility to use RNAs contained in EVs as biomarkers suggesting their exploitation for new diagnostic approaches in endocrinology.
Collapse
Affiliation(s)
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| | - Ciro Tetta
- Unicyte AG, Oberdorf, Nidwalden, Switzerland
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| |
Collapse
|