1
|
Roiuk M, Neff M, Teleman AA. eIF4E-independent translation is largely eIF3d-dependent. Nat Commun 2024; 15:6692. [PMID: 39107322 PMCID: PMC11303786 DOI: 10.1038/s41467-024-51027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Translation initiation is a highly regulated step needed for protein synthesis. Most cell-based mechanistic work on translation initiation has been done using non-stressed cells growing in medium with sufficient nutrients and oxygen. This has yielded our current understanding of 'canonical' translation initiation, involving recognition of the mRNA cap by eIF4E1 followed by successive recruitment of initiation factors and the ribosome. Many cells, however, such as tumor cells, are exposed to stresses such as hypoxia, low nutrients or proteotoxic stress. This leads to inactivation of mTORC1 and thereby inactivation of eIF4E1. Hence the question arises how cells translate mRNAs under such stress conditions. We study here how mRNAs are translated in an eIF4E1-independent manner by blocking eIF4E1 using a constitutively active version of eIF4E-binding protein (4E-BP). Via ribosome profiling we identify a subset of mRNAs that are still efficiently translated when eIF4E1 is inactive. We find that these mRNAs preferentially release eIF4E1 when eIF4E1 is inactive and bind instead to eIF3d via its cap-binding pocket. eIF3d then enables these mRNAs to be efficiently translated due to its cap-binding activity. In sum, our work identifies eIF3d-dependent translation as a major mechanism enabling mRNA translation in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Mykola Roiuk
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marilena Neff
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Cools R, Vermeulen K, Narykina V, Leitao RCF, Bormans G. Radiosynthesis and preclinical evaluation of [ 11C]SNX-ab as an Hsp90α,β isoform-selective PET probe for in vivo brain and tumour imaging. EJNMMI Radiopharm Chem 2023; 8:2. [PMID: 36715827 PMCID: PMC9886718 DOI: 10.1186/s41181-023-00189-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The molecular chaperone, Hsp90, is a key player in the protein quality control system that maintains homeostasis under cellular stress conditions. It is a homodimer with ATP-dependent activity, and is a prominent member of the chaperone machinery that stabilizes, matures and (re)folds an extensive list of client proteins. Hsp90 occurs as four isoforms, cytosolic Hsp90α and Hsp90β, mitochondrial TRAP1 and Grp94 present in the endoplasmic reticulum. An aberrant role of Hsp90 has been attributed to several cancers and neurodegenerative disorders. Consequently, Hsp90 has emerged as an attractive therapeutic target. However, pan-Hsp90 inhibition often leads to detrimental dose-limiting toxicities. Novel strategies for Hsp90-targeted therapy intend to avoid this by using isoform-specific Hsp90 inhibition. In this respect, the radiosynthesis of carbon-11 labeled SNX-ab was developed and [11C]SNX-ab was evaluated as a Hsp90α,β isoform-selective PET probe, which could potentially allow to quantify in vivo Hsp90α,β expression. RESULTS [11C]SNX-ab was synthesized with excellent radiochemical yields of 45% and high radiochemical purity (> 98%). In vitro autoradiography studies on tissue slices of healthy mouse brain, mouse B16.F10 melanoma and U87 glioblastoma using homologous (SNX-ab, SNX-0723) and heterologous (Onalespib and PU-H71) Hsp90 inhibitors demonstrated only limited reduction of tracer binding, indicating that the binding of [11C]SNX-ab was not fully Hsp90-specific. Similarly, [11C]SNX-ab binding to U87 cells was not efficiently inhibited by Hsp90 inhibitors. Ex vivo biodistribution studies in healthy mice revealed limited brain exposure of [11C]SNX-ab and predominantly hepatobiliary clearance, which was confirmed by in vivo full-body dynamic µPET studies. CONCLUSION Our results suggest that [11C]SNX-ab is not an ideal probe for in vivo visualization and quantification of Hsp90α/β expression levels in tumour and brain. Future research in the development of next-generation Hsp90 isoform-selective PET tracers is warranted to dissect the role played by each isoform towards disease pathology and support the development of subtype-specific Hsp90 therapeutics.
Collapse
Affiliation(s)
- Romy Cools
- grid.5596.f0000 0001 0668 7884Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Koen Vermeulen
- grid.5596.f0000 0001 0668 7884Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium ,grid.8953.70000 0000 9332 3503NURA, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Valeria Narykina
- grid.511015.1Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Renan C. F. Leitao
- grid.5596.f0000 0001 0668 7884Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Guy Bormans
- grid.5596.f0000 0001 0668 7884Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites 2022; 12:1153. [PMID: 36422293 PMCID: PMC9697676 DOI: 10.3390/metabo12111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 09/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nusrat Jahan Selsi
- Product Development Department, Popular Pharmaceuticals Ltd., Dhaka 1207, Bangladesh
| | - Nasrin Akter
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University Bangladesh, Dhaka 1212, Bangladesh
| | - Md Nazim Uddin
- Department of Pharmacy, Southern University Bangladesh, Chittagong 4000, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
4
|
Gao W, Yuan Z, Zhao X, Wang S, Lai S, Ni K, Zhan Y, Liu Z, Liu L, Xin R, Yin X, Zhou X, Liu X, Zhang X, Zhang Q, Li G, Wang W, Zhang C. The prognostic and clinical value of p53 upregulated modulator of apoptosis expression in solid tumours: a meta-analysis and TCGA data review. Expert Rev Mol Diagn 2022; 22:811-819. [DOI: 10.1080/14737159.2022.2125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Weifeng Gao
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Zhen Yuan
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Xuanzhu Zhao
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Shuyuan Wang
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Sizhen Lai
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Yixiang Zhan
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
| | - Zhaoce Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Lina Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
| | - Ran Xin
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Xin Yin
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Xingyu Zhou
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Xinyu Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Medical University, 300041 Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qinghuai Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Guoxun Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Wenhong Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, 300121 Tianjin, China
- Tianjin Institute of Coloproctology, 300121 Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| |
Collapse
|
5
|
Vermeulen K, Cools R, Briard E, Auberson Y, Schoepfer J, Koole M, Cawthorne C, Bormans G. Preclinical Evaluation of [ 11C]YC-72-AB85 for In Vivo Visualization of Heat Shock Protein 90 in Brain and Cancer with Positron Emission Tomography. ACS Chem Neurosci 2021; 12:3915-3927. [PMID: 34597516 DOI: 10.1021/acschemneuro.1c00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aberrant Hsp90 has been implied in cancer and neurodegenerative disorders. The development of a suitable Hsp90 Positron emission tomography (PET) probe can provide in vivo quantification of the expression levels of Hsp90 as a biomarker for diagnosis and follow-up of cancer and central nervous system (CNS) disease progression. In this respect, [11C]YC-72-AB85 was evaluated as an Hsp90 PET probe in B16.F10 melanoma bearing mice and its brain uptake was determined in rats and nonhuman primate. In vitro binding of [11C]YC-72-AB85 to tissue slices of mouse B16.F10 melanoma, PC3 prostate carcinoma, and rodent brain was evaluated using autoradiography. Biodistribution of [11C]YC-72-AB85 was evaluated in healthy and B16.F10 melanoma mice. In vivo brain uptake was assessed by μPET studies in rats and a rhesus monkey. In vitro binding was deemed Hsp90-specific by blocking studies with heterologous Hsp90 inhibitors onalespib and SNX-0723. Saturable Hsp90 binding was observed in brain, tumor, blood, and blood-rich organs in mice. In combined pretreatment and displacement studies, reversible and Hsp90-specific binding of [11C]YC-72-AB85 was observed in rat brain. Dynamic μPET brain scans in baseline and blocking conditions in a rhesus monkey indicated Hsp90-specific binding. [11C]YC-72-AB85 is a promising PET tracer for in vivo visualization of Hsp90 in tumor and brain. Clear differences of Hsp90 binding to blood and blood-rich organs were observed in tumor vs control mice. Further, we clearly demonstrate, for the first time, binding to a saturable Hsp90 pool in brain of rats and a rhesus monkey.
Collapse
Affiliation(s)
- Koen Vermeulen
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
- Radiobiology Unit & NURA, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Emmanuelle Briard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Yves Auberson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Joseph Schoepfer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Michel Koole
- Nuclear Medicine & Molecular Imaging & MoSAIC, Department of Imaging & Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine & Molecular Imaging & MoSAIC, Department of Imaging & Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Vermeulen K, Naus E, Ahamed M, Attili B, Siemons M, Luyten K, Celen S, Schymkowitz J, Rousseau F, Bormans G. Evaluation of [ 11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90. Am J Cancer Res 2019; 9:554-572. [PMID: 30809293 PMCID: PMC6376183 DOI: 10.7150/thno.27213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 is an ATP-dependent molecular chaperone important for folding, maturation and clearance of aberrantly expressed proteins and is abundantly expressed (1-2% of all proteins) in the cytosol of all normal cells. In some tumour cells, however, strong expression of HSP90 is also observed on the cell membrane and in the extracellular matrix and the affinity of tumoural HSP90 for ATP domain inhibitors was reported to increase over 100-fold compared to that of HSP90 in normal cells. Here, we explore [11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90 and as a potential tool for in vivo quantification of occupancy of HSP90 inhibitors. Methods: HSP90 expression was biochemically characterized in a panel of established cell lines including the melanoma line B16.F10. B16.F10 melanoma xenograft tumour tissue was compared to non-malignant mouse tissue. NMS-E973 was tested in vitro for HSP90 inhibitory activity in several tumour cell lines. HSP90-specific binding of [11C]NMS-E973 was evaluated in B16.F10 melanoma cells and B16.F10 melanoma, prostate cancer LNCaP and PC3, SKOV-3 xenograft tumour slices and in vivo in a B16.F10 melanoma mouse model. Results: Strong intracellular upregulation and abundant membrane localisation of HSP90 was observed in the different tumour cell lines, in the B16.F10 tumour cell line and in B16.F10 xenograft tumours compared to non-malignant tissue. NMS-E973 showed HSP90-specific inhibition and reduced proliferation of cells. [11C]NMS-E973 showed strong binding to B16.F10 melanoma cells, which was inhibited by 200 µM of PU-H71, a non-structurally related HSP90 inhibitor. HSP90-specific binding was observed by in vitro autoradiography of murine B16.F10 melanoma, LNCaP and PC3 prostate cancer and SKOV-3 ovary carcinoma tissue slices. Further, B16.F10 melanoma-inoculated mice were subjected to a µPET study, where the tracer showed fast and persistent tumour uptake. Pretreatment of B16.F10 melanoma mice with PU-H71 or Ganetespib (50 mg/kg) completely blocked tumour accumulation of [11C]NMS-E973 and confirmed in vivo HSP90 binding specificity. HSP90-specific binding of [11C]NMS-E973 was observed in blood, lungs and spleen of tumour-bearing animals but not in control animals. Conclusion: [11C]NMS-E973 is a PET tracer for in vivo visualisation of tumour HSP90 expression and can potentially be used for quantification of HSP90 occupancy. Further translational evaluation of [11C]NMS-E973 is warranted.
Collapse
|