1
|
Favorito V, Ricciotti I, De Giglio A, Fabbri L, Seminerio R, Di Federico A, Gariazzo E, Costabile S, Metro G. Non-small cell lung cancer: an update on emerging EGFR-targeted therapies. Expert Opin Emerg Drugs 2024; 29:139-154. [PMID: 38572595 DOI: 10.1080/14728214.2024.2331139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Current research in EGFR-mutated NSCLC focuses on the management of drug resistance and uncommon mutations, as well as on the opportunity to extend targeted therapies' field of action to earlier stages of disease. AREAS COVERED We conducted a review analyzing literature from the PubMed database with the aim to describe the current state of art in the management of EGFR-mutated NSCLC, but also to explore new strategies under investigation. To this purpose, we collected recruiting phase II-III trials registered on Clinicaltrials.govand conducted on EGFR-mutated NSCLC both in early and advanced stage. EXPERT OPINION With this review, we want to provide an exhaustive overview of current and new potential treatments in EGFR-mutated NSCLC, with emphasis on the most promising newly investigated strategies, such as association therapies in the first-line setting involving EGFR-TKIs and chemotherapy (FLAURA2) or drugs targeting different driver pathways (MARIPOSA). We also aimed at unearthing challenges to achieve in this field, specifically the need to fully exploit already available compounds while developing new ones, the management of new emerging toxicities and the necessity to improve our biological understanding of the disease to design trials with a solid scientific rationale and to allow treatment personalization such in case of uncommon mutations.
Collapse
Affiliation(s)
- Valentina Favorito
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Renata Seminerio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eleonora Gariazzo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Costabile
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
2
|
Lu C, Wei XW, Wang Z, Zhou Z, Liu YT, Zheng D, He Y, Xie ZH, Li Y, Zhang Y, Zhang YC, Huang ZJ, Mei SQ, Liu JQ, Guan XH, Deng Y, Chen ZH, Tu HY, Xu CR, Chen HJ, Zhong WZ, Yang JJ, Zhang XC, Mok TSK, Wu YL, Zhou Q. Allelic Context of EGFR C797X-Mutant Lung Cancer Defines Four Subtypes With Heterogeneous Genomic Landscape and Distinct Clinical Outcomes. J Thorac Oncol 2024; 19:601-612. [PMID: 37981218 DOI: 10.1016/j.jtho.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION EGFR C797X (C797S or C797G) mutation is the most frequent on-target mechanism of resistance to osimertinib. The hypothesis that the allelic context of C797X/T790M has implications for treatment is on the basis of sporadic reports and needs validation with larger cohorts. METHODS We identified patients with EGFR C797X-mutant NSCLC from nine centers who progressed on osimertinib, all analyzed in a single laboratory through next-generation sequencing. We analyzed genomic profiles and assessed associations between clinical outcomes and C797X status. RESULTS A total of 365 EGFR C797X-mutant cases were categorized into four subtypes on the basis of allelic context: in cis (75.3%), in trans (6.4%), cis&trans (10.4%), and C797X-only (7.9%). Genomically, the cis&trans subtype displayed the highest frequency of concurrent alterations at osimertinib resistance sites (21.1%), while the in cis subtype had the lowest (8.4%). Clinically, cis&trans patients exhibited the worst progression-free survival (PFS) on both previous (median 7.7 mo) and subsequent treatment (median 1.0 mo) and overall survival (median 3.9 mo). In subsequent treatments, in cis patients exhibited superior PFS with combined brigatinib and cetuximab (median 11.0 mo) compared with other regimens (p = 0.005), while in trans patients exhibited variable outcomes with combined first or second- and third-generation EGFR inhibitor (PFS range: 0.7-8.1 mo, median 2.6 mo). Notably, subtype switching was observed after subsequent treatments, predominantly toward the in cis subtype. CONCLUSIONS Allelic context could define four EGFR C797X-mutant NSCLC subtypes with heterogeneous genetic landscapes and distinct clinical outcomes. Subsequent treatments further complicate the scenario through subtype switching.
Collapse
Affiliation(s)
- Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xue-Wu Wei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhou
- Shanghai Chest Hosptial, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Tao Liu
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Di Zheng
- Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhan-Hong Xie
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou, People's Republic of China
| | - Yong Li
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Yan Zhang
- The Fourth Department of Oncology, People's Hospital of Shijiazhuang City, Shijiazhuang, People's Republic of China
| | - Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zi-Jian Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Shi-Qi Mei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Jia-Qi Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xu-Hui Guan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Yu Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Tony S K Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Ferro A, Marinato GM, Mulargiu C, Marino M, Pasello G, Guarneri V, Bonanno L. The study of primary and acquired resistance to first-line osimertinib to improve the outcome of EGFR-mutated advanced Non-small cell lung cancer patients: the challenge is open for new therapeutic strategies. Crit Rev Oncol Hematol 2024; 196:104295. [PMID: 38382773 DOI: 10.1016/j.critrevonc.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The development of targeted therapy in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) patients has radically changed their clinical perspectives. Current first-line standard treatment for advanced disease is commonly considered third-generation tyrosine kinase inhibitors (TKI), osimertinib. The study of primary and acquired resistance to front-line osimertinib is one of the main burning issues to further improve patients' outcome. Great heterogeneity has been depicted in terms of duration of clinical benefit and pattern of progression and this might be related to molecular factors including subtypes of EGFR mutations and concomitant genetic alterations. Acquired resistance can be categorized into two main classes: EGFR-dependent and EGFR-independent mechanisms and specific pattern of progression to first-line osimertinib have been demonstrated. The purpose of the manuscript is to provide a comprehensive overview of literature about molecular resistance mechanisms to first-line osimertinib, from a clinical perspective and therefore in relationship to emerging therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Gian Marco Marinato
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Cristiana Mulargiu
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Monica Marino
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy.
| |
Collapse
|
4
|
Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochim Biophys Acta Rev Cancer 2023; 1878:188967. [PMID: 37657684 DOI: 10.1016/j.bbcan.2023.188967] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) actively involves in modulation of various cancer progression related mechanisms including angiogenesis, differentiation and migration. Therefore, targeting EGFR has surfaced as a prominent approach for the treatment of several types of cancers, including non-small cell lung cancer (NSCLC), pancreatic cancer, glioblastoma. Various first, second and third generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated effectiveness as an anti-cancer therapeutics. However, rapid development of drug resistance and mutations still remains a major challenge for the EGFR-TKIs therapy. Overcoming from intrinsic and acquired resistance caused by EGFR mutations warrants the further exploration of alternative strategies and discovery of novel inhibitors. In this review, we delve into the breakthrough discoveries have been made in previous 20 years, and discuss the currently ongoing efforts aimed to circumvent the chemo-resistance. We also highlight the new challenges, limitations and future directions for the development of improved therapeutic approaches such as fourth-generation EGFR-TKIs, peptides, nanobodies, PROTACs etc.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.
| |
Collapse
|
5
|
Leung JKC, Kwok WC, Leung ACF, Tsui P, Ho JCM. Emerging EGFR-Mutated Subclones in a Patient With Metastatic ALK-Rearranged Lung Adenocarcinoma Treated With ALK-Targeted Therapy: A Case Report. JTO Clin Res Rep 2023; 4:100542. [PMID: 37502466 PMCID: PMC10368895 DOI: 10.1016/j.jtocrr.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
We report a case of pathologically confirmed ALK-rearranged metastatic lung adenocarcinoma with emergence of EGFR L858R mutation on disease progression after two lines of treatment with ALK inhibitors. At initial diagnosis, tumoral ALK expression was detected without EGFR mutation by standard allele-specific polymerase chain reaction. There was sustained partial response to both first-line crizotinib and subsequent brigatinib. On disease progression to brigatinib, result of a liquid biopsy with circulating tumor DNA revealed only EGFR L858R, which was confirmed by tumor rebiopsy on the supraclavicular lymph node. The patient was then treated initially with pemetrexed and carboplatin, and erlotinib was subsequently added after two cycles of chemotherapy. The combination treatment has resulted in very good partial response and mild adverse effects. The overall clinical course would suggest the initial presence of two separate tumor clones, with ALK dominance at diagnosis. The subsequent breakthrough disease progression after initial response to brigatinib was related to uncontrolled growth of the EGFR-mutated tumor subpopulation. The implication on defining molecular mechanism of acquired resistance and treatment strategy would be discussed.
Collapse
Affiliation(s)
- Jackson Ka Chun Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wang Chun Kwok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Arthur Chun Fung Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Po Tsui
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - James Chung-Man Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
6
|
Li Y, Mao T, Wang J, Zheng H, Hu Z, Cao P, Yang S, Zhu L, Guo S, Zhao X, Tian Y, Shen H, Lin F. Toward the next generation EGFR inhibitors: an overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal 2023; 21:71. [PMID: 37041601 PMCID: PMC10088170 DOI: 10.1186/s12964-023-01082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is currently the standard first-line therapy for EGFR-mutated advanced non-small cell lung cancer (NSCLC). The life quality and survival of this subgroup of patients were constantly improving owing to the continuous iteration and optimization of EGFR-TKI. Osimertinib, an oral, third-generation, irreversible EGFR-TKI, was initially approved for the treatment of NSCLC patients carrying EGFR T790M mutations, and has currently become the dominant first-line targeted therapy for most EGFR mutant lung cancer. Unfortunately, resistance to osimertinib inevitably develops during the treatment and therefore limits its long-term effectiveness. For both fundamental and clinical researchers, it stands for a major challenge to reveal the mechanism, and a dire need to develop novel therapeutics to overcome the resistance. In this article, we focus on the acquired resistance to osimertinib caused by EGFR mutations which account for approximately 1/3 of all reported resistance mechanisms. We also review the proposed therapeutic strategies for each type of mutation conferring resistance to osimertinib and give an outlook to the development of the next generation EGFR inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Tianyu Mao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hongrui Zheng
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Ziyi Hu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Pingping Cao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Suisui Yang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingyun Zhu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Shunyao Guo
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinfei Zhao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yue Tian
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hua Shen
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
| | - Fan Lin
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
7
|
Li D, Wang J, Liu C, Luo Y, Xu H, Wang Y, Sun N, He J. Making the Best Use of Available Weapons for the Inevitable Rivalry-Resistance to EGFR-TKIs. Biomedicines 2023; 11:biomedicines11041141. [PMID: 37189759 DOI: 10.3390/biomedicines11041141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
The emergence of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) revolutionized the treatment of advanced-stage non-small cell lung cancer (NSCLC). Detected in more than 50% of late-stage lung adenocarcinoma in Asian patients, the EGFR mutation was regarded as a golden mutation for Asians. However, resistance to TKIs seems inevitable and severely hinders patients from getting further benefits from treatment. Even though resistance caused by EGFR T790M could be effectively managed by third-generation EGFR-TKIs currently, resistance to third-generation EGFR-TKIs is still a troublesome issue faced by both clinicians and patients. Various efforts have been made to maximize the benefits of patients from EGFR-TKIs therapy. Thus, new requirements and challenges have been posed to clinicians of this era. In this review, we summarized the clinical evidence on the efficacy of third-generation EGFR-TKIs in patients with EGFR-mutated NSCLC. Then, we discussed advancements in sequential treatment aiming to delay the onset of resistance. Moreover, the resistance mechanisms and features were depicted to help us better understand our enemies. Lastly, we put forward future strategies, including recent approaches involving the utilization of antibody drug conjugates against resistance and research directions about shaping the evolution of NSCLC as a core idea in the management of NSCLC.
Collapse
Affiliation(s)
- Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- 4 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jingnan Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17:18-42. [PMID: 36848029 DOI: 10.1007/s11684-022-0976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations ("target-dependent resistance") and in the parallel and downstream pathways ("target-independent resistance"). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
Collapse
Affiliation(s)
- Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Suriya U, Mahalapbutr P, Wimonsong W, Yotphan S, Choowongkomon K, Rungrotmongkol T. Quinoxalinones as A Novel Inhibitor Scaffold for EGFR (L858R/T790M/C797S) Tyrosine Kinase: Molecular Docking, Biological Evaluations, and Computational Insights. Molecules 2022; 27:8901. [PMID: 36558033 PMCID: PMC9788584 DOI: 10.3390/molecules27248901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Combating acquired drug resistance of EGFR tyrosine kinase (TK) is a great challenge and an urgent necessity in the management of non-small cell lung cancers. The advanced EGFR (L858R/T790M/C797S) triple mutation has been recently reported, and there have been no specific drugs approved for this strain. Therefore, our research aimed to search for effective agents that could impede the function of EGFR (L858R/T790M/C797S) TK by the integration of in silico and in vitro approaches. Our in-house quinoxalinone-containing compounds were screened through molecular docking and their biological activity was then verified by enzyme- and cell-based assay. We found that the four quinoxalinone-containing compounds including CPD4, CPD15, CPD16, and CPD21 were promising to be novel EGFR (L858R/T790M/C797S) TK inhibitors. The IC50 values measured by the enzyme-based assay were 3.04 ± 1.24 nM; 6.50 ± 3.02 nM,10.50 ± 1.10 nM; and 3.81 ± 1.80 nM, respectively, which are at a similar level to a reference drug; osimertinib (8.93 ± 3.01 nM). Besides that, they displayed cytotoxic effects on a lung cancer cell line (H1975) with IC50 values in the range of 3.47 to 79.43 μM. In this proposed study, we found that all screened compounds could interact with M793 at the hinge regions and two mutated residues including M790 and S797; which may be the main reason supporting the inhibitory activity in vitro. The structural dynamics revealed that the screened compounds have sufficient non-native contacts with surrounding amino acids and could be well-buried in the binding site's cleft. In addition, all predicted physicochemical parameters were favorable to be drug-like based on Lipinski's rule of five, and no extreme violation of toxicity features was found. Altogether, this study proposes a novel EGFR (L858R/T790M/C797S) TK inhibitor scaffold and provides a detailed understanding of compounds' recognition and susceptibility at the molecular level.
Collapse
Affiliation(s)
- Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khan Kaen 40002, Thailand
| | - Watchara Wimonsong
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | - Thanyada Rungrotmongkol
- Department of Biochemistry, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
New Strategies and Novel Combinations in EGFR TKI-Resistant Non-small Cell Lung Cancer. Curr Treat Options Oncol 2022; 23:1626-1644. [PMID: 36242712 DOI: 10.1007/s11864-022-01022-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Osimertinib is the current standard-of-care for the first-line treatment of Epidermal Growth Factor Receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Progression after osimertinib ineluctably occurs, and standard of care treatment options beyond progression have mainly included next-line platinum doublet chemotherapy. With better understanding of the varied molecular mechanisms of resistance to osimertinib, several opportunities for the use of targeted agents are emerging that include MET amplification, observed in 15% of patients, and resistant EGFR mutations, including C797S in 7% of patients. Evidence for the use of targeted therapies in such situations is mostly based on case reports, but clinical trials are being conducted with MET inhibitors, such as amivantamab, an EGFR-MET bispecific antibody, or next-generation EGFR inhibitors, such as patritumab-deruxtecan, a HER3 antibody drug conjugate. In this review, we outline our proposed approach to current clinical practice for patients with EGFR mutant, osimertinib-resistant NSCLC which includes the following potential strategies: - Continuation of osimertinib beyond progression following local ablative treatment of oligoprogressive disease, - Tissue rebiopsy of progressive site and possibly concurrent liquid biopsy to evaluate for mechanism of resistance utilizing comprehensive genomic profiling, -Discussion at a molecular tumor board for assessment for enrollment in clinical trials/expanded access program if available with innovative drugs or possible off-label use of available targeted agents, based on the results of molecular profiling, -If no mechanism of resistance identified, administration of platinum-based chemotherapy with antiangiogenic agents. The role of immunotherapy will also be addressed given the uncertain benefit.
Collapse
|
11
|
Girard N, Basse C. EGFR-mutant NSCLC: monitoring the molecular evolution of tumors in 2022. Expert Rev Anticancer Ther 2022; 22:1115-1125. [PMID: 35993098 DOI: 10.1080/14737140.2022.2116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) activating mutations define a subset of advanced, metastatic non-small cell lung cancers (NSCLCs), that was historically identified along with the clinical development of specific EGFR tyrosine kinase inhibitors (TKIs), opening the era of precision medicine in thoracic oncology. AREAS COVERED Progression after EGFR TKIs is a major challenge for patients, as it occurs ineluctably along with disease evolution. Osimertinib is the current standard-of-care for the first-line treatment of EGFR-mutant NSCLC. Mechanisms of resistance to osimertinib are challenging to identify, and are dominated by MET pathway activation, and acquired EGFR mutations. EXPERT OPINION The current vision for clinical practice in patients with EGFR-mutant NSCLC developing disease progression after osimertinib includes the following 5 steps:- continuation of osimertinib beyond progression, and local treatment of oligoprogressive disease, - comprehensive genomic profiling based on tissue rebiopsy of progressing sites, - access to new treatment agents through clinical trials, - molecular tumor board to discuss the off-label use of targeted agents, depending on the availability of drugs and/or expanded access programs - chemotherapy may be the best choice, based on combination of platinum-based regimen and antiangiogenic agents and possibly immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nicolas Girard
- Thoracic Oncology Service, Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
| | - Clémence Basse
- Thoracic Oncology Service, Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
| |
Collapse
|
12
|
Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol 2022; 19:499-514. [PMID: 35534623 PMCID: PMC9621058 DOI: 10.1038/s41571-022-00639-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
The discoveries of EGFR mutations and ALK rearrangements as actionable oncogenic drivers in non-small-cell lung cancer (NSCLC) has propelled a biomarker-directed treatment paradigm for patients with advanced-stage disease. Numerous EGFR and ALK tyrosine kinase inhibitors (TKIs) with demonstrated efficacy in patients with EGFR-mutant and ALK-rearranged NSCLCs have been developed, culminating in the availability of the highly effective third-generation TKIs osimertinib and lorlatinib, respectively. Despite their marked efficacy, resistance to these agents remains an unsolved fundamental challenge. Both 'on-target' mechanisms (largely mediated by acquired resistance mutations in the kinase domains of EGFR or ALK) and 'off-target' mechanisms of resistance (mediated by non-target kinase alterations such as bypass signalling activation or phenotypic transformation) have been identified in patients with disease progression on osimertinib or lorlatinib. A growing understanding of the biology and spectrum of these mechanisms of resistance has already begun to inform the development of more effective therapeutic strategies. In this Review, we discuss the development of third-generation EGFR and ALK inhibitors, predominant mechanisms of resistance, and approaches to tackling resistance in the clinic, ranging from novel fourth-generation TKIs to combination regimens and other investigational therapies.
Collapse
Affiliation(s)
- Alissa J Cooper
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.
| |
Collapse
|
13
|
Monitoring Somatic Genetic Alterations in Circulating Cell-Free DNA/RNA of Patients with “Oncogene-Addicted” Advanced Lung Adenocarcinoma: A Real-World Clinical Study. Int J Mol Sci 2022; 23:ijms23158546. [PMID: 35955679 PMCID: PMC9369384 DOI: 10.3390/ijms23158546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid biopsy has advantages over tissue biopsy, but also some technical limitations that hinder its wide use in clinical applications. In this study, we aimed to evaluate the usefulness of liquid biopsy for the clinical management of patients with advanced-stage oncogene-addicted non-small-cell lung adenocarcinomas. The investigation was conducted on a series of cases—641 plasma samples from 57 patients—collected in a prospective consecutive manner, which allowed us to assess the benefits and limitations of the approach in a real-world clinical context. Thirteen samples were collected at diagnosis, and the additional samples during the periodic follow-up visits. At diagnosis, we detected mutations in ctDNA in 10 of the 13 cases (77%). During follow-up, 36 patients progressed. In this subset of patients, molecular analyses of plasma DNA/RNA at progression revealed the appearance of mutations in 29 patients (80.6%). Mutations in ctDNA/RNA were typically detected an average of 80 days earlier than disease progression assessed by RECIST or clinical evaluations. Among the cases positive for mutations, we observed 13 de novo mutations, responsible for the development of resistance to therapy. This study allowed us to highlight the advantages and disadvantages of liquid biopsy, which led to suggesting algorithms for the use of liquid biopsy analyses at diagnosis and during monitoring of therapy response.
Collapse
|
14
|
Zhang G, Yan B, Guo Y, Yang H, Li J. "Sandwich" Strategy to Intensify EGFR Blockade by Concurrent Tyrosine Kinase Inhibitor and Monoclonal Antibody Treatment in Highly Selected Patients. Front Oncol 2022; 12:952939. [PMID: 35903676 PMCID: PMC9321780 DOI: 10.3389/fonc.2022.952939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 02/03/2023] Open
Abstract
EGFR TKIs are not curative, and targeted resistance inevitably results in therapeutic failure. Additionally, there are numerous uncommon EGFR mutations that are insensitive to EGFR TKIs, and there is a lack of clinical strategies to overcome these limitations. EGFR TKI and mAbs target EGFR at different sites, and a combination regimen for delaying/preventing resistance to targeted therapy or obtaining more intensive inhibition for uncommon mutations at cellular, animal and human levels has been explored. This review critically focuses on a combination strategy for uncommon EGFR mutation-positive NSCLC, and discuss the preclinical data, clinical implications, limitations and future prospects of the combination strategy.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Yan
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Guo
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Yang
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jindong Li
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lawal B, Wu ATH, Huang HS. Leveraging Bulk and Single-Cell RNA Sequencing Data of NSCLC Tumor Microenvironment and Therapeutic Potential of NLOC-15A, A Novel Multi-Target Small Molecule. Front Immunol 2022; 13:872470. [PMID: 35655775 PMCID: PMC9152008 DOI: 10.3389/fimmu.2022.872470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lung cancer poses a serious threat to human health and has recently been tagged the most common malignant disease with the highest incidence and mortality rate. Although epidermal growth factor (EGFR)-tyrosine kinase inhibitors (TKIs) have significantly improved the prognosis of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations, patients often develop resistance to these drugs. There is therefore a need to identify new drug candidates with multitarget potential for treating NSCLC. We hereby provide preclinical evidence of the therapeutic efficacy of NLOC-015A a multitarget small-molecule inhibitor of EGFR/mitogen-activated protein (MAP) kinase kinase 1 (MAP2K1)/mammalian target of rapamycin (mTOR)/yes-associated protein 1 (YAP1) for the treatment NSCLC. Our multi-omics analysis of clinical data from cohorts of NSCLC revealed that dysregulation of EGFR/MAP2K1/mTOR/YAP1 signaling pathways was associated with the progression, therapeutic resistance, immune-invasive phenotypes, and worse prognoses of NSCLC patients. Analysis of single-cell RNA sequencing datasets revealed that MAP2K1, mTOR, YAP1 and EGFR were predominantly located on monocytes/macrophages, Treg and exhaustive CD8 T cell, and are involved in M2 polarization within the TME of patients with primary and metastatic NSCLC which further implied gene’s role in remodeling the tumor immune microenvironment. A molecular-docking analysis revealed that NLOC-015A bound to YAP1, EGFR, MAP kinase/extracellular signal-related kinase kinase 1 (MEK1), and mTOR with strong binding efficacies ranging –8.4 to –9.50 kcal/mol. Interestingly, compared to osimertinib, NLOC-015 bound with higher efficacy to the tyrosine kinase (TK) domains of both T790M and T790M/C797S mutant-bearing EGFR. Our in vitro studies and sequencing analysis revealed that NLOC-015A inhibited the proliferation and oncogenic phenotypes of NSCLC cell lines with concomitant downregulation of expression levels of mTOR, EGFR, YAP1, and MEK1 signaling network. We, therefore, suggest that NLOC-015A might represent a new candidate for treating NSCLC via acting as a multitarget inhibitor of EGFR, mTOR/NF-κB, YAP1, MEK1 in NSCLC.
Collapse
Affiliation(s)
- Bashir Lawal
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Song Z, Ren G, Hu L, Wang X, Song J, Jia Y, Zhao G, Zang A, Du H, Sun Y, Zhao X. Two case reports of non-small cell lung cancer patients harboring acquired EGFR T790M- cis-C797S benefit from immune checkpoint inhibitor combined with platinum-based doublet chemotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:719. [PMID: 35845537 PMCID: PMC9279785 DOI: 10.21037/atm-22-2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022]
Abstract
Background Acquired resistance is inevitable in non-small cell lung cancer (NSCLC) patients treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). The emergence of EGFR exon 20 C797S is one of the major resistance mechanisms to osimertinib as a third-generation EGFR-TKI. To date, there is no standard of care for NSCLC patients after acquiring EGFR C797S. Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various types of cancers in the last decade. Whether NSCLC patients with acquired EGFR C797S could benefit from ICIs remains elusive. Case Description Herein, we reported two cases of EGFR-mutant NSCLC patients who acquired a tertiary EGFR mutation C797S benefited from ICIs. A 28-year-old woman presented with anepithymia and nausea. Chest computed tomography (CT) revealed a mass in the right lung. She was diagnosed with stage IV lung adenocarcinoma (LUAD) with EGFR exon 19 deletion (19del) based on imaging and next-generation sequencing (NGS) findings. She received icotinib followed by osimertinib, then acquired EGFR T790M-cis-C797S. She had low tumor mutation burden (TMB) and achieved partial response (PR) to a programmed cell death-1 (PD-1) inhibitor sintilimab combined with platinum-based doublet chemotherapy as late-line treatment lasting more than 5 months. A 66-year-old man complained with chest tightness, hemoptysis, and back pain. CT scans revealed a mass in the right lung and metastases to the bilateral lungs, liver, adrenal gland, mediastinal lymph nodes, and bone. He was also diagnosed with EGFR 19del-positive LUAD and treated with icotinib followed by osimertinib. He also acquired EGFR T790M-cis-C797S. The patient had low TMB also and benefited from a PD-1 inhibitor camrelizumab combined with platinum-based doublet chemotherapy as late-line treatment with a progression-free survival (PFS) of 8 months. Two cases had no treatment-related adverse events leading to discontinuation of PD-1 inhibitors. Conclusions Our study provides the first clinical evidence that ICIs combined with platinum-based doublet chemotherapy may be effective treatment options for overcoming resistance mediated by EGFR T790M-cis-C797S. Clinical trials are needed to evaluate the efficacy and safety of PD-1 inhibitors in the treatment of NSCLC patients harboring EGFR T790M-cis-C797S.
Collapse
Affiliation(s)
- Zizheng Song
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Guanying Ren
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ling Hu
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiaolei Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin Song
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Guofa Zhao
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Haiwei Du
- Department of Data Science, Burning Rock Biotech, Guangzhou, China
| | - Ying Sun
- Department of Medicine, Burning Rock Biotech, Guangzhou, China
| | - Xiaopeng Zhao
- Department of Thoracic surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Chang Y, Liu S, Jiang Y, Hua L, Wen L. Effective treatment of pulmonary adenocarcinoma harboring triple EGFR mutations of L858R, T790M, cis-G796s/cis-C797s by osimertinib, brigatinib, and bevacizumab combination therapy: A case report. Respir Med Case Rep 2022; 36:101582. [PMID: 35106279 PMCID: PMC8789526 DOI: 10.1016/j.rmcr.2022.101582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) were widely used in advanced non-small cell lung cancers (NSCLCs) with EGFR sensitive mutation and greatly improved the patient survival. With the widespread use of EGFR TKI, TKI resistance is increasingly emerging in the clinic. Osimertinib, a 3rd EGFR-TKI, commonly was used in patients who were resistant to early-generation EGFR-TKIs carrying T790M mutation. After using of osimertinib, it might result in the development of further resistance, for example, the cis-C797S mutation. Herein, we report an effective treatment for a case of advanced pulmonary adenocarcinoma patient with triple EGFR mutations of L858R/T790M/cis-C797S and L858R/T790M/cis-G796S by the combination therapy of osimertinib, brigatinib, and bevacizumab after the combination of brigatinib and cetuximab failed. The plasma circulating tumor DNA (ctDNA) monitoring provided information of EGFR mutation evolution and guided appropriate therapy regimen during the progression. After the combination therapy worked, a significant reduction of the 3 EGFR mutations was detected. The side effect was acceptable during the whole period of therapies.
Collapse
|
18
|
Zeng Y, Yu D, Tian W, Wu F. Resistance mechanisms to osimertinib and emerging therapeutic strategies in nonsmall cell lung cancer. Curr Opin Oncol 2022; 34:54-65. [PMID: 34669648 DOI: 10.1097/cco.0000000000000805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review aims to introduce the resistance mechanisms to osimertinib, discuss the therapeutic strategies, and make clinical updates in overcoming resistance to osimertinib. RECENT FINDINGS Osimertinib has shown favorable efficacy on second-line and first-line treatments in EGFR-mutant advanced nonsmall cell lung cancer (NSCLC). However, the presence of primary and acquired resistance to osimertinib restricts its clinical benefits. The primary resistance mainly consists of BIM deletion polymorphism and EGFR exon 20 insertions. Meanwhile, the heterogeneous mechanisms of acquired resistance include EGFR-dependent (on-target) and EGFR-independent (off-target) mechanisms. EGFR C797S mutation, MET amplification, HER2 amplification, and small cell lung cancer transformation were identified as frequent resistance mechanisms. Recently, more novel mechanisms, including rare EGFR point mutations and oncogenic fusions, were reported. With the results of completed and on-going clinical trials, the emerging therapeutic strategies of postosimertinib progression are summarized. SUMMARY The resistance mechanisms to osimertinib are heterogeneous and gradually perfected. The combination of osimertinib with bypass targeted therapy and other therapeutic approaches emerge as promising strategies.
Collapse
Affiliation(s)
- Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University
| | - Danlei Yu
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Wentao Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre
- Hunan Key Laboratory of Tumor Models and Individualized Medicine
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| |
Collapse
|
19
|
Shen G, Shi L, Tian X, Huang D, Chen H, Gao C, Shen X, Zhang H. Case Report: Response to Almonertinib in a Patient With Metastatic NSCLC Resistant to Osimertinib due to Acquired EGFR L718Q Mutation. Front Pharmacol 2021; 12:731895. [PMID: 34987382 PMCID: PMC8721274 DOI: 10.3389/fphar.2021.731895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Osimertinib shows strong clinical activity in first- and second-line treatment of nonsmall-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations, especially EGFR T790M. However, when patients develop resistance, there is currently no definite postosimertinib treatment option. Herein, we report a patient with metastatic NSCLC who benefited from almonertinib after developing resistance to osimertinib.
Collapse
Affiliation(s)
- Gang Shen
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lei Shi
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Tian
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hao Chen
- The Bioinformatics Department, 3D Medicines Inc., Shanghai, China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
- *Correspondence: Hushan Zhang,
| |
Collapse
|
20
|
Yang Y, Xu H, Ma L, Yang L, Yang G, Zhang S, Ai X, Zhang S, Wang Y. Possibility of brigatinib-based therapy, or chemotherapy plus anti-angiogenic treatment after resistance of osimertinib harboring EGFR T790M-cis-C797S mutations in lung adenocarcinoma patients. Cancer Med 2021; 10:8328-8337. [PMID: 34612594 PMCID: PMC8633234 DOI: 10.1002/cam4.4336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022] Open
Abstract
Background There was no standard treatment for patients who acquired resistance to osimertinib mediated by epidermal growth factor receptor (EGFR) T790M‐cis‐C797S. The aim of this study was to investigate the association between different therapeutic strategies and survival outcomes among these patients. Methods This retrospective cohort study analyzed 46 patients with metastatic lung adenocarcinoma and EGFR T790M‐cis‐C797S after osimertinib progression from January 1, 2017 to October 31, 2020. Among them, 13 patients received brigatinib‐based therapy, 23 patients received chemotherapy in combination of anti‐angiogenics or not, and 10 patients received other targeted treatments like dacomtinib, bevacizumab, or a combined therapy of osimertinib and other targeted drugs. Results Compared to other targeted therapy, brigatinib‐based therapy (median progression‐free survival [mPFS]: 4.40 vs. 1.63 months, hazard ratio [HR] = 0.39, 95% confidence interval [CI]: 0.21–0.73, p = 0.001) and chemotherapy‐based treatment (mPFS: 4.70 vs. 1.63 months, HR = 0.18, 95% CI: 0.06–0.50, p < 0.001) presented a better survival outcome and there was no significant difference between brigatinib‐based therapy and chemotherapy‐based treatment (mPFS: 4.40 vs. 4.70 months, HR = 1.24, 95% CI: 0.57–2.67, p = 0.58). Chemotherapy combined with anti‐angiogenics achieved a better efficacy than only chemotherapy (mPFS: 5.50 vs. 1.03 months, HR = 0.30, 95% CI: 0.11–0.83, p = 0.02). Patients carrying EGFR exon 19 deletion mutation had a longer PFS than those who harboring EGFR exon 21 p.L858R mutation (4.57 vs. 1.03 months, HR = 0.18, 95% CI: 0.06–0.54, p = 0.001), no matter they received brigatinib‐based therapy (mPFS: 5.00 vs. 3.23 months, HR = 0.19, 95% CI: 0.01–0.96, p = 0.05) or chemotherapy‐based treatment (mPFS: 7.23 vs. 1.03 months, HR = 0.05, 95% CI 0.01–0.49, p < 0.001). Conclusion Brigatinib‐based therapy and chemotherapy plus anti‐angiogenics could be considered beyond progression from osimertinib therapy. For patients harboring EGFR exon 19 deletion/T790M/cis‐C797S mutation, the clinical efficacy was superior to patients harboring EGFR exon 21 p.L858R/T790M/cis‐C797S mutation.
Collapse
Affiliation(s)
- Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lu Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangjian Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
He J, Huang Z, Han L, Gong Y, Xie C. Mechanisms and management of 3rd‑generation EGFR‑TKI resistance in advanced non‑small cell lung cancer (Review). Int J Oncol 2021; 59:90. [PMID: 34558640 PMCID: PMC8562388 DOI: 10.3892/ijo.2021.5270] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Targeted therapy with epidermal growth factor receptor (EGFR)‑tyrosine kinase inhibitors (TKIs) is a standard modality of the 1st‑line treatments for patients with advanced EGFR‑mutated non‑small cell lung cancer (NSCLC), and substantially improves their prognosis. However, EGFR T790M mutation is the primary mechanism of 1st‑ and 2nd‑generation EGFR‑TKI resistance. Osimertinib is a representative of the 3rd‑generation EGFR‑TKIs that target T790M mutation, and has satisfactory efficacy in the treatment of T790M‑positive NSCLC with disease progression following use of 1st‑ or 2nd‑generation EGFR‑TKIs. Other 3rd‑generation EGFR‑TKIs, such as abivertinib, rociletinib, nazartinib, olmutinib and alflutinib, are also at various stages of development. However, the occurrence of acquired resistance is inevitable, and the mechanisms of 3rd‑generation EGFR‑TKI resistance are complex and incompletely understood. Genomic studies in tissue and liquid biopsies of resistant patients reveal multiple candidate pathways. The present review summarizes the recent findings in mechanisms of resistance to 3rd‑generation EGFR‑TKIs in advanced NSCLC, and provides possible strategies to overcome this resistance. The mechanisms of acquired resistance mainly include an altered EGFR signaling pathway (EGFR tertiary mutations and amplification), activation of aberrant bypassing pathways (hepatocyte growth factor receptor amplification, human epidermal growth factor receptor 2 amplification and aberrant insulin‑like growth factor 1 receptor activation), downstream pathway activation (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) and histological/phenotypic transformations (SCLC transformation and epithelial‑mesenchymal transition). The combination of targeted therapies is a promising strategy to treat osimertinib‑resistant patients, and multiple clinical studies on novel combined therapies are ongoing.
Collapse
Affiliation(s)
- Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
22
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
23
|
Zhao Y, Chen Y, Huang H, Li X, Shao L, Ding H. Significant Benefits of Afatinib and Apatinib in a Refractory Advanced NSCLC Patient Resistant to Osimertinib: A Case Report. Onco Targets Ther 2021; 14:3063-3067. [PMID: 33994798 PMCID: PMC8114361 DOI: 10.2147/ott.s300556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
EGFR-tyrosine kinase inhibitors (TKIs) have revolutionized the treatment for NSCLC. However, acquired drug resistance often occurs after treatment with EGFR-TKIs. EGFR T790M and C797S mutations are the most common resistance mechanism in patients who failed from first- and third- generation EGFR TKI treatments, respectively. However, there is no standard of care for NSCLC harboring EGFR T790M and C797S in-cis. The present case reports a 69-year-old Chinese man with advanced NSCLC harboring EGFR exon 19-deletion, T790M, cis-C797S, and HER2 amplification who was heavily pre-treated. The patient was then given a combination of afatinib and apatinib and achieved a PFS of more than 10 months. This case showed that afatinib plus apatinib may be a promising therapy for patients with EGFR 19Del-T790M-cis-C797S mutant and HER2 amplified NSCLC.
Collapse
Affiliation(s)
- Yuanyang Zhao
- Department of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002, People’s Republic of China
| | - Yuxing Chen
- Department of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002, People’s Republic of China
| | - Huaying Huang
- Department of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002, People’s Republic of China
| | - Xi Li
- Department of Medicine, Burning Rock Biotech, Guangzhou, 510300, People’s Republic of China
| | - Lin Shao
- Department of Medicine, Burning Rock Biotech, Guangzhou, 510300, People’s Republic of China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002, People’s Republic of China
| |
Collapse
|
24
|
EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol Res 2021; 167:105583. [PMID: 33775864 DOI: 10.1016/j.phrs.2021.105583] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
With the development of precision medicine, molecular targeted therapy has been widely used in the field of cancer, especially in non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a well-recognized and effective target for NSCLC therapies, targeted EGFR therapy with EGFR-tyrosine kinase inhibitors (EGFR-TKIs) has achieved ideal clinical efficacy in recent years. Unfortunately, resistance to EGFR-TKIs inevitably occurs due to various mechanisms after a period of therapy. EGFR mutations, such as T790M and C797S, are the most common mechanism of EGFR-TKI resistance. Here, we discuss the mechanisms of EGFR-TKIs resistance induced by secondary EGFR mutations, highlight the development of targeted drugs to overcome EGFR mutation-mediated resistance, and predict the promising directions for development of novel candidates.
Collapse
|
25
|
Carcereny E, Fernández-Nistal A, López A, Montoto C, Naves A, Segú-Vergés C, Coma M, Jorba G, Oliva B, Mas JM. Head to head evaluation of second generation ALK inhibitors brigatinib and alectinib as first-line treatment for ALK+ NSCLC using an in silico systems biology-based approach. Oncotarget 2021; 12:316-332. [PMID: 33659043 PMCID: PMC7899557 DOI: 10.18632/oncotarget.27875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Around 3-7% of patients with non-small cell lung cancer (NSCLC), which represent 85% of diagnosed lung cancers, have a rearrangement in the ALK gene that produces an abnormal activity of the ALK protein cell signaling pathway. The developed ALK tyrosine kinase inhibitors (TKIs), such as crizotinib, ceritinib, alectinib, brigatinib and lorlatinb present good performance treating ALK+ NSCLC, although all patients invariably develop resistance due to ALK secondary mutations or bypass mechanisms. In the present study, we compare the potential differences between brigatinib and alectinib's mechanisms of action as first-line treatment for ALK+ NSCLC in a systems biology-based in silico setting. Therapeutic performance mapping system (TPMS) technology was used to characterize the mechanisms of action of brigatinib and alectinib and the impact of potential resistances and drug interferences with concomitant treatments. The analyses indicate that brigatinib and alectinib affect cell growth, apoptosis and immune evasion through ALK inhibition. However, brigatinib seems to achieve a more diverse downstream effect due to a broader cancer-related kinase target spectrum. Brigatinib also shows a robust effect over invasiveness and central nervous system metastasis-related mechanisms, whereas alectinib seems to have a greater impact on the immune evasion mechanism. Based on this in silico head to head study, we conclude that brigatinib shows a predicted efficacy similar to alectinib and could be a good candidate in a first-line setting against ALK+ NSCLC. Future investigation involving clinical studies will be needed to confirm these findings. These in silico systems biology-based models could be applied for exploring other unanswered questions.
Collapse
Affiliation(s)
- Enric Carcereny
- Catalan Institute of Oncology B-ARGO Group, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
26
|
The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur J Med Chem 2020; 210:112995. [PMID: 33243531 DOI: 10.1016/j.ejmech.2020.112995] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor for epithelial growth factor (EGF) cell proliferation and signaling, which is related to the inhibition of tumor cell proliferation, angiogenesis, tumor invasion, metastasis, and apoptosis. Thus, it has become an important target for the treatment of non-small cell lung cancer (NSCLC). The first to the third-generation EGFR inhibitors have demonstrated powerful efficacy and brought a prospect to patients. Unfortunately, after 9-15 months of treatment, they all developed resistance without exception. As for the resistance of third-generation inhibitors, no major breakthrough has been made in this field. In this review, we discussed the recent advances in medicinal chemistry of fourth-generation EGFR-TKIs, as well as further discussed the clinical challenges and future prospects of treating patients with EGFR mutations resistant to third-generation EGFR-TKIs.
Collapse
|
27
|
Franceschini D, Rossi S, Loi M, Chiola I, Piccoli F, Lutman FR, Finocchiaro G, Toschi L, Santoro A, Scorsetti M. Lung cancer management: monitoring and treating resistance development in third-generation EGFR TKIs. Expert Rev Anticancer Ther 2020; 20:743-753. [PMID: 32755244 DOI: 10.1080/14737140.2020.1806716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Patients treated with third-generation EGFR TKIs will develop resistance to treatment at a certain point. Early detection of resistance occurrence could allow more options for treatment. AREAS COVERED We discuss the development of third-generation EGFR TKIs, focusing on osimertinib and discuss the most common resistance mechanisms under evaluation. We also debate how this resistance can be detected; particularly we review the possible application of liquid biopsy in this scenario. Lastly we discuss available treatment options when resistance occurs, with an eye on ongoing trials and possible future developments. EXPERT OPINION As resistance will ultimately develop, a strict instrumental follow-up as per international guidelines is required with the aim of detecting this resistance in an early phase. Detecting an oligoprogression could allow the integration of local ablative therapies while further delaying the need for a systemic therapy change. By exploiting the increasing potentiality of liquid biopsy, in the near future, physicians could be able to understand why a patient develops resistance and therefore can choose the best possible individualized treatment option.
Collapse
Affiliation(s)
- D Franceschini
- Radiotherapy and Radiosurgery Department- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - S Rossi
- Medical Oncology Department, Humanitas Clinical and Research Center - IRCCS , Rozzano, Italy
| | - M Loi
- Radiotherapy and Radiosurgery Department- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - I Chiola
- Radiotherapy and Radiosurgery Department- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - F Piccoli
- Radiology Department, Humanitas University , Pieve Emanuele, Italy
| | - F R Lutman
- Radiology Department, Humanitas Clinical and Research Center - IRCCS , Rozzano, Italy
| | - G Finocchiaro
- Medical Oncology Department, Humanitas Clinical and Research Center - IRCCS , Rozzano, Italy
| | - L Toschi
- Medical Oncology Department, Humanitas Clinical and Research Center - IRCCS , Rozzano, Italy
| | - A Santoro
- Medical Oncology Department, Humanitas Clinical and Research Center - IRCCS , Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University , Pieve Emanuele, Italy
| | - M Scorsetti
- Radiotherapy and Radiosurgery Department- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University , Pieve Emanuele, Italy
| |
Collapse
|
28
|
Ding H, Zhuang Z, Xie J, Huang H, Tao Z, Liu Z. Durable Clinical Response of Advanced Lung Adenocarcinoma Harboring EGFR-19del/T790M/BRAFV600E Mutations After Treating with Osimertinib and Dabrafenib Plus Trametinib: A Case Report. Onco Targets Ther 2020; 13:7933-7939. [PMID: 32848419 PMCID: PMC7428409 DOI: 10.2147/ott.s240775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
EGFR-T790M and BRAFV600E are the common resistance mechanisms to EGFR-tyrosine kinase inhibitors (TKIs). Standard treatment for the triple mutations of EGFR-19del, T790M, and BRAFV600E is still under debate. Herein, we present a case of therapeutic efficacy of osimertinib and dabrafenib plus trametinib on a 63-year-old man with advanced lung adenocarcinoma. This patient reached a remarkable progression-free survival of 9 months without any serious adverse reaction. At the progression of the disease, C797S mutation in cis was detected by liquid biopsy. Subsequently, brigatinib with cetuximab was administered but no curative effect was observed. Then, therapy was changed to apatinib combined with osimertinib. The subsequent CT scan showed that the lesions reached stable disease (SD), and the survival benefit has been evaluated. This case showed that the combination treatment of osimertinib and dabrafenib plus trametinib might be a great treatment option for NSCLC patients with triple mutations (EGFR-19del/T790M/BRAFV600E).
Collapse
Affiliation(s)
- Honggang Ding
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jingyi Xie
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Haifu Huang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Zhigang Tao
- Mygene Medical Technology, Guangzhou, People’s Republic of China
| | - Zhanhua Liu
- Department of Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
29
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
30
|
Piper-Vallillo AJ, Sequist LV, Piotrowska Z. Emerging Treatment Paradigms for EGFR-Mutant Lung Cancers Progressing on Osimertinib: A Review. J Clin Oncol 2020; 38:JCO1903123. [PMID: 32552277 DOI: 10.1200/jco.19.03123] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/28/2024] Open
Abstract
Since its approval in April 2018, osimertinib has been widely adopted as first-line therapy for patients with advanced EGFR-mutant non -small cell lung cancer (NSCLC). Understanding osimertinib resistance mechanisms and currently available treatment options are essential to selecting optimal second line therapy for patients whose disease progresses during front-line osimertinib. Using data compiled from 6 osimertinib-resistance series, we describe here the heterogeneous profile of EGFR-dependent and independent mechanisms of osimertinib treatment failure. We identified MET alterations (7%-24%), EGFR C797X (0%-29%), SCLC transformation (2%-15%), and oncogene fusions (1%-10%) as the most common mechanisms of resistance. This review provides an evidence-based, algorithmic approach to the evaluation and management of post-osimertinib progression as well as a compendium of active, enrolling clinical trials for this population.
Collapse
Affiliation(s)
- Andrew J Piper-Vallillo
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Lecia V Sequist
- Harvard Medical School, Boston, MA
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Zofia Piotrowska
- Harvard Medical School, Boston, MA
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
31
|
Wang Y, Yang N, Zhang Y, Li Li, Han R, Zhu M, Feng M, Chen H, Lizaso A, Qin T, Liu X, He Y. Effective Treatment of Lung Adenocarcinoma Harboring EGFR-Activating Mutation, T790M, and cis-C797S Triple Mutations by Brigatinib and Cetuximab Combination Therapy. J Thorac Oncol 2020; 15:1369-1375. [PMID: 32353596 DOI: 10.1016/j.jtho.2020.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Acquired resistance to osimertinib mediated by EGFR cis-C797S is now a growing challenge. No effective treatment strategy is currently available to overcome cis-C797S-mediated resistance. METHODS In this retrospective cohort study, 15 patients with advanced lung adenocarcinoma and EGFR-activating mutation, T790M, and cis-C797S after osimertinib progression were identified by targeted next-generation sequencing. Five of these patients received a combined therapy of brigatinib and cetuximab, and 10 patients received cisplatin-based doublet chemotherapy. RESULTS Among the five patients who were positive for EGFR 19del-T790M-cis-C797S mutations, and who received brigatinib and cetuximab combination therapy, three patients achieved partial response, and two had stable disease, resulting in an overall objective response rate of 60% and disease control rate of 100%. Among the 10 patients who were positive for EGFR 19del or L858R-T790M-cis-C797S mutations and received chemotherapy, only one patient achieved partial response, five had stable disease, and the other four did not benefit from chemotherapy, resulting in an overall objective response rate and disease control rate of 10% and 60%, respectively. The median progression-free survival of patients who received combined targeted therapy was 14 months, and 3 months for those treated with chemotherapy. No grade III to IV adverse events were observed in any patient. CONCLUSIONS Our retrospective study provides clinical evidence that a combined targeted therapy of brigatinib and cetuximab could be of benefit and may potentially be an effective treatment strategy to improve survival outcomes in patients who acquire EGFR T790M-cis-C797S-mediated resistance to osimertinib.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Rui Han
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Mengxiao Zhu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Mingxia Feng
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Hengyi Chen
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Analyn Lizaso
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Tian Qin
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Xiaoyan Liu
- Origimed, Shanghai, People's Republic of China
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Yamaura T, Muto S, Mine H, Takagi H, Watanabe M, Ozaki Y, Inoue T, Fukuhara M, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Suzuki H. Genetic alterations in epidermal growth factor receptor-tyrosine kinase inhibitor-naïve non-small cell lung carcinoma. Oncol Lett 2020; 19:4169-4176. [PMID: 32391110 DOI: 10.3892/ol.2020.11524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/11/2020] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are an approved first-line therapy against unresectable or advanced non-small cell lung cancer (NSCLC) harboring EGFR gene activating mutations. However, the majority of tumors develop acquired resistance against EGFR-TKIs and some tumors exhibit natural resistance. A number of resistance mechanisms against the latest third-generation EGFR-TKIs have been reported, including tertiary EGFR C797S mutation and several gene alterations activating EGFR or other signaling pathways. The current study aimed to identify the frequency of natural EGFR-TKI resistance in pretreatment NSCLC and to predict the therapeutic effect of EGFR-TKIs. A total of 246 EGFR-TKI-naïve NSCLC patients harboring known EGFR gene mutations were identified. The presence of EGFR C797S and T790M mutations were determined using the peptide nucleic acid-locked nucleic acid PCR clamp method. ERBB2, MET, EGFR, ALK, BRAF, FGFR1, MYC, RET, CCND1, CCND2, CDK4, CDK6, MDM2 and MDM4 gene amplification, which can lead to resistance against any generation EGFR-TKIs, was determined using the multiplex ligation-dependent probe amplification assay. No concurrent C797S mutation with known EGFR mutations were identified. T790M mutation was identified in 12 patients (4.9%). ERBB2 or MET gene amplification was found in some patients (0.0-0.4%). MDM2 gene amplification was associated with tumor recurrence and shorter progression-free survival (PFS) for first- or second-generation EGFR-TKIs. De novo EGFR C797S mutation was not identified. Other resistance mechanisms against EGFR-TKIs were indicated in some patients with EGFR-TKI-naïve NSCLC. MDM2 gene amplification, which can lead to altered cell cycle, was associated with tumor recurrence and shorter PFS in EGFR-TKI therapy.
Collapse
Affiliation(s)
- Takumi Yamaura
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Hayato Mine
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Hironori Takagi
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Takuya Inoue
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Mitsuro Fukuhara
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Yuki Matsumura
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Takeo Hasegawa
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Jun Osugi
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Mika Hoshino
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Mitsunori Higuchi
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Yutaka Shio
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| |
Collapse
|
33
|
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121:725-737. [PMID: 31564718 PMCID: PMC6889286 DOI: 10.1038/s41416-019-0573-8] [Citation(s) in RCA: 729] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR-independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS-mitogen-activated protein kinase (MAPK) or RAS-phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation, as well as discussing the current evidence regarding potential new approaches to counteract osimertinib resistance.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands
| | - Sugandhi Sharma
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands.
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, 56017, Pisa, Italy.
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
34
|
Durable Clinical Response of Lung Adenocarcinoma Harboring EGFR 19Del/T790M/in trans-C797S to Combination Therapy of First- and Third-Generation EGFR Tyrosine Kinase Inhibitors. J Thorac Oncol 2019; 14:e157-e159. [DOI: 10.1016/j.jtho.2019.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/24/2022]
|
35
|
Zhang YC, Zhou Q, Wu YL. Clinical management of third-generation EGFR inhibitor-resistant patients with advanced non-small cell lung cancer: Current status and future perspectives. Cancer Lett 2019; 459:240-247. [PMID: 31201840 DOI: 10.1016/j.canlet.2019.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022]
Abstract
Discovery of activating mutations in epidermal growth factor receptor (EGFR) as a predictive biomarker for first-generation EGFR tyrosine kinase inhibitors (TKIs) has initiated an era of precision oncology for the treatment of advanced EGFR-mutant non-small cell lung cancer (NSCLC). Despite the robust efficacy of first- and second-generation EGFR TKIs, disease relapse is inevitable. EGFR T790M mutation is the predominant cause of disease relapse and third-generation, irreversible EGFR inhibitors designed for targeting EGFR T790M and activating mutations have demonstrated promising clinical activity and tolerability. Unfortunately, disease progression inevitably occurs and heterogenous resistance mechanisms have been reported with limited subsequent treatment strategies available. Till now, treatment approaches for patients progressed from third-generation EGFR TKIs have not been clearly established. In this review, we summarize the recent findings in resistance mechanisms to third-generation EGFR TKIs and emerging treatment approaches for EGFR-mutant patients after resistance to third-generation EGFR TKIs. We further discuss clinical challenges and future perspectives for management of EGFR-mutant patients resistant to third-generation EGFR TKIs.
Collapse
Affiliation(s)
- Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
36
|
Wang X, Zhou L, Yin JC, Wu X, Shao YW, Gao B. Lung Adenocarcinoma Harboring EGFR 19del/C797S/T790M Triple Mutations Responds to Brigatinib and Anti-EGFR Antibody Combination Therapy. J Thorac Oncol 2019; 14:e85-e88. [PMID: 30711650 DOI: 10.1016/j.jtho.2019.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaofei Wang
- Department of Respiratory Diseases and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Zhou
- Department of Respiratory Diseases and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jiani C Yin
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Ontario, Canada
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Ontario, Canada; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Beili Gao
- Department of Respiratory Diseases and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|