1
|
Li Q, Chen Q, Wang W, Xie R, Li Z, Chen D. KGF secreted from HSCs activates PAK4/BMI1, promotes HCC stemness through PI3K/AKT pathway. IUBMB Life 2024. [PMID: 39544166 DOI: 10.1002/iub.2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
In our present study, we investigated the interaction between HSCs and HCC, also explored the molecular mechanism. Clinical samples were collected from HCC and adjacent tissue with different degree of liver fibrosis. HCC cells were co-cultured with LX-2 cell by Transwell system or cultured with conditioned medium (CM), which was collected from LX-2. The tumor spheroid growth and colony formation analyses were performed to evaluate the cell stemness. Flow cytometry analysis was conducted on cell apoptosis after 5-Fu treatment. Co-immunoprecipitation assay confirmed the interaction between BMI1 and PAK4. Our results showed that BMI1 was highly expressed in HCC and was correlated with HCC liver fibrosis. Both co-cultured with LX-2 and cultured with CM promoted HCC stemness, also increased KGF level and BMI1 expression. KGF treatment had a similar effect with co-culture with LX-2 on HCC. BMI1 overexpression promoted HCC stemness and activated PI3K/AKT pathway, which was reversed by PI3K inhibition. PAK4 was activated by KGF, then phosphorylated S315 site and promoted protein stability of BMI1, therefore enhanced HCC stemness. BMI1 also had a promote effect on liver fibrosis. In summary, we found that KGF secreted by HSCs activated PAK4, which phosphorylated S315 and promoted protein stability of BMI1, and further promoted liver fibrosis and HCC stemness through the PI3K/AKT signaling pathway. Our present study deeply studied the interaction and mechanism between HSCs and HCC, which might provide a new insight for HCC therapy.
Collapse
Affiliation(s)
- Qinghua Li
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, China
| | - Qiuyang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, China
| | - Wenchao Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, China
| | - Rongrong Xie
- Health Management, Shanghai Jianqiao University School, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, China
| | - Dawei Chen
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital Affiliated to Nantong University, China
| |
Collapse
|
2
|
Zeng C, Li H, Liang W, Chen J, Zhang Y, Zhang H, Xiao H, Li Y, Guan H. Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine 2024; 83:127-141. [PMID: 37541962 DOI: 10.1007/s12020-023-03468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE StAR Related Lipid Transfer Domain Containing 13 (STARD13) serves as a tumor suppressor and has been characterized in several types of malignancies. However, the role and the molecular mechanism of STARD13 in regulating the progression of papillary thyroid carcinoma (PTC) remain underexplored. METHODS The gene expression and clinical information of thyroid cancer were downloaded using "TCGAbiolinks" R package. Quantitative PCR and immunohistochemical staining were conducted to detect the expression of STARD13 in clinical tumor and adjacent non-tumor samples. Wound-healing assay, Transwell assay and 3D spheroid invasion assay were performed to evaluate the migratory and invasive capacities of PTC cells. Cell proliferation ability was determined by CCK-8 assay, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. The alterations of indicated proteins were detected by Western blotting. RESULTS In the present study, we found that STARD13 was significantly underexpressed in PTC, which was correlated with poor prognosis. Downregulation of STARD13 might be due to methylation of promoter region. Loss-and gain-of-function experiments demonstrated that STARD13 impeded migratory and invasive capacities of PTC cells in vitro and in vivo. In addition, we found that STARD13 regulated the morphology of PTC cells and inhibited epithelial-mesenchymal transition (EMT). CONCLUSION Our results suggest that STARD13 acts as a metastasis suppressor and might be a potential therapeutic target in PTC.
Collapse
Affiliation(s)
- Chuimian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilin Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hanrong Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
5
|
Zhang X, Chen W, Guo D, Li Y, Zhao Y, Ren M, Lu G, Lu X, He S. Circ_0003570 Suppresses the progression of hepatocellular carcinoma through miR-182-5p/STARD13 regulatory axis. Biol Proced Online 2022; 24:14. [PMID: 36241975 PMCID: PMC9563790 DOI: 10.1186/s12575-022-00176-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Emerging evidence have revealed that circRNAs exert important biological effects in the development and progression of various diseases, including cancer. Our study aimed to elaborated the biological effects of hsa-circ_0003570 in hepatocellular carcinoma (HCC) development at the molecular level. Results The results of functional experiments showed that knockdown of circ_0003570 induced HCC cell growth, migration and invasion, whereas overexpression of circ_0003570 presented the opposite effects. In vivo experiments, xenograft tumors grown from circ-overexpressed cells had smaller tumor volume and weight than the control group. Further investigations suggested that circ_0003570 may function as a competing endogenous RNA via competitively binding miR-182-5p and thereby regulating the repression of downstream target gene STARD13, which were demonstrated by dual luciferase reporter assay and functional rescued experiments. Conclusions Taken together, circ_0003570 suppresses the development of HCC by modulating miR-182-5p/STARD13 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00176-w.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wenwen Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Mudan Ren
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Guifang Lu
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinlan Lu
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
6
|
Liu Q, Du X, Yu Z, Yao Q, Meng X, Zhang K, Zheng L, Hong W. STARD5 as a potential clinical target of hepatocellular carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:156. [PMID: 35852638 DOI: 10.1007/s12032-022-01750-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
Abstract
To reveal whether STARD5 is a potential biomarker for diagnosis and prognosis of HCC. Using gene expression omnibus and the cancer genome atlas (TCGA) to screen differentially expressed genes in HCC and STARD5 was selected by LASSO algorithm. Then, we analyzed the association between STARD5 and clinical characteristics of HCC patients in TCGA and International Cancer Genome Consortium. Meanwhile, the mRNA and protein level of STARD5 was also verified by collecting 87 cases of HCC patients' liver tissues using qRT-PCR and WB. Next, we applied gene set enrichment analysis (GSEA) for pathways analysis of STARD5. Finally, TIMER1.0 and TISIDB were used to explore the correlation of STARD5 with immune cell infiltration. The expression of STARD5 was lower in HCC and negatively correlated with tumor grade (p < 0.05), while high expression of STARD5 suggested a better prognosis for HCC patients (p < 0.01) and it could be an independent prognostic predictor (p < 0.001). Meanwhile, STARD5 also had strong diagnostic accuracy for HCC patients. GSEA revealed that STARD5-related genes were mainly enriched in E2F targets, G2M checkpoint and KRAS signaling. The TIMER1.0 and TISIDB databases found a negative correlation between STARD5 and tumor immune infiltrating cells. STARD5 could be used as a potential target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Qi Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
| | - Xiaoxiao Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
| | - Zhenjun Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
- Department of Hepatology and Gastroenterology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
| | - Xiaoxiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, NO.22 Qixiangtai Road, Tianjin, China.
| |
Collapse
|
7
|
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules 2022; 27:molecules27041426. [PMID: 35209215 PMCID: PMC8880037 DOI: 10.3390/molecules27041426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.
Collapse
Affiliation(s)
- Surachai Maijaroen
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Monruedee Konkchaiyaphum
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
8
|
Abdellatef S, Fakhoury I, Al Haddad M, Jaafar L, Maalouf H, Hanna S, Khalil B, El Masri Z, Hodgson L, El-Sibai M. StarD13 negatively regulates invadopodia formation and invasion in high-grade serous (HGS) ovarian adenocarcinoma cells by inhibiting Cdc42. Eur J Cell Biol 2022; 101:151197. [PMID: 34958986 PMCID: PMC8756770 DOI: 10.1016/j.ejcb.2021.151197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/03/2023] Open
Abstract
Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.
Collapse
Affiliation(s)
- Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Maria Al Haddad
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Samer Hanna
- Department of Pediatrics Hematology/Oncology division, Weill Cornell Medicine, Joan & Sanford I. Weill Medical College of Cornell University, Ithaca, NY, USA
| | - Bassem Khalil
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Zeinab El Masri
- Department of Biochemistry and Molecular Biology, University Park, Pennsylvania State University, State College, PA, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon,Correspondence to: Department of Natural Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran 1102 2801, Beirut, Lebanon. (M. El-Sibai)
| |
Collapse
|
9
|
Qian Y, Zhang Y, Ji H, Shen Y, Zheng L, Cheng S, Lu X. LINC01089 suppresses lung adenocarcinoma cell proliferation and migration via miR-301b-3p/STARD13 axis. BMC Pulm Med 2021; 21:242. [PMID: 34281560 PMCID: PMC8287768 DOI: 10.1186/s12890-021-01568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD. Methods The expression of LINC01089 in LUAD and normal cell lines was detected. Functional assays were applied to measure cell proliferation, apoptosis and migration. Besides, mechanism experiments were employed for assessing the interplay among LINC01089, miR-301b-3p and StAR related lipid transfer domain containing 13 (STARD13). Data achieved in this study was statistically analyzed with Student’s t test or one-way analysis of variance. Results LINC01089 expression was significantly down-regulated in LUAD tissues and cells and its overexpression could reduce cell proliferation and migration. Moreover, LINC01089 could regulate STARD13 expression through competitively binding to miR-301b-3p in LUAD. Additionally, rescue assays uncovered that STARD13 depletion or miR-301b-3p overexpression could countervail the restraining effect of LINC01089 knockdown on the phenotypes of LUAD cells. Conclusion LINC01089 served as a tumor-inhibitor in LUAD by targeting miR-301b-3p/STARD13 axis, providing an innovative insight into LUAD therapies. Trial registration Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01568-6.
Collapse
Affiliation(s)
- Ye Qian
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China
| | - Haoming Ji
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China
| | - Yucheng Shen
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China
| | - Liangfeng Zheng
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China
| | - Shouliang Cheng
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology, Haian People's Hospital of Jiangsu Province, No.17 Zhongba Middle Road, Haian, 226600, Jiangsu, China.
| |
Collapse
|
10
|
Lane BS, Heller B, Hollenberg MD, Wells CD. The RGS-RhoGEFs control the amplitude of YAP1 activation by serum. Sci Rep 2021; 11:2348. [PMID: 33504879 PMCID: PMC7841162 DOI: 10.1038/s41598-021-82027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
Actin-dependent mechanisms drive the nuclear translocation of Yap1 to enable its co-activation of transcription factors that induce pro-growth and survival programs. While Rho GTPases are necessary for the nuclear import of YAP1, the relevant Guanine Exchange Factors (GEFs) and GTPase Activating Proteins (GAPs) that connect this process to upstream signaling are not well defined. To this end, we measured the impact of expressing sixty-seven RhoGEFs and RhoGAPs on the YAP1 dependent activity of a TEAD element transcriptional reporter. Robust effects by all three members of the regulator of G-protein signaling (RGS) domain containing RhoGEFs (ArhGEF1, ArhGEF11 and ArhGEF12) prompted studies relating their known roles in serum signaling onto the regulation of Yap1. Under all conditions examined, ArhGEF12 preferentially mediated the activation of YAP1/TEAD by serum versus ArhGEF1 or ArhGEF11. Conversely, ArhGEF1 in multiple contexts inhibited both basal and serum elevated YAP1 activity through its GAP activity for Gα13. The sensitivity of such inhibition to cellular density and to low states of serum signaling supports that ArhGEF1 is a context dependent regulator of YAP1. Taken together, the relative activities of the RGS-RhoGEFs were found to dictate the degree to which serum signaling promotes YAP1 activity.
Collapse
Affiliation(s)
- Brandon S Lane
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brigitte Heller
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Clark D Wells
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University School of Medicine, John D. Van Nuys Medical Science Building. 635 Barnhill Dr., Rm. 4079A, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Jaafar L, Fakhoury I, Saab S, El-Hajjar L, Abou-Kheir W, El-Sibai M. StarD13 differentially regulates migration and invasion in prostate cancer cells. Hum Cell 2021; 34:607-623. [PMID: 33420961 DOI: 10.1007/s13577-020-00479-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022]
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men and one of the main leading causes of cancer deaths among men worldwide. Rapid uncontrolled growth and the ability to metastasize to other sites are key hallmarks in cancer development and progression. The Rho family of GTPases and its activators the GTPase-activating proteins (GAPs) are required for regulating cancer cell proliferation and migration. StarD13 is a GAP for Rho GTPases, specifically for RhoA and Cdc42. We have previously shown that StarD13 acts as a tumor suppressor in astrocytoma as well as breast and colorectal cancer. In this study, we performed a functional comparative analysis of StarD13 targets/and or interacting molecules to understand the general role that StarD13 plays in cancers. Our data highlight the importance of StarD13 in modulating several hallmarks of cancer. Findings from database mining and immunohistochemistry revealed that StarD13 is underexpressed in prostate cancers, in addition knocking down Stard13 increased cancer cell proliferation, consistent with its role as a tumor suppressor. Stard13 depletion, however, led to an increase in cell adhesion, which inhibited 2D cell migration. Most interestingly, StarD13 depletion increases invasion and matrix degradation, at least in part, through its regulation of Cdc42. Altogether, the data presented suggest that StarD13 acts as a tumor suppressor inhibiting prostate cancer cell invasion.
Collapse
Affiliation(s)
- Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, Beirut, 1102 2801, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, Beirut, 1102 2801, Lebanon
| | - Sahar Saab
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, Beirut, 1102 2801, Lebanon
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
12
|
Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, Zuo X, Shi X. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med 2020; 46:1683-1694. [PMID: 33000179 PMCID: PMC7521577 DOI: 10.3892/ijmm.2020.4727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
The loss of function mutation of AT‑rich interactive domain 1A (ARID1A) often occurs in patients with breast cancer. It has been found that ARID1A knockout can enhance both the migratory activity of renal carcinoma cells and their sensitivity to therapeutic drugs by promoting epithelial-mesenchymal transition (EMT); however, its mechanisms of action in breast cancer remain unclear. In the present study, immunohistochemistry and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) revealed that the expression of ARID1A in breast cancer tissues was significantly lower than that in paracancerous tissues, and patients with a low ARID1A expression had a lower survival rate. ARID1A was expressed at low levels in breast cancer cells. In addition, siRNA targeting ARID1A (siARID1A) and ARID1A overexpression vector were transfected into MCF7 and MDA‑MB‑231 cells, respectively. Proliferation assay revealed that ARID1A silencing increased cell viability and partially reversed the inhibitory effects of 5‑fluorouracil (5‑FU) on the MCF7 cells, while ARID1A overexpression exerted an opposite effect on the MDA‑MB‑231 cells. ARID1A silencing promoted proliferation, migration, invasion and angiogenesis, and partly reversed the inhibitory effects of 5‑FU on cell biological behaviors, while the overexpression of ARID1A further enhanced the inhibitory effect of 5‑FU on the cells. Furthermore, ARID1A regulated the migration and invasion of breast cancer cells through EMT. On the whole, the findings of the present study demonstrate that ARID1A exerts an antitumor effect on breast cancer, and its overexpression can enhance the sensitivity of breast cancer cells to 5‑FU.
Collapse
Affiliation(s)
- Tangshun Wang
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Xiang Gao
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Kexin Zhou
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Tao Jiang
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Shuang Gao
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Pengzhou Liu
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Ximeng Zuo
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Xiaoguang Shi
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
13
|
Zheng CW, Zeng RJ, Xu LY, Li EM. Rho GTPases: Promising candidates for overcoming chemotherapeutic resistance. Cancer Lett 2020; 475:65-78. [PMID: 31981606 DOI: 10.1016/j.canlet.2020.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Despite therapeutic advances, resistance to chemotherapy remains a major challenge to patients with malignancies. Rho GTPases are essential for the development and progression of various diseases including cancer, and a vast number of studies have linked Rho GTPases to chemoresistance. Therefore, understanding the underlying mechanisms can expound the effects of Rho GTPases towards chemotherapeutic agents, and targeting Rho GTPases is a promising strategy to downregulate the chemo-protective pathways and overcome chemoresistance. Importantly, exceptions in certain biological conditions and interactions among the members of Rho GTPases should be noted. In this review, we focus on the role of Rho GTPases, particularly Rac1, in regulating chemoresistance and provide an overview of their related mechanisms and available inhibitors, which may offer novel options for future targeted cancer therapy.
Collapse
Affiliation(s)
- Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
14
|
Xu T, Guo P, Pi C, He Y, Yang H, Hou Y, Feng X, Jiang Q, Wei Y, Zhao L. Synergistic Effects of Curcumin and 5-Fluorouracil on the Hepatocellular Carcinoma In vivo and vitro through regulating the expression of COX-2 and NF-κB. J Cancer 2020; 11:3955-3964. [PMID: 32328199 PMCID: PMC7171506 DOI: 10.7150/jca.41783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Curcumin (CU) has shown broad anti-cancer effects. 5-fluorouracil (5-FU) has been a conventional chemotherapeutic agent for hepatocellular carcinoma. Unfortunately, the nonspecific cytotoxicity and multidrug resistance caused by long-term use limited the clinical efficacy of 5-FU. This study was aimed to investigate whether the combination of CU and 5-FU could generate synergistic effect in inhibiting the human hepatocellular carcinoma. The results of cytotoxicity test showed that compared with applying single drugs, the combination of CU and 5-FU (1:1, 1:2, 1:4, 2:1 and 4:1, mol/mol) presented stronger cytotoxicity in SMMC-7721, Bel-7402, HepG-2 and MHCC97H cells, while the combination groups are relatively insensitive to normal hepatocytes (L02). Among them, the molar ratio of 2:1 combination group showed strong synergistic effect in SMMC-7721cells. Then, western blotting assay further verified that the mechanism of the synergistic effect may be related to the inhibition of the expression of NF-κB (overall) and COX-2 protein. In addition, the synergistic effect was also validated in the xenograft mice in vivo. This research not only provides a novel and effective combination strategy for the therapy of hepatocellular carcinoma but also provides an experimental basis for the development of CU and 5-FU compound preparation.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Hongru Yang
- The Affiliated Hospital, Southwest Medical University, No.25, Taiping Street, Luzhou, Sichuan, 646000, China
- Department of Oncology, Luzhou People's Hospital, No.316, Jiugu Dadao Erduan, Luzhou, Sichuan, 646000, China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, No.1, Xianglin Rd Yiduan, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| |
Collapse
|
15
|
Guo YN, Dong H, Ma FC, Huang JJ, Liang KZ, Peng JL, Chen G, Wei KL. The clinicopathological significance of decreased miR-125b-5p in hepatocellular carcinoma: evidence based on RT-qPCR, microRNA-microarray, and microRNA-sequencing. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:21-39. [PMID: 31933718 PMCID: PMC6944034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 06/10/2023]
Abstract
The aim of the study was to comprehensively evaluate the clinical value of miR-125b-5p in hepatocellular carcinoma (HCC) and its potential molecular mechanisms. MiR-125b-5p expression was remarkably lower as examined by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) in 95 paired HCC and nonmalignant liver tissues in house (P<0.001), which was in accord with the results from miRNA-sequencing data with 371 cases of HCC. miRNA-chips from Gene Expression Omnibus (GEO) and ArrayExpress were screened. Among the seven included miRNA-chips, the relative expression of miR-125b-5p expression levels showed decreasing trends in HCC tissue samples compared with non-cancerous liver tissue samples. Altogether, A total of 655 cases of HCC tissues and 334 non-HCC liver tissues were included in the final meta-analysis. We observed that the expression of miR-125b-5p indeed decreased markedly in HCC tissues compared with the non-HCC tissues (SMD: -1.414, 95% CI: -1.894 to -0.935, P<0.001). The area under the SROC curve of lower expression of miR-125b-5p was 0.91 (95% CI: 0.89 to 0.94). A Kaplan-Meier survival analysis indicated that the lower expression or the absence of miR-125b-5p may be a risk factor for the poor outcome of HCC patients. Furthermore, the potential target genes of miR-125b-5p from 11 miRNA target prediction databases were intersected with 1,486 differentially expressed genes (DEGs) as calculated by RNA-sequencing data. Finally, a total of 330 GEGs were collected and enriched in the pathways of lysosome, focal adhesion, and pathways in cancer. In conclusion, this study utilizes a variety of research methods to confirm the lower level of miR-125b-5p in HCC tissues. This lower expression level of miR-125b-5p is closely related to increased disease progression in HCC patients.
Collapse
Affiliation(s)
- Yi-Nan Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Hao Dong
- Department of Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Fu-Chao Ma
- Department of Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Jing-Jv Huang
- Department of Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Kai-Zhi Liang
- Department of Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Jia-Li Peng
- Department of Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| | - Kang-Lai Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|