1
|
Jiang Y, Hu X, Pang M, Huang Y, Ren B, He L, Jiang L. RRM2‑mediated Wnt/β‑catenin signaling pathway activation in lung adenocarcinoma: A potential prognostic biomarker. Oncol Lett 2023; 26:417. [PMID: 37664657 PMCID: PMC10472049 DOI: 10.3892/ol.2023.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
The present study aimed to investigate the role and mechanism of action of ribonucleotide reductase M2 (RRM2) in lung adenocarcinoma and its potential as a therapeutic target. Data of patients with lung adenocarcinoma from The Cancer Genome Atlas database were collected and analyzed to evaluate the potential of RRM2 as a biomarker. The expression of RRM2 was evaluated in the A549 cell line and its cisplatin-resistant A549/DDP cell line derivative by western blot and reverse transcription-quantitative PCR. The study also investigated cell proliferation and the mechanism by which RRM2 controls cellular cisplatin resistance using CCK-8 and colony-formation assays. In addition, cell migration was assessed using Transwell assays, and the cell cycle and apoptosis were examined using flow cytometry. RRM2 was highly expressed in lung adenocarcinoma and was associated with the clinical TMN stage. Functional enrichment analysis showed that RRM2 was enriched in the cell cycle. Immune cell infiltration analysis identified 12 types of immune cell that exhibited differences between patients expressing different levels of RRM2. Cellular assays revealed higher levels of RRM2 expression in A549/DDP cells than A549 cells, and its expression was induced by cisplatin. RRM2 knockdown decreased cell proliferation and migration, accelerated apoptosis and caused cell cycle arrest in the S-phase, increasing the sensitivity of A549 and A549/DDP cells to cisplatin through the Wnt/β-catenin signaling pathway. Overexpression of β-catenin reduced the effects of RRM2 knockdown on A549 cells. Lung adenocarcinoma growth may be influenced by RRM2 through the Wnt/β-catenin signaling pathway, suggesting a potential pathway for cancer progression.
Collapse
Affiliation(s)
- Yongjie Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xing Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Min Pang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuyan Huang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Bi Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Liping He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
2
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating the glioblastoma stemness by genes involved in cytoskeletal rearrangements and metabolic alterations. World J Stem Cells 2023; 15:302-322. [PMID: 37342224 PMCID: PMC10277965 DOI: 10.4252/wjsc.v15.i5.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness, the latter is one responsible for potentiating the resistance to treatment, inter alia due to increased invasiveness. In recent years, glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements, whereas the impact of the cytoskeleton on invasiveness is well known. Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells. This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism, as they may provide new invasion-related insights. Previously, we proved that interplay between metabolism and cytoskeleton existed in glioblastoma. Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved, not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness. Thus, dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future. Herein, we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
3
|
Antiproliferative Activity and DNA Interaction Studies of a Series of N4,N4-Dimethylated Thiosemicarbazone Derivatives. Molecules 2023; 28:molecules28062778. [PMID: 36985750 PMCID: PMC10058200 DOI: 10.3390/molecules28062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.
Collapse
|
4
|
Targeting the USP7/RRM2 axis drives senescence and sensitizes melanoma cells to HDAC/LSD1 inhibitors. Cell Rep 2022; 40:111396. [PMID: 36130505 DOI: 10.1016/j.celrep.2022.111396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Deubiquitinating enzymes are key regulators of the ubiquitin-proteasome system and cell cycle, and their dysfunction leads to tumorigenesis. Our in vivo drop-out screens in patient-derived xenograft models identify USP7 as a regulator of melanoma. We show that USP7 downregulation induces cellular senescence, arresting melanoma growth in vivo and proliferation in vitro in BRAF- and NRAS-mutant melanoma. We provide a comprehensive understanding of targets and networks affected by USP7 depletion by performing a global transcriptomic and proteomics analysis. We show that RRM2 is a USP7 target and is regulated by USP7 during S phase of the cell cycle. Ectopic expression of RRM2 in USP7-depleted cells rescues the senescent phenotype. Pharmacological inhibition of USP7 by P5091 phenocopies the shUSP7-induced senescent phenotype. We show that the bifunctional histone deacetylase (HDAC)/LSD1 inhibitor domatinostat has an additive antitumor effect, eliminating P5091-induced senescent cells, paving the way to a therapeutic combination for individuals with melanoma.
Collapse
|
5
|
Lu M, Xiao L, Xu B, Gao Q. Identification of Novel Genes and Associated Drugs in Advanced Clear Cell Renal Cell Carcinoma by Bioinformatic Methods. TOHOKU J EXP MED 2022; 258:79-90. [PMID: 35896362 DOI: 10.1620/tjem.2022.j059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Liangxiang Xiao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Bo Xu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University.,The Third Clinical Medical College, Fujian Medical University
| |
Collapse
|
6
|
Park S, Kim OH, Lee K, Park IB, Kim NH, Moon S, Im J, Sharma SP, Oh BC, Nam S, Lee DH. Plasma and urinary extracellular vesicle microRNAs and their related pathways in diabetic kidney disease. Genomics 2022; 114:110407. [PMID: 35716820 DOI: 10.1016/j.ygeno.2022.110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
To explore extracellular vesicle microRNAs (EV miRNAs) and their target mRNAs in relation to diabetic kidney disease (DKD), we performed paired plasma and urinary EV small RNA sequencing (n = 18) in patients with type 2 diabetes and DKD (n = 5) and healthy subjects (n = 4) and metabolic network analyses using our own miRNA and public mRNA datasets. We found 13 common differentially expressed EV miRNAs in both fluids and 17 target mRNAs, including RRM2, NT5E, and UGDH. Because succinate dehydrogenase B was suggested to interact with proteins encoded by these three genes, we measured urinary succinate and adenosine in a validation study (n = 194). These two urinary metabolite concentrations were associated with DKD progression. In addition, renal expressions of NT5E and UGDH proteins were increased in db/db mice with DKD compared to control mice. In conclusion, we profiled DKD-related EV miRNAs in plasma and urine samples and found their relevant target pathways.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kiyoung Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ie Byung Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seongryeol Moon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Jaebeen Im
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Satya Priya Sharma
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea.
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
7
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
8
|
Szarkowska J, Cwiek P, Szymanski M, Rusetska N, Jancewicz I, Stachowiak M, Swiatek M, Luba M, Konopinski R, Kubala S, Zub R, Kucharz J, Wiechno P, Siedlecki JA, Markowicz S, Sarnowska E, Sarnowski TJ. RRM2 gene expression depends on BAF180 subunit of SWISNF chromatin remodeling complex and correlates with abundance of tumor infiltrating lymphocytes in ccRCC. Am J Cancer Res 2021; 11:5965-5978. [PMID: 35018236 PMCID: PMC8727810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023] Open
Abstract
About 40% of clear cell renal cell carcinoma (ccRCC) cases carry the pbrm1 mutation inactivating BAF180 subunit of the SWI/SNF chromatin remodeling complex (CRC). Here we show that the majority of transcriptomic changes appear at the stage I of ccRCC development. By contrast, the stage II ccRCC exhibits hyperactivation of DNA replication demonstrated by the overexpression of several genes, e.g., RRM1 and RRM2 genes encoding subunits of ribonucleotide reductase (RNR) complex. We found that the degree of RRM1 and RRM2 upregulation in ccRCC patients depends on pbrm1 mutation. We show that the BAF180 protein product of the PBRM1 gene directly binds to RRM1 and RRM2 loci. The BAF180 binding regions are targeted by regulatory proteins previously reported as SWI/SNF CRC interacting partners. BAF180 binding to RRMs loci correlates with enrichment of H3K27me3 in case of RRM1 and H3K14Ac on RRM2, indicating the existence of differential regulatory mechanism controlling expression of these genes. We found that the strong overexpression of RRM2 in ccRCC patient samples correlates with T cell infiltration. Surprisingly, the majority of tumor infiltrating lymphocytes (TILs) consisted of CD4+ T cells. Furthermore, we show that exhausted CD4+ T cells induced the expression of the RRM2 gene in the primary ccRCC cell line. Collectively, our results provide the link between PBRM1 loss, RRM2 expression and T cell infiltration, which may lead to the establishment of new treatment of this disease.
Collapse
Affiliation(s)
- Joanna Szarkowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Pawel Cwiek
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| | - Michal Szymanski
- Department of Urology and Urological Oncology, Central Clinical Hospital of Ministry of the Interior and Administration in WarsawWarsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Iga Jancewicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Malgorzata Stachowiak
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Monika Swiatek
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Maciej Luba
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Ryszard Konopinski
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Szymon Kubala
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| | - Renata Zub
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Jakub Kucharz
- Department of Uro-oncology, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Pawel Wiechno
- Department of Uro-oncology, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Sergiusz Markowicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Elzbieta Sarnowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| |
Collapse
|
9
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:cancers13122955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
|
10
|
Abstract
Cancer cells accumulate iron to supplement their aberrant growth and metabolism. Depleting cells of iron by iron chelators has been shown to be selectively cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating a range of cancers including those which are difficult to treat such as androgen insensitive prostate cancer and cancer stem cells. This review will evaluate the impact of iron chelation on cancer cell survival and the underlying mechanisms of action. A plethora of studies have shown iron chelators can reverse some of the major hallmarks and enabling characteristics of cancer. Iron chelators inhibit signalling pathways that drive proliferation, migration and metastasis as well as return tumour suppressive signalling. In addition to this, iron chelators stimulate apoptotic and ER stress signalling pathways inducing cell death even in cells lacking a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors through mimicking BRCAness; a feature of cancers trademark genomic instability. Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation and glycolysis. Moreover, iron chelators may reverse the major characteristics of oncogenic transformation. Iron chelation therefore represent a promising selective mode of cancer therapy.
Collapse
|
11
|
Identification of Four Pathological Stage-Relevant Genes in Association with Progression and Prognosis in Clear Cell Renal Cell Carcinoma by Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2137319. [PMID: 32309427 PMCID: PMC7142335 DOI: 10.1155/2020/2137319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a major histological subtype of renal cell carcinoma and can be clinically divided into four stages according to the TNM criteria. Identifying clinical stage-related genes is beneficial for improving the early diagnosis and prognosis of ccRCC. By using bioinformatics analysis, we aim to identify clinical stage-relevant genes that are significantly associated with the development of ccRCC. First, we analyzed the gene expression microarray data sets: GSE53757 and GSE73731. We divided these data into five groups by staging information-normal tissue and ccRCC stages I, II, III, and IV-and eventually identified 500 differentially expressed genes (DEGs). To obtain precise stage-relevant genes, we subsequently applied weighted gene coexpression network analysis (WGCNA) to the GSE73731 dataset and KIRC data from The Cancer Genome Atlas (TCGA). Two modules from each dataset were identified to be related to the tumor TNM stage. Several genes with high inner connection inside the modules were considered hub genes. The intersection results between hub genes of key modules and 500 DEGs revealed UBE2C, BUB1B, RRM2, and TPX2 as highly associated with the stage of ccRCC. In addition, the candidate genes were validated at both the RNA expression level and the protein level. Survival analysis also showed that 4 genes were significantly correlated with overall survival. In conclusion, our study affords a deeper understanding of the molecular mechanisms associated with the development of ccRCC and provides potential biomarkers for early diagnosis and individualized treatment for patients at different stages of ccRCC.
Collapse
|
12
|
Sharma A, Kumar P, Ambasta RK. Cancer Fighting SiRNA-RRM2 Loaded Nanorobots. Pharm Nanotechnol 2020; 8:79-90. [PMID: 32003677 DOI: 10.2174/2211738508666200128120142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Silencing of several genes is critical for cancer therapy. These genes may be apoptotic gene, cell proliferation gene, DNA synthesis gene, etc. The two subunits of Ribonucleotide Reductase (RR), RRM1 and RRM2, are critical for DNA synthesis. Hence, targeting the blockage of DNA synthesis at tumor site can be a smart mode of cancer therapy. Specific targeting of blockage of RRM2 is done effectively by SiRNA. The drawbacks of siRNA delivery in the body include the poor uptake by all kinds of cells, questionable stability under physiological condition, non-target effect and ability to trigger the immune response. These obstacles may be overcome by target delivery of siRNA at the tumor site. This review presents a holistic overview regarding the role of RRM2 in controlling cancer progression. The nanoparticles are more effective due to specific characteristics like cell membrane penetration capacity, less toxicity, etc. RRM2 have been found to be elevated in different types of cancer and identified as the prognostic and predictive marker of the disease. Reductase RRM1 and RRM2 regulate the protein and gene expression of E2F, which is critical for protein expression and progression of cell cycle and cancer. The knockdown of RRM2 leads to apoptosis via Bcl2 in cancer. Both Bcl2 and E2F are critical in the progression of cancer, hence a gene that can affect both in regulating DNA replication is essential for cancer therapy. AIM The aim of the review is to identify the related gene whose silencing may inhibit cancer progression. CONCLUSION In this review, we illuminate the critical link between RRM-E2F, RRM-Bcl2, RRM-HDAC for the therapy of cancer. Altogether, this review presents an overview of all types of SiRNA targeted for cancer therapy with special emphasis on RRM2 for controlling the tumor progression.
Collapse
Affiliation(s)
- Arjun Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Pravir Kumar
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
| | - Rashmi K Ambasta
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
- CSIR Scientific Pool Officer, Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
13
|
Yang Y, Li S, Cao J, Li Y, Hu H, Wu Z. RRM2 Regulated By LINC00667/miR-143-3p Signal Is Responsible For Non-Small Cell Lung Cancer Cell Progression. Onco Targets Ther 2019; 12:9927-9939. [PMID: 31819489 PMCID: PMC6876211 DOI: 10.2147/ott.s221339] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a common and fatal cancer worldwide with a very low 5-year overall survival rate. Ribonucleotide reductase M2 subunit (RRM2), a small subunit of the ribonucleotide reductase complex, has been found to be an oncogenic role in a variety of tumors including NSCLC. However, the regulatory mechanism of RRM2 in NSCLC is not clear. Increasing evidence suggests that non-coding RNAs (ncRNAs) including miRNAs and lincRNAs may promote or inhibit tumor initiation and development through regulating the expression of oncogenic genes. It is interesting to find ncRNAs which play important role in regulating RRM2 expression. Materials and methods The expression levels of RRM2, LINC0066 and miR-143-3p in NSCLC tumor tissues and cell lines were detected using qRT-PCR. The regulatory relationships among RRM2, LINC0066 and miR-143-3p were predicted using database analysis and verified by luciferase reporter assay and RIP analysis. The proliferation ability of NSCLC cells was assessed using CCK8 and colony formation assays. The expression of related proteins was determined by Western blot. In vivo effect of RRM2, LINC0066 and miR-143-3p to NSCLC were detected through xenograft experiments. Results In this study, we found RRM2 was upregulated in NSCLC tumor and cell lines, and the aberrant upregulation predicted a poor prognosis. Then, we predicted and confirmed that RRM2 was negatively regulated by miR-143-3p. Further study implied that LINC00667 acted as a ceRNA by sponging miR-143-3p and regulated RRM2 expression indirectly. Moreover, we found that the growth of NSCLC was regulated by LINC00667/miR-143-3p/RRM2 signal pathway both in vitro and in vivo. LINC00667 and RRM2 promoted the tumor growth while miR-143-3p inhibited it. Conclusion Our study revealed a LINC00667/miR-143-3p/RRM2 signal pathway that played an important role in the progress of NSCLC, which might be potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Yanbing Yang
- Department of Respiratory Medicine, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, People's Republic of China
| | - Sensen Li
- Department of Pharmacy, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, People's Republic of China
| | - Juan Cao
- Department of Respiratory Medicine, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, People's Republic of China
| | - Yaojun Li
- Department of Respiratory Medicine, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, People's Republic of China
| | - Haiying Hu
- Department of Respiratory Medicine, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, People's Republic of China
| | - Zhuyu Wu
- Department of Respiratory Medicine, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, People's Republic of China
| |
Collapse
|