1
|
Ge X, Shen Z, Yin Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int 2024; 24:369. [PMID: 39522033 PMCID: PMC11549762 DOI: 10.1186/s12935-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression through diverse mechanisms, including regulation of protein localization, sequestration of miRNAs, recruitment of chromatin modifiers, and modulation of signaling pathways. Accumulating evidence highlights their pivotal roles in tumor initiation, progression, and the development of therapeutic resistance. In this review, we comprehensively summarized the existing literature to identify lncRNAs associated with treatment responses in non-small cell lung cancer (NSCLC). Specifically, we categorized these lncRNAs based on their mechanisms of action in mediating resistance to chemotherapy, targeted therapy, and radiotherapy. Our analysis revealed that aberrant expression of various lncRNAs contributes to the development, metastasis, and therapeutic resistance in NSCLC, ultimately leading to poor clinical outcomes. By elucidating the intricate mechanisms through which lncRNAs modulate therapeutic responses, this review aims to provide mechanistic insights into the heterogeneous treatment outcomes observed in NSCLC patients and unveil potential therapeutic targets for overcoming drug resistance.
Collapse
Affiliation(s)
- Xin Ge
- Peking University First Hospital, Beijing, 100034, China
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichu Shen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
2
|
Xiang Y, Cheng X, Li H, Xu W, Zhang W. Long Non-coding RNA FOXD2-AS1 Silencing Inhibits Malignant Behaviors of Ovarian Cancer Cells Via miR-324-3p/SOX4 Signaling Axis. Reprod Sci 2024:10.1007/s43032-024-01719-0. [PMID: 39455487 DOI: 10.1007/s43032-024-01719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
It is urgent to develop new therapeutic strategies for ovarian cancer (OC). Long-noncoding RNAs (lncRNAs) have participated in multiple biological processes including tumor recurrence and progression. This study aimed to determine the effects and potential regulatory mechanism of lncRNA FOXD2-AS1 in OC progression. Levels of lncRNA FOXD2-AS1 and miR-324-3p in OC tissues and cell lines were analyzed using quantitative real-time PCR (qRT-PCR). The direct target between FOXD2-AS1 or miR-324-3p was determined using bioinformatics tools and further verified by dual-luciferase reporter assay. Cell viability, apoptosis, migration, along invasion were assessed by MTT, flow cytometry, as well as Transwell assays, respectively. In addition, the levels of miR-324-3p, PCNA, MMP9, Bax, Bcl-2, and SOX4 in OC cells were evaluated using qRT-PCR and western blot assays. We observed that lncRNA FOXD2-AS1 was up-regulated while miR-324-3p was down-regulated in OC tissues and cell lines, especially in SKOV3 cells. Moreover, miR-324-3p was a direct target of lncRNA FOXD2-AS1. Meanwhile, SOX4 interacted with miR-324-3p and was negatively regulated by miR-324-3p in SKOV3 cells. Function assays confirmed that lncRNA FOXD2-AS1 silenced depressed cell proliferation, migration, and invasion while accelerating apoptosis. These functions of lncRNA FOXD2-AS1 were attenuated by miR-324-3p inhibition. Our research demonstrated that FOXD2-AS1 silencing restrained cell growth and metastasis of OC via regulating miR-324-3p/SOX4 axis, indicating that lncRNA FOXD2-AS1 could be a novel potential therapeutic target for OC.
Collapse
Affiliation(s)
- Yun Xiang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xi Cheng
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong Li
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenjing Xu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Weiqiang Zhang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
3
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
4
|
Ghafouri-Fard S, Harsij A, Hussen BM, Pourmoshtagh H, Taheri M. A review on the role of FOXD2-AS1 in human disorders. Pathol Res Pract 2024; 254:155101. [PMID: 38211387 DOI: 10.1016/j.prp.2024.155101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is a long non-coding RNA being transcribed from a locus on chromosome 1p33. This transcript has been found to be up-regulated in tumor samples of almost all types of malignancies in association with a significant increase in malignant features. FOXD2-AS1 can affect activity of PI3K/AKT, AKT/mTOR, Hippo/YAP, Notch, NRf2, Wnt/β-catenin, NF-ƙB and ERK/MAPK pathways. Furthermore, it can enhance stem cell properties in cancer cells and prompt epithelial-mesenchymal transition. It is also involved in induction of resistance to a variety of anticancer agents such as adriamycin, cisplatin, 5-fluorouracil, temozolomide and gemcitabine. This article summarizes the impact of FOXD2-AS1 in diverse human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Liu W, Zuo B, Liu W, Huo Y, Zhang N, Yang M. Long non-coding RNAs in non-small cell lung cancer: implications for preventing therapeutic resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188982. [PMID: 37734560 DOI: 10.1016/j.bbcan.2023.188982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Lung cancer has the highest mortality and morbidity rates among all cancers worldwide. Despite many complex treatment options, including radiotherapy, chemotherapy, targeted drugs, immunotherapy, and combinations of these treatments, efficacy is low in cases of resistance to therapy, metastasis, and advanced disease, contributing to low overall survival. There is a pressing need for the discovery of novel biomarkers and therapeutic targets for the early diagnosis of lung cancer and to determine the efficacy and outcomes of drug treatments. There is now substantial evidence for the diagnostic and prognostic value of long noncoding RNAs (lncRNAs). This review briefly discusses recent findings on the roles and mechanisms of action of lncRNAs in the responses to therapy in non-small cell lung cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Bingli Zuo
- Human Resources Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong Province 261041, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| |
Collapse
|
6
|
Abdi E, Latifi-Navid S, Panahi A, Latifi-Navid H. LncRNA polymorphisms and lung cancer risk. Per Med 2023; 20:511-522. [PMID: 37916472 DOI: 10.2217/pme-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lung cancer (LC) imposes a significant burden, and is associated with high mortality and morbidity among malignant tumors. Aberrant expression of particular lncRNAs is closely linked to LC. LncRNA polymorphisms cause abnormal expression levels and/or structural dysfunction. They can affect the progression of cancer, survival, response to chemotherapy and recurrence rates in cancer patients. The present article provides a comprehensive overview of the effect of lncRNA genetic polymorphisms on LC. It is proposed that lncRNA-related variants can be used to predict cancer risk and therapeutic outcomes. More large-scale trials on diverse ethnic groups are required to validate the results, thus personalizing LC therapy based on lncRNA genotypes.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| |
Collapse
|
7
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
8
|
Evaluation of lncRNA FOXD2-AS1 Expression as a Diagnostic Biomarker in Colorectal Cancer. Rep Biochem Mol Biol 2022; 11:471-478. [PMID: 36718294 PMCID: PMC9883026 DOI: 10.52547/rbmb.11.3.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 01/19/2023]
Abstract
Background Colorectal cancer (CRC) is still considered one of the prevalent cancers worldwide. Investigation of potential biomarkers for early detection of CRC is essential for the effective management of patients using therapeutic strategies. Considering that, this study was aimed to examine the changes in lncRNA FOXD2-AS1 expression through colorectal tumorigenesis. Methods Fifty CRC tumor tissues and fifty adjacent normal tissue samples were prepared and involved in the current study. Total RNA was extracted from the samples and then reverse transcribed to complementary DNA. Next, the expression levels of lncRNA FOXD2-AS1 were evaluated using real-time PCR in CRC samples compared to normal ones. Also, receiver operating characteristic curve analysis was used to evaluate the diagnostic value of FOXD2-AS1 for CRC. Results The obtained results showed that the expression level of FOXD2-AS1 gene was significantly (p<0.0001) up-regulated in tumor tissues compared to normal marginal tissues. Also, a significant correlation was observed between higher the expression of FOXD2-AS1and the differentiation of tumor cells. Furthermore, ROC curve analysis estimated an AUC value of 0.59 for FOXD2-AS1, suggesting its potential as a diagnostic target. Conclusion Taken together, the current study implied that tissue-specific upregulation of lncRNA FOXD2-AS1 might be appropriate diagnostic biomarkers for CRC. Nonetheless, more studies are needed to validate these results and further illustrate FOXD2-AS1 function through colorectal tumorigenesis.
Collapse
|
9
|
Ghafouri-Fard S, Dashti S, Gholami L, Badrlou E, Sadeghpour S, Hussen BM, Hidayat HJ, Nazer N, Shadnoush M, Sayad A, Arefian N. Expression analysis of Wnt signaling pathway related lncRNAs in periodontitis: A pilot case-control study. HUMAN GENE 2022; 33:201069. [DOI: 10.1016/j.humgen.2022.201069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Li Z, Jin Q, Sun Y. LINC00941 promoted in vitro progression and glycolysis of laryngocarcinoma by upregulating PKM via activating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal 2022; 36:e24406. [PMID: 35588431 PMCID: PMC9280015 DOI: 10.1002/jcla.24406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background LINC00941 has been proved to be related to various tumors, but its relationship with laryngocarcinoma remains vague. Methods LINC00941 expression in laryngocarcinoma tumor and laryngocarcinoma cells was determined by real time‐quantitative polymerase chain reaction (RT‐qPCR). Besides, the five‐year survival of laryngocarcinoma patients with different LINC00941 expression was analyzed with Kaplan–Meier survival analysis, and the clinical characteristics of laryngocarcinoma patients were also recorded. After transfection, cell viability, cell proliferation, apoptosis, cell cycle, migration, and invasion were detected by cell counting kit‐8 (CCK‐8), colony formation, flow cytometry, cell scratch, and Transwell assays, respectively. Glycolysis was assessed by the colorimetric method. Expressions of proliferation‐associated proteins, migration‐associated proteins, glycolysis‐associated proteins, and phosphatidylinositol 3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathway‐associated proteins were detected by Western blot. Results In laryngocarcinoma tumor tissues and cells, LINC00941 was highly expressed. High expression of LINC00941 decreased the 5‐year survival of laryngocarcinoma patients, and it was positively related to lymph node metastasis and clinical stages. LINC00941 overexpression decreased apoptosis but promoted cell viability, proliferation, cell‐cycle progression, migration, and invasion, and glucose consumption and lactate production in laryngocarcinoma cells. Moreover, LINC00941 overexpression elevated expressions of Ki‐67, PCNA, MMP2, N‐Cadherin, HK2, PFKFB4, and PKM, activated the PI3K/AKT/mTOR signal pathway but reduced E‐Cadherin expression, while LINC00941 silencing had the opposite effects. PKM overexpression reversed the effects of LINC00941 silencing on cellular and glycolytic phenotypes. Conclusion LINC00941 promoted in vitro progression and glycolysis of laryngocarcinoma cells by upregulating PKM via activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhihai Li
- Department of Otorhinolaryngology, Taizhou Municipal Hospital, Taizhou, China
| | - Qiaozhi Jin
- Department of Otorhinolaryngology, Taizhou Municipal Hospital, Taizhou, China
| | - Yana Sun
- Department of Clinical Psychology, Taizhou Municipal Hospital, Taizhou, China
| |
Collapse
|
11
|
Shen Q, Zhou H, Zhang M, Wu R, Wang L, Wang Y, Chen J. Super enhancer-LncRNA SENCR promoted cisplatin resistance and growth of NSCLC through upregulating FLI1. J Clin Lab Anal 2022; 36:e24460. [PMID: 35500152 PMCID: PMC9169188 DOI: 10.1002/jcla.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 01/21/2023] Open
Abstract
Background Super enhancer‐lncRNA smooth muscle and endothelial cell‐enriched migration/differentiation‐associated lncRNA (SENCR) were highly overexpressed in cisplatin‐resistant A549/DDP cells, while the mechanism was unclear. Methods SE‐lncRNA SENCR and FLI1 mRNA expression in A549/DDP cell, LAD tissues were detected. SENCR knockdown of A549/DDP cell and SENCR overexpression of cisplatin‐sensitive A549 cell were constructed. Experiments of cell‐confirmed function of SENCR and the correlation between SENCR and FLI1 were validated. Results The expression of SENCR and FLI1 mRNA in A549/DDP cell were both upregulated and mainly localized in the nucleus. Compared with DDP‐sensitive tissues with disease relief, SENCR expression was higher in DDP‐resistant tissues with disease progression from LAD. Knockdown of SENCR in A549/DDP reduced proliferation ability and cisplatin resistance, consistent with the decreased levels of proteins PCNA, MDMX, and P‐gp. Besides, whatever without cisplatin or with 2 μg/ml cisplatin, knockdown of SENCR reduced the migration, invasion, and colony formation abilities of A549/DDP cell and promoted apoptosis. However, when SENCR was overexpressed in A549 cell, all above results were reversed. Mechanistically, FLI1 expression was reduced after knocking down SENCR, while overexpressing SENCR increased FLI1 expression. Conclusion SE‐LncRNA SENCR was upregulated in A549/DDP, which could promote cisplatin resistance and growth of NSCLC cell through upregulating FLI1 expression.
Collapse
Affiliation(s)
- Qiang Shen
- First People's Hospital of Linping District, Hangzhou, China
| | - Huixin Zhou
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Ruihao Wu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Liangxing Wang
- First People's Hospital of Linping District, Hangzhou, China
| | - Yumin Wang
- Department of Respiratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Chang F, Li J, Sun Q, Wei S, Song Y. Hsa_circ_0017639 regulates cisplatin resistance and tumor growth via acting as a miR-1296-5p molecular sponge and modulating sine oculis homeobox 1 expression in non-small cell lung cancer. Bioengineered 2022; 13:8806-8822. [PMID: 35287543 PMCID: PMC9161884 DOI: 10.1080/21655979.2022.2053810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (DDP)-induced chemoresistance is an important reason for the failure of non-small cell lung cancer (NSCLC) treatment. Circular RNAs (circRNAs) participate in the chemoresistance of diverse cancers. However, the function of hsa_circ_0017639 (circ_0017639) in the DDP resistance of NSCLC is unclear. Forty-one NSCLC samples (21 DDP-resistant samples and 20 DDP-sensitive samples) were utilized in the research. The relative expression levels of some genes were determined by real-time quantitative polymerase chain reaction (RT-qPCR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay for half-maximal inhibitory concentration (IC50) value of DDP and cell viability, colony formation and 5-ethynyl-2’-deoxyuridine (EDU) assays for cell proliferation, flow cytometry assay for cell apoptosis, transwell assay for cell invasion and wound-healing assay for cell migration were performed. The regulation mechanism of circ_0017639 was demonstrated by a dual-luciferase reporter assay. We observed higher levels of circ_0017639 in DDP-resistant NSCLC samples and cells. Functionally, circ_0017639 silencing decreased tumor growth and elevated DDP sensitivity in vivo and induced apoptosis, repressed proliferation, invasion, and migration of DDP-resistant NSCLC cells in vitro. Mechanically, circ_0017639 modulated sine oculis homeobox 1 (SIX1) expression via sponging microRNA (miR)-1296-5p. Also, miR-1296-5p inhibitor restored circ_0017639 knockdown-mediated impacts on cell DDP resistance in DDP-resistant NSCLCs. Furthermore, SIX1 overexpression counteracted the inhibiting impact of miR-1296-5p upregulation on DDP resistance and malignant phenotypes of DDP-resistant NSCLC cells. In conclusion, circ_0017639 conferred DDP resistance and promoted tumor growth via elevating SIX1 expression through sequestering miR-1296-5p in NSCLC, providing a new mechanism for understanding the chemoresistance and progression of NSCLC.
Collapse
Affiliation(s)
- Feiyun Chang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Jiali Li
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Quan Sun
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Shuqing Wei
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| |
Collapse
|
13
|
MALAT1 enhances gemcitabine resistance in non-small cell lung cancer cells by directly affecting miR-27a-5p/PBOV1 axis. Cell Signal 2022; 94:110326. [DOI: 10.1016/j.cellsig.2022.110326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
|
14
|
Li Y, Yang X, Xiong X. Circ_0004015 silencing represses cisplatin chemoresistance and tumor progression by reducing KLF8 in a miR-198-dependent manner in non-small cell lung cancer. Genomics 2022; 114:110294. [DOI: 10.1016/j.ygeno.2022.110294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
|
15
|
Nong Q, Yu S, Hu H, Hu X. Knockdown of lncRNA FOXD2-AS1 Inhibits Proliferation, Migration, and Drug Resistance of Breast Cancer Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9674761. [PMID: 34873418 PMCID: PMC8643235 DOI: 10.1155/2021/9674761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVE In order to investigate the effect of lncRNA FOXD2-AS1 on breast cancer cells proliferation, migration, and drug resistance as well as its molecular mechanism. METHODS Real-time PCR was used to detect the expression of breast cancer tissues and cells from patients admitted to our hospital and the expression of lncRNA FOXD2-AS1 in MCF-7/ADR in adriamycin- (ADR-) resistant breast cancer cells. After interfering with or overexpressing lncRNA FOXD2-AS1 in MCF-7/ADR cells, cell proliferation, apoptosis, invasion, and migration were detected using CCK-8, flow cytometry, Transwell assay, and scratch test, respectively. The protein levels of PI3K, p-PI3K, AKT, and p-AKT in the PI3K/AKT signaling pathway were detected by Western blot. RESULTS lncRNA FOXD2-AS1 was upregulated in breast cancer tissues and cells and increased cell drug resistance to ADR. Downregulation of lncRNA FOXD2-AS1 inhibited invasion and migration of MCF-7/ADR cells, promoted apoptosis, increased chemosensitivity of MCF-7/ADR cells, and inhibited the activity of PI3K/AKT signaling pathway in MCF-7/ADR cells. CONCLUSIONS lncRNA FOXD2-AS1 can promote the proliferation, invasion, migration, and drug resistance of breast cancer cells, inhibit apoptosis, and accelerate the development of breast cancer by positively regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qiaohong Nong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Shaokang Yu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Hui Hu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xue Hu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
16
|
Danni X, Jiangzheng Z, Huamao S, Yinglian P, Changcheng Y, Yanda L. Chaperonin containing TCP1 subunit 3 (CCT3) promotes cisplatin resistance of lung adenocarcinoma cells through targeting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. Bioengineered 2021; 12:7335-7347. [PMID: 34612768 PMCID: PMC8806702 DOI: 10.1080/21655979.2021.1971030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cisplatin resistance remains a major obstacle to effective chemotherapies for non-small cell lung cancer (NSCLC). Chaperonin containing TCP1 subunit 3 (CCT3) has been extensively investigated in various cancers, but not in the context of drug resistance. In the present study, we aimed to investigate the role of CCT3 in cisplatin resistance of lung adenocarcinoma (LUAD) cells. By surveying the Gene Expression Profiling Interactive Analysis (GEPIA) website, we found CCT3 expression to be up-regulated in NSCLCs, which correlated with the poor prognosis of LUAD patients. Furthermore, both mRNA and protein levels of CCT3 were upregulated in the cisplatin-resistant A549/DDP cells compared to the cisplatin-sensitive A549 cells. Importantly, upon cisplatin treatment, short hairpin RNA (shRNA)-mediated CCT3 knockdown significantly inhibited the proliferation, invasion and migration of A549/DDP cells, and induced significant G2/M cell cycle arrest and apoptosis in A549/DDP cells. Moreover, CCT3 knockdown significantly weakened the tumorigenicity of the cisplatin-treated A549/DDP cells in vitro and in vivo. Finally, CCT3 knockdown re-sensitized A549/DDP cells to cisplatin through inhibiting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. In conclusion, our results demonstrated that CCT3 could promote cisplatin resistance of LUAD cells via activating the JAK2/STAT3 pathway, indicating that CCT3 may be a novel molecular target for overcoming cisplatin resistance in LUAD patients.
Collapse
Affiliation(s)
- Xu Danni
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Zeng Jiangzheng
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Sun Huamao
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Pan Yinglian
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Yang Changcheng
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Lu Yanda
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
17
|
Ye J, Liu J, Tang T, Xin L, Bao X, Yan Y. miR‑4306 inhibits the malignant behaviors of colorectal cancer by regulating lncRNA FoxD2‑AS1. Mol Med Rep 2021; 24:723. [PMID: 34396433 PMCID: PMC8383050 DOI: 10.3892/mmr.2021.12362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miR)‑4306 and FoxD2‑adjacent opposite strand RNA 1 (FOXD2‑AS1) are cancer‑related genes involved in tumor progression. However, the potential functional roles of miR‑4306 and FoxD2‑AS1 in colorectal cancer (CRC) development remain unknown. The present study aimed to investigate the biological functions and the molecular mechanisms of miR‑4306 and FoxD2‑AS1 in CRC. Reverse transcription‑quantitative PCR analysis was performed to determine the expression levels of FoxD2‑AS1 and miR‑4306 in CRC tissues and cell lines. Functional experiments, including Cell Counting Kit‑8, colony formation, cell cycle assays and western blotting, were conducted to examine the effects of FoxD2‑AS1 and miR‑4306 on the malignant behaviors of CRC cells. In addition, the relationship between FoxD2‑AS1 and miR‑4306 was assessed using a dual‑luciferase reporter assay and Pearson's correlation analysis. Compared with normal samples and cells, FoxD2‑AS1 expression was increased and miR‑4306 expression was decreased in CRC tissues and cells. Functional experiments demonstrated that silencing FoxD2‑AS1 inhibited proliferation and induced cell arrest at G0/G1 phase in CRC cells, while the overexpression of FoxD2‑AS1 showed opposite results. Ki‑67 and proliferating cell nuclear antigen expression levels were decreased after transfection with small interfering RNA FoxD2‑AS1, but were increased after transfection with FoxD2‑AS1 overexpression plasmid. Furthermore, investigations into the underling mechanism revealed that FoxD2‑AS1 functioned as a molecular sponge of miR‑4306. The inhibitory effects of FoxD2‑AS1 silencing on CRC progression were reversed by miR‑4306 knockdown. Collectively, the present study demonstrated that FoxD2‑AS1 functioned as an oncogene in CRC progression, and that miR‑4306 could inhibit the malignant behaviors of CRC by regulating FoxD2‑AS1. Thus, the current study provided a promising therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Jidong Liu
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Tao Tang
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Le Xin
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Xing Bao
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Yukuang Yan
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
18
|
LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep 2021; 48:1-15. [PMID: 34333735 DOI: 10.1007/s11033-021-06603-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Malignant tumors have become the most dangerous disease in recent years. Chemotherapy is the most effective treatment for this disease; however, the problem of drug resistance has become even more common, which leads to the poor prognosis of patients suffering from cancers. Thus, necessary measures should be taken to address these problems at the earliest. Many studies have demonstrated that drug resistance is closely related to the abnormal expressions of long non-coding RNAs (lncRNAs). METHODS AND RESULTS This review aimed to summarize the molecular mechanisms underlying the association of lncRNAs and the development of drug resistance and to find potential strategies for the clinical diagnosis and treatment of cancer drug resistance. Studies showed that lncRNAs can regulate the expression of genes through chromatin remodeling, transcriptional regulation, and post-transcriptional processing. Furthermore, lncRNAs have been reported to be closely related to the occurrence of malignant tumors. In summary, lncRNAs have gained attention in related fields during recent years. According to previous studies, lncRNAs have a vital role in several different types of cancers owing to their multiple mechanisms of action. Different mechanisms have different functions that could result in different consequences in the same disease. CONCLUSIONS LncRNAs closely participated in cancer drug resistance by regulating miRNA, signaling pathways, proteins, cancer stem cells, pro- and ant-apoptosis, and autophagy. lncRNAs can be used as biomarkers of the possible treatment target in chemotherapy, which could provide solutions to the problem of drug resistance in chemotherapy in the future.
Collapse
|
19
|
Wang W, Wang P, Xie K, Luo R, Gao X, Yan Z, Huang X, Yang Q, Gun S. ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell. Anim Biosci 2021; 34:801-810. [PMID: 33152231 PMCID: PMC8100468 DOI: 10.5713/ajas.20.0325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. METHODS The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC423' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyltetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. RESULTS Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. CONCLUSION These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu 730070, China
| |
Collapse
|
20
|
Zhu H, Lu Q, Lu Q, Shen X, Yu L. Matrine Regulates Proliferation, Apoptosis, Cell Cycle, Migration, and Invasion of Non-Small Cell Lung Cancer Cells Through the circFUT8/miR-944/YES1 Axis. Cancer Manag Res 2021; 13:3429-3442. [PMID: 33907466 PMCID: PMC8065209 DOI: 10.2147/cmar.s290966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) is the major histological subtype of cancer cases. In the present study, we investigated the association between Matrine, an active component of Chinese medicine, and circFUT8 in NSCLC cells. Methods The proliferation ability of NSCLC cells was assessed by MTT and colony-forming assays. Flow cytometry assay was performed to show the apoptosis and cell cycle distribution in NSCLC cells. The protein expression levels of Bcl-2, Cleaved Caspase-3 (C-Caspase3), and YES proto-oncogene 1 (YES1) were measured by Western blot assay. Migration and invasion of NSCLC cells were determined by transwell assay. The expression levels of circFUT8, miR-944 and YES1 were quantified by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The interaction relationship between miR-944 and circFUT8 or YES1 was confirmed by dual-luciferase reporter assay. The anti-tumor role of Matrine in vivo was explored by a xenograft experiment. Results Matrine functioned as a carcinoma inhibitor by repressing proliferation, cell cycle process, migration, and invasion while inducing apoptosis in NSCLC cells. Importantly, overexpression of circFUT8 counteracted Matrine-induced effects on NSCLC cells. MiR-944, interacted with YES1, was a target of circFUT8. Under Matrine condition, overexpression of circFUT8 increased proliferation, migration, and invasion while inhibited apoptosis, which was abolished by the upregulation of miR-944. Whereas the silencing of YES1 counteracted miR-944 inhibitor-induced effects on NSCLC cells. Eventually, we also confirmed that Matrine impeded NSCLC tumor growth in vivo. Conclusion Matrine regulated proliferation, apoptosis, cell cycle, migration, and invasion of NSCLC cells through the circFUT8/miR-944/YES1 axis, which provided novel information for Matrine in NSCLC.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Emergency, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Quan Lu
- Department of Neurology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Qing Lu
- Department of Respiratory, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Xuemin Shen
- Department of Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Liuyang Yu
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei, People's Republic of China
| |
Collapse
|
21
|
LINC00665 activates Wnt/β-catenin signaling pathway to facilitate tumor progression of colorectal cancer via upregulating CTNNB1. Exp Mol Pathol 2021; 120:104639. [PMID: 33865827 DOI: 10.1016/j.yexmp.2021.104639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Background LINC00665 is a newly identified oncogene, which has been reported to be oncogene in various cancers. Nevertheless, its role in the progression of colorectal cancer (CRC) remains obscure to the extent. This study aimed at exploring the role and mechanism of LINC00665 in CRC progression. Materials and methods RNA and protein expression were detected via qRT-PCR and western blot. Functional assays were conducted to investigate the role of LINC00665 in the CRC cellular processes. TOP/FOP assay was performed to detect the activity of Wnt/β-catenin signaling pathway. Mechanism investigations were carried out to explore the regulatory relationship among genes. Results LINC00665 was overtly expressed in CRC cell lines at high levels. Functionally, silencing of LINC00665 could curb in vitro CRC cell growth, migration and invasion, while stimulating cell apoptosis. Mechanically, LINC00665 sponged miR-214-3p to up-regulate CTNNB1 expression, consequently activating Wnt/β-catenin signaling pathway. Furthermore, LINC00665 could bind to U2AF2 and enhance the association between U2AF2 and CTNNB1, increasing the stability of CTNNB1. CTNNB1 overexpression could reverse the suppressive effects of LINC00665 downregulation. Conclusion LINC00665 stimulates CRC progression through the activation of Wnt/β-catenin signaling pathway, which hopefully might be a therapeutic target for CRC.
Collapse
|
22
|
The role of FOXD2-AS1 in cancer: a comprehensive study based on data mining and published articles. Biosci Rep 2021; 40:226886. [PMID: 33140822 PMCID: PMC7670568 DOI: 10.1042/bsr20190372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023] Open
Abstract
Background and aims: Long non-coding RNA (lncRNA) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is aberrantly expressed in various cancers and associated with cancer progression. A comprehensive meta-analysis was performed based on published literature and data in the Gene Expression Omnibus database, and then the Cancer Genome Atlas (TCGA) dataset was used to assess the clinicopathological and prognostic value of FOXD2-AS1 in cancer patients. Methods: Gene Expression Omnibus databases of microarray data and published articles were used for meta-analysis, and TCGA dataset was also explored using the GEPIA analysis program. Hazard ratios (HRs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the role of FOXD2-AS1 in cancers. Results: This meta-analysis included 21 studies with 2391 patients and 25 GEO datasets with 3311 patients. The pooled HRs suggested that highly expressed FOXD2-AS1 expression was correlated with poor overall survival (OS) and disease-free survival (DFS). Similar results were obtained by analysis of TCGA data for 9502 patients. The pooled results also indicated that FOXD2-AS1 expression was associated with bigger tumor size and advanced TNM stage, but was not related to age, gender, differentiation and lymph node metastasis. Conclusion: The present study demonstrated that FOXD2-AS1 is closely related to tumor size and TNM stage. Additionally, increased FOXD2-AS1 was a risk factor of OS and DFS in cancer patients, suggesting FOXD2-AS1 may be a potential biomarker in human cancers.
Collapse
|
23
|
Zhao HS, Tao XM, Wang Q, Fang YY, Zhang HY, Wang HQ, Zhang GJ. Silencing SIX1 by miR-7160 inhibits non-small cell lung cancer cell growth. Aging (Albany NY) 2021; 13:8055-8067. [PMID: 33686961 PMCID: PMC8034971 DOI: 10.18632/aging.202398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/15/2020] [Indexed: 01/20/2023]
Abstract
The homeoprotein SIX1 is upregulated in non-small cell lung cancer (NSCLC) and associated with NSCLC tumorigenesis and progression. We identified microRNA-7160 (miR-7160) as a SIX1-targeting miRNA. RNA immunoprecipitation results confirmed a direct binding between miR-7160 and SIX1 mRNA in NSCLC cells. In the primary and established NSCLC cells, forced overexpression of miR-7160 downregulated SIX1 and inhibited cancer cell growth, proliferation, migration and invasion. Furthermore, miR-7160 overexpression induced apoptosis activation in NSCLC cells. Conversely, miR-7160 inhibition elevated SIX1 expression and enhanced NSCLC cell progression in vitro. Restoring SIX1 expression, by an untranslated region-depleted SIX1 expression construct, reversed miR-7160-induced anti-NSCLC cell activity. CRISPR/Cas9-inudced knockout of SIX1 mimicked miR-7160-induced actions and produced anti-NSCLC cell activity. In vivo, intratumoral injection of miR-7160-expressing lentivirus downregulated SIX1 mRNA and inhibited NSCLC xenograft growth in severe combined immunodeficient mice. Significantly, miR-7160 expression is downregulated in human NSCLC tissues and is correlated with SIX1 mRNA upregulation. Collectively, miR-7160 silenced SIX1 and inhibited NSCLC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Hua-Si Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Min Tao
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Wang
- Department of Respiratory Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan-Yuan Fang
- Department of Endocrinology, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Yu Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua-Qi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Jun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Chen D, Xie S, Wu Y, Cui Y, Cai Y, Lan L, Yang H, Chen J, Chen W. Reduction of Bladder Cancer Chemosensitivity Induced by the Effect of HOXA-AS3 as a ceRNA for miR-455-5p That Upregulates Notch1. Front Oncol 2021; 10:572672. [PMID: 33643896 PMCID: PMC7907523 DOI: 10.3389/fonc.2020.572672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Chemoresistance is one of the main causes of recurrence in bladder cancer patients and leads to poor prognosis. Recently, long non-coding RNAs, like HOXA-AS3, have been reported to regulate chemoresistance in several types of cancer. In this study, we aimed to determine whether HOXA-AS3 can mediate cisplatin resistance in bladder cancer, and its potential mechanism of action. We determined the viability, proliferation, and apoptosis of bladder cancer cells using a CCK-8 assay, EdU staining, and flow cytometry, respectively. We used western blot analysis to assess the expression of markers of epithelial-mesenchymal transition (EMT) and Notch1. We then confirmed expression of these EMT-related markers by immunofluorescence analysis. We found that hypoxia promoted resistance to cisplatin and upregulated the level of HOXA-AS3 in BC cells. Inhibition of HOXA-AS3 enhanced hypoxia-induced cisplatin sensitivity by regulating EMT and Notch1 in BC cells. A dual-luciferase reporter assay confirmed that HOXA-AS3 directly targets miR-455-5p and that Notch1 was a potential target of miRNA-455-5p. We also found that the positive effect of HOXA-AS3 inhibition on cisplatin resistance and tumorigenesis was alleviated when BC cells were transfected with miR-455-5p. Finally, we showed combining HOXA-AS3 small interfering RNA (siRNA) with cisplatin treatment inhibited tumorigenesis in a BALB/c nu/nu mouse model. Our findings indicate that HOXA-AS3 may function as a competing endogenous RNA (ceRNA) of miR-455-5p to regulate Notch1 and play an important role in regulating chemotherapeutic drug sensitivity in BC cells. Therefore, HOXA-AS3 may be a novel therapeutic target for treating bladder cancer.
Collapse
Affiliation(s)
- Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shangzhi Xie
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Ying Wu
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yu Cui
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cai
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lan Lan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Yang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Yang X, Meng L, Zhong Y, Hu F, Wang L, Wang M. The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging (Albany NY) 2021; 13:2864-2884. [PMID: 33418541 PMCID: PMC7880381 DOI: 10.18632/aging.202352] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to exert their effects to tumor progression. In this study, the role of the lncRNA GAS5 (growth arrest specific 5) was confirmed in reducing non-small cell lung cancer (NSCLC) cisplatin (DDP) resistance. In NSCLC tissue samples, GAS5 expression decreased significantly. Low GAS5 levels were positively correlated with NSCLC characteristics including TNM, tumor size and lymphatic metastasis. Functionally, GAS5 significantly reduced NSCLC/DDP cell migration, invasion and epithelial-mesenchymal transition (EMT) progression in vitro. In vivo, GAS5 upregulation inhibited remarkably NSCLC/DDP cell tumor growth. Mechanism analysis suggested that GAS5 was a molecular sponge of miR-217, inhibiting the expression of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP). In conclusion, this study reveals that the GAS5/miR-217/LHPP pathway reduces NSCLC cisplatin resistance and that LHPP may serve as a potential therapeutic target for NSCLC cisplatin resistance.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuang Zhong
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
27
|
Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:592-602. [PMID: 33552680 PMCID: PMC7819824 DOI: 10.1016/j.omtn.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 12/06/2020] [Indexed: 11/23/2022]
Abstract
The nuclear receptor-binding SET domain (NSD) protein family encoding histone lysine methyltransferases is involved in cancer progression. However, the role of NSDs in esophageal squamous cell carcinoma (ESCC) remains unclear. Here we examined the expression of NSDs in cisplatin-resistant and parental ESCC cells and revealed the upregulation of NSD2 in cisplatin-resistant cells. Ectopic expression of NSD2 increased cisplatin resistance and attenuated cisplatin-induced apoptosis. Colony formation assay indicated that NSD2 overexpression enhanced long-term survival of ESCC cells after treatment with cisplatin. In contrast, knockdown of NSD2 inhibited ESCC cell proliferation and sensitized ESCC cells to cisplatin. Depletion of NSD2 augmented the cytotoxic effect of cisplatin on EC109 xenograft tumors. NSD2 stimulated long non-coding RNA MACC1-AS1 in ESCC cells. Knockdown of MACC1-AS1 impaired NSD2-induced cisplatin resistance. Moreover, MACC1-AS1 overexpression promoted ESCC cell proliferation and cisplatin resistance. Clinically, MACC1-AS1 was upregulated in ESCC relative to adjacent noncancerous tissues. High MACC1-AS1 levels were significantly associated with reduced overall survival of ESCC patients. There was a positive correlation between MACC1-AS1 and NSD2 expression in ESCC specimens. Taken together, MACC1-AS1 induced by NSD2 mediates resistance to cisplatin in ESCC and may represent a novel target to improve cisplatin-based chemotherapy.
Collapse
|
28
|
Liu Z, Zhou W, Lin C, Wang X, Zhang X, Zhang Y, Yang R, Chen W, Cao W. Dysregulation of FOXD2-AS1 promotes cell proliferation and migration and predicts poor prognosis in oral squamous cell carcinoma: a study based on TCGA data. Aging (Albany NY) 2020; 13:2379-2396. [PMID: 33318296 PMCID: PMC7880351 DOI: 10.18632/aging.202268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) plays an important role in the pathogenesis of some cancers. However, its functional role in oral squamous cell carcinoma (OSCC) remains largely unknown. In this study, we conducted expressional and functional analyses of FOXD2-AS1 using data from the Cancer Genome Atlas (TCGA) and in vitro OSCC assays. FOXD2-AS1 dysregulation was remarkably associated with radiation therapy, anatomic location, high histologic grade, and lymphovascular invasion (P < 0.05). A nomogram based on FOXD2-AS1 expression was constructed for use as a diagnostic indicator for OSCC patients, and multivariate cox regression analysis showed that FOXD2-AS1 expression was an independent prognostic factor for OSCC patients. KEGG, gene set enrichment analysis, and immune infiltration evaluations indicated that FOXD2-AS1 was involved in tumor progression via epithelial-to-mesenchymal transition and cell cycle regulation and was negatively associated with mast cell, DCs, iDCs, and B cells. FOXD2-AS1 silencing suppressed the proliferation and migration of Cal27 cells. Our findings showed that an aberrantly high FOXD2-AS1 expression predicts poor prognosis in OSCC; FOXD2-AS1 may act as an oncogenic protein by regulating cell proliferation and migration and may suppress adaptive immunity by modulating the number and function of antigen-presenting cells.
Collapse
Affiliation(s)
- Zheqi Liu
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Chengzhong Lin
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
- Second Dental Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
29
|
Zhang S, Liao W, Wu Q, Huang X, Pan Z, Chen W, Gu S, Huang Z, Wang Y, Tang X, Liang S, Zhang X, Chen Y, Chen S, Chen W, Jiang Y, Chen C, Qiu G. LINC00152 upregulates ZEB1 expression and enhances epithelial-mesenchymal transition and oxaliplatin resistance in esophageal cancer by interacting with EZH2. Cancer Cell Int 2020; 20:569. [PMID: 33292221 PMCID: PMC7690072 DOI: 10.1186/s12935-020-01620-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Expression of the long non-coding mRNA LINC00152 has been reported to correlate with cancer cell resistance to oxaliplatin (L-OHP). However, little is known regarding the molecular mechanism of LINC00152 in esophageal cancer (EC). Hence, we intended to characterize the role of LINC00152 in EC, with a special focus on epithelial-mesenchymal transition (EMT) and L-OHP resistance. METHODS We collected EC tissues and identified EC cell lines with higher L-OHP resistance, and then characterized expression patterns of LINC00152, Zeste Homologue 2 (EZH2), Zinc finger e-box binding homeobox (ZEB1) and EMT-related genes using RT-qPCR and Western blot analysis. Furthermore, their functional significance was identified by gain and loss-of-function experiments. The relationship among LINC00152, EZH2 and ZEB1 was examined using RIP, RNA pull-down and ChIP assays. Additionally, resistance of EC cells to L-OHP was reflected by CCK-8 assay to detect cell viability. Animal experiments were also conducted to detect the effects of the LINC00152/EZH2/ZEB1 on EMT and L-OHP resistance. RESULTS LINC00152, EZH2 and ZEB1 were highly expressed in EC tissues and Kyse-150/TE-1 cells. As revealed by assays in vitro and in vivo, LINC00152 positively regulated ZEB1 expression through interaction with EZH2 to enhance EMT and L-OHP resistance in EC cells. In contrast, silencing of LINC00152 contributed to attenuated EMT and drug resistance of EC cells to L-OHP. CONCLUSIONS Our study demonstrates that LINC00152/EZH2/ZEB1 axis can regulate EMT and resistance of EC cells to L-OHP, thus presenting a potential therapeutic target for EC treatment.
Collapse
Affiliation(s)
- Shuyao Zhang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China
| | - Wei Liao
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Qinshui Wu
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Xiaoshan Huang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Zhen Pan
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Wang Chen
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Shuyi Gu
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Zuojun Huang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Yiwen Wang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Xu Tang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Shanshan Liang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Xiaoyan Zhang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Yun Chen
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Shuang Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China
| | - Wanying Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China
| | - Yi Jiang
- Digestive Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515000, P.R. China
| | - Chen Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China.
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, 515000, P.R. China.
| | - Guodong Qiu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China.
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, 515000, P.R. China.
| |
Collapse
|
30
|
Wang J, Gao J, Chen Q, Zou W, Yang F, Wei C, Wang Z. LncRNA LINC01116 Contributes to Cisplatin Resistance in Lung Adenocarcinoma. Onco Targets Ther 2020; 13:9333-9348. [PMID: 33061421 PMCID: PMC7519870 DOI: 10.2147/ott.s244879] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been found to contribute to cisplatin resistance in several cancers; however, the role of lncRNA LINC01116 in cisplatin resistance remains unknown in non-small-cell lung cancer. This study aimed to examine the contribution of LINC01116 to cisplatin resistance in lung adenocarcinoma (LAD). Materials and Methods Cisplatin-resistant A549/DDP cells were generated by treatment with cisplatin by dose escalation. LINC01116 expression was compared between A549 and A549/DDP cells, and between cisplatin-resistant and non-resistant LAD specimens. The cell viability, colony formation, proliferation, migration and invasion were measured using MTT and Transwell assays, and cell apoptosis and cell cycle were detected using flow cytometry. The expression of E-cadherin and Vimentin was quantified. LAD xenografts were modeled in nude mice to investigate the role of LINC01116 on the resistance of LAD to cisplatin. Results MTT assay measured the IC50 values of 13.49 ± 1.62 and 3.52 ± 1.33 μg/mL for A549/DDP and A549 cells, respectively. LINC01116 was overexpressed in cisplatin-resistant LAD specimens and A549/DDP cells (P < 0.05). Knockdown of LINC01116 inhibited cell viability, proliferation, migration and invasion, promoted apoptosis and enhanced the sensitivity to cisplatin in A549/DDP cells, while LINC01116 overexpression promoted cell viability, proliferation, migration and invasion, inhibited apoptosis and reduced the sensitivity to cisplatin in A549 cells. LINC01116 knockdown resulted in a 2.1-fold increase in E-cadherin expression and a 56% reduction in Vimentin expression in A549/DDP cells, and LINC01116 overexpression resulted in a 45% reduction in E-cadherin expression and a 1.82-fold increase in Vimentin expression in A549 cells. Conclusion Dysregulation of lncRNA LINC01116 expression results in resistance of LAD to cisplatin via the EMT process. Our findings support the oncogenic role of LINC01116 to promote the development of cisplatin resistance in LAD, and LINC01116 may be a novel predictor of poor response to cisplatin.
Collapse
Affiliation(s)
- Junbin Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, People's Republic of China
| | - Jin Gao
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Qinnan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Weiyan Zou
- Department of Histology and Embryology, Bengbu Medical College, Bengbu 233030, People's Republic of China
| | - Fen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Chenchen Wei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| |
Collapse
|
31
|
Yuan Y, Li E, Zhao J, Wu B, Na Z, Cheng W, Jing H. Highly penetrating nanobubble polymer enhances LINC00511-siRNA delivery for improving the chemosensitivity of triple-negative breast cancer. Anticancer Drugs 2020; 32:178-188. [PMID: 32826414 DOI: 10.1097/cad.0000000000000985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound-mediated nanobubble destruction (UMND), which can utilize the physical energy of ultrasound irradiation to improve the transfer efficiency to target cells is becoming one of the most promising carriers for gene delivery. The purpose of this study was to establish cell-penetrating peptide (CPP)-loaded nanobubbles (CNBs) connected with long intergenic nonprotein coding RNA 00511-small interfering RNA (LINC00511-siRNA) and evaluate its feasibility for improving the chemosensitivity of triple-negative breast cancer in vitro. First, fluorescence imaging confirmed the loading of siLINC00511 on CNBs, and the CNBs-siLINC00511 were characterized by the Zetasizer Nano ZS90 analyzer and transmission electron microscopy. Next, cell counting kit 8 assay was used to detect the inhibitory activity of cisplatin on the proliferation of MDA-MB-231 cells, and the 50% inhibition concentration value before and after transfer was calculated. Finally, the silencing effect of siLINC00511 was evaluated in vitro using an apoptosis assay, transwell assay, real time-PCR and western blotting. UMND combined with CNBs could effectively transfer the siRNA to MDA-MB-231 cells, thus evidently reducing the expression of LINC00511. Furthermore, inhibitory activity of cisplatin on MDA-MB-231 cells was enhanced after downregulation of LINC00511 expression. Downregulation of LINC00511 alters expression of cell cycle-related (CDK 6) and apoptosis-related (Bcl-2 and Bax) proteins in MDA-MB-231 cells. These results suggested that siRNA-CNBs may be an ideal vector for the treatment of tumors, with high efficiency RNA interference under the combined action of UMND. It may provide a new therapeutic method for triple negative breast cancer.
Collapse
Affiliation(s)
- Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang L, Bo H, Chen T, Li Q, Huan Y, Zhang S. FOXD2-AS1 promotes migration and invasion of head and neck squamous cell carcinoma and predicts poor prognosis. Future Oncol 2020; 16:2209-2218. [PMID: 32762453 DOI: 10.2217/fon-2020-0410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of long noncoding RNA FOXD2-AS1 in head and neck squamous cell carcinoma (HNSCC). Materials & methods: The expression and clinical significance of FOXD2-AS1 were analyzed using data from public databases. Transwell assays were used to examine the function of FOXD2-AS1 in HNSCC. The molecular mechanism of FOXD2-AS1 was probed by western blotting. Results: The expression of FOXD2-AS1 was upregulated in HNSCC; it was positively related with the pathological stage as well as with poor prognosis in HNSCC patients. FOXD2-AS1 silencing inhibited HNSCC cell migration and invasion, also influenced the expression of epithelial-mesenchymal transition-related molecules. Conclusion: FOXD2-AS1 was a prognostic marker in patients with HNSCC and may be a favorable novel treatment target for HNSCC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Stomatology, People's Hospital Longhua Shenzhen, Shenzhen, Guangdong 518109, PR China
| | - Hao Bo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Tingwei Chen
- Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan 410008, PR China
| | - Qiaohua Li
- Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan 410008, PR China
| | - Ye Huan
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Shanshan Zhang
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, Hunan 410008, PR China.,College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, PR China
| |
Collapse
|
33
|
Shen Q, Xu Z, Xu S. Long non‑coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR‑514a‑3p/ULK1 axis in human non‑small cell lung cancer. Int J Oncol 2020; 57:967-979. [PMID: 32945379 PMCID: PMC7473752 DOI: 10.3892/ijo.2020.5106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Drug resistance is a major obstacle in the therapy of malignant tumors, including non-small cell lung cancer (NSCLC). Long non-coding RNAs (lncRNAs) have been demonstrated to be involved in chemoresistance. The present study aimed to investigate the role of lung cancer-associated transcript 1 (LUCAT1) in cisplatin (DDP) resistance in NSCLC. By using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), it was found that the expression of LUCAT1 was elevated and that of microRNA-514a-3p (miR-514a-3p) was decreased in DDP-resistant NSCLC tissues and cells. Functionally, LUCAT1 upregulation enhanced cisplatin resistance by promoting the viability, autophagy and metastasis, and inhibiting the apoptosis of NSCLC cells, as demonstrated by Cell Counting kit-8 (CCK-8) assay, western blot analysis, Transwell assay and flow cytometric analysis. LUCAT1 was identified as a sponge of miR-514a-3p and uncoordinated-51-like kinase 1 (ULK1) was proven to be a target gene of miR-514a-3p by bioinformatics analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The enhancing effect of miR-514a-3p on cisplatin sensitivity was reversed by the elevation of LUCAT1. ULK1 knockdown suppressed cisplatin resistance, while this effect was attenuated by miR-514a-3p inhibition. Moreover, LUCAT1 positively regulated ULK1 expression by targeting miR-514a-3p. In addition, LUCAT1 knockdown suppressed tumor growth in vivo. On the whole, the findings of the present study demonstrate that LUCAT1 contributes to the resistance of NSCLC cells to cisplatin by regulating the miR-514a-3p/ULK1 axis, elucidating a novel regulatory network in cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Qiming Shen
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
34
|
Hong Y, Che S, Hui B, Wang X, Zhang X, Ma H. Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2263-2274. [PMID: 32606596 PMCID: PMC7293387 DOI: 10.2147/dddt.s241291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Purpose Lung cancer remains the leading cancer-associated deaths worldwide. Cisplatin (CDDP) was used in combination with curcumin (CUR) for the treatment of non-small cell lung cancer. The aim of this study was to prepare and characterize CDDP prodrug and CUR co-encapsulated layer-by-layer nanoparticles (CDDP-PLGA/CUR LBL NPs) to induce cooperative response, maximize the therapeutic effect, overcome drug resistance, and reduce adverse side effects. Methods CDDP prodrug (CDDP-PLGA) was synthesized. CDDP-PLGA/CUR LBL NPs were constructed and their physicochemical properties were investigated by particle-size analysis, zeta potential measurement, drug loading, drug entrapment efficiency, and in vitro drug release behavior. In vitro cytotoxicity against human lung adenocarcinoma cell line (A549 cells) was investigated, and in vivo anti-tumor efficiency of CDDP-PLGA/CUR LBL NPs was evaluated on mice bearing A549 cell xenografts. Results CDDP-PLGA/CUR LBL NPs have a size of 179.6 ± 6.7 nm, a zeta potential value of −29.9 ± 3.2 mV, high drug entrapment efficiency of 85.6 ± 3.9% (CDDP) and 82.1 ± 2.8% (CUR). The drug release of LBL NPs exhibited a sustained behavior, which made it an ideal vehicle for drug delivery. Furthermore, CDDP-PLGA/CUR LBL NPs could significantly enhance in vitro cytotoxicity and in vivo antitumor effect against A549 cells and lung cancer animal model compared to the single drug-loaded LBL NPs and free drug groups. Conclusion CDDP-PLGA/CUR LBL NPs were reported for the first time in the combination therapy of lung cancer. The results demonstrated that the CDDP-PLGA/CUR LBL NPs might be a novel promising system for the synergetic treatment of lung carcinoma.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shaomin Che
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Beina Hui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoli Wang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaozhi Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hailin Ma
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
35
|
Zhao T, Zhang J, Ye C, Tian L, Li Y. lncRNA FOXD2-AS1 promotes hemangioma progression through the miR-324-3p/PDRG1 pathway. Cancer Cell Int 2020; 20:189. [PMID: 32489325 PMCID: PMC7247140 DOI: 10.1186/s12935-020-01277-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) are reported could function as tumor promoter in several cancers. However, its role in hemangioma was not reported to yet. Methods Expression level of FOXD2-AS1 in hemangioma tissues and cells was explored using quantitative reverse-time PCR. Cell counting kit-8 (CCK-8) assay, colony formation assay, wound-healing assay, and transwell invasion assay were conducted to measure the roles of FOXD2-AS1. In addition, the levels of markers for proliferation and Epithelial-Mesenchymal Transition were investigated. Connection of FOXD2-AS1 and mcroRNA-324-3p (miR-324-3p) or miR-324-3p and p53 and DNA damage regulated 1 (PDRG1) was analyzed with bioinformatic analysis method and dual-luciferase activity reporter assay. Results Here, we found that FOXD2-AS1 was highly expressed in proliferating-phase hemangioma tissues compared with the involuting-phase hemangioma tissues. Functionally, FOXD2-AS1 knockdown suppressed cell proliferation, colony formation, migration, and invasion in vitro. Conversely, overexpression of FOXD2-AS1 promoted tumor growth in vitro. Mechanistically, FOXD2-AS1 inversely regulated miR-324-3p abundance in hemangioma cells. We also found FOXD2-AS1 acted as a competing endogenous RNA (ceRNA) by directly sponging miR-324-3p to regulate PDRG1 expression. In addition, the knockdown of PDRG1 reversed the stimulation effects of FOXD2-AS1 overexpression on HA cells. Conclusion To conclude, our study sheds novel light on the biological roles of FOXD2-AS1 in hemangioma, which may help the development of targeted therapy method for cancer.
Collapse
Affiliation(s)
- Tiancheng Zhao
- Department of Endoscopic Center, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Cong Ye
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Leilei Tian
- Operating Room, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Yezhou Li
- Department of Vascular Surgery, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| |
Collapse
|