1
|
Jiang Q, Fan G, Wu K. Potential Action Mechanism of Erianin in Relieving MNNG-triggered Chronic Atrophic Gastritis. Cell Biochem Biophys 2025; 83:1035-1044. [PMID: 39298066 DOI: 10.1007/s12013-024-01536-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Chronic atrophic gastritis (CAG) is a critical initial step in gastric cancer tumorigenesis accompanied by high malignancy. Erianin has been proposed as a promising agent in treating precancerous lesions of gastric cancer. Considering that little work has been implemented concerning the specific role and possible regulatory mechanism of Erianin in CAG, the goal of the study is to disclose the effects and mechanism of erianin on the malignant transformation in the process of CAG. CAG cell model was generated in human gastric epithelium GES-1 cells induced by Nmethyl-N'-nitro-N-nitrosoguanidine (MNNG). CCK-8 method determined cell viability. ELISA and corresponding assay kits severally appraised the contents of inflammatory cytokines and oxidative stress markers. Cellular reactive oxygen species (ROS) formation was measured by flow cytometry analysis using DCFH-DA probe. GFP-LC3 immunofluorescence staining and Western blotting evaluated autophagy. Also, Western blotting analyzed the expression of components in mitogen activated protein kinase (MAPK)/mechanistic target of rapamycin (mTOR) signaling. The results manifested that MNNG treatment diminished the viability and autophagy whereas intensified the inflammation and oxidative stress in GES-1 cells, which were all reversed by Erianin. Besides, Erianin blocked mTOR/MAPK signaling in MNNG-exposed GES-1 cells. Autophagy inhibitor 3-methyladenine (3-MA) or p38 MAPK agonist asiatic acid partially counteracted the protection elicited by Erianin against viability loss, inflammatory reaction as well as oxidative stress in MNNG-induced GES-1 cells. Combined with the findings, Erianin might mediate autophagy to improve MNNG-elicited CAG via MAPK/mTOR signaling.
Collapse
Affiliation(s)
- Qianqian Jiang
- Traditional Chinese Medicine Department, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, China
| | - Guoxia Fan
- Traditional Chinese Medicine Department, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, China
| | - Kaiwei Wu
- Traditional Chinese Medicine Department, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, China.
| |
Collapse
|
2
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
3
|
Tang L, Ruan Y, Wang B, Zhang M, Xue J, Wang T. Erianin inhibits the progression of DDP-resistant lung adenocarcinoma by regulating the Wnt/β-catenin pathway and activating the caspase-3 for apoptosis in vitro and in vivo. Hereditas 2024; 161:48. [PMID: 39605083 PMCID: PMC11600767 DOI: 10.1186/s41065-024-00351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy is one of the main treatments for lung adenocarcinoma (LUAD). However, the toxic side effects and drug resistance of chemotherapeutic drugs on normal cells are still a thorny problem in clinical treatment. Dendrobium is one of the three largest genera of Orchidaceous family, which has ornamental and medicinal value. Dendrobium is mainly distributed in the tropics and subtropics of South Asia, Oceania and other regions, with 1547 species of Dendrobium currently known. In China, "Shi hu" and "Tie pi shi hu" are well-known traditional medicines and have been included in the Chinese Pharmacopoeia (Editorial Board of Chinese Pharmacopoeia, 2020). Erianin is a natural product isolated from Dendrobium and is considered as a potential anticancer molecule due to its remarkable anti-tumor effects through various mechanisms, among which induced cancer cell apoptosis, inhibited invasion and migration. This study preliminarily explored the mechanism of Erianin inhibiting the progression of cisplatin (DDP) resistant LUAD in vivo and in vitro. METHODS The effect of Erianin on the proliferation of DDP-resistant LUAD cells was detected by CCK-8 assay, wound healing assay and cloning assay. Transwell assay was used to evaluate the effect of Erianin on cell invasion and migration. The changes of cell cycle and apoptosis were detected by flow cytometry and TUNEL assay. Finally, the effects of Erianin on cell function and signaling pathway-related protein expression in vivo and in vitro were examined based on the enrichment analysis. RESULTS Erianin could inhibit the proliferation, invasion and migration, induce apoptosis, altered cell cycle of DDP-resistant LUAD cells, and reverse the resistance to DDP. Western blotting results showed that Erianin exerted its anti-tumor effects by regulating the Wnt/β-catenin cascade in DDP-resistant LUAD cells. CONCLUSION Erianin may exerted its anti-tumor effect in DDP-resistant LUAD cells by regulating the Wnt3/β-Catenin/Survivin/Bcl-2/Caspase-3/Cyclin D1 axis.
Collapse
Affiliation(s)
- Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiling Ruan
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Beibei Wang
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Xue
- Department of General Practice, Suixi County Hospital, Huaibei, Anhui, China.
| | - Tong Wang
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
5
|
Xie L, Chen Q, Cheng N, Zhang Y, Ma Y, Zhang Y, Liu K. Integrated metabolomic and transcriptomic analyses of Dendrobium chrysotoxum and D. thyrsiflorum reveal the biosynthetic pathway from gigantol to erianin. FRONTIERS IN PLANT SCIENCE 2024; 15:1436560. [PMID: 39391777 PMCID: PMC11464314 DOI: 10.3389/fpls.2024.1436560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Erianin is one of the most representative bibenzyls with significant inhibitory activity against a wide range of tumor cells. However, the low erianin level in natural materials has severely inhibited its further development in health care. Our aim was to uncover the erianin biosynthetic pathway to lay the foundation for promoting its production. Firstly, we screened and obtained two Dendrobium species (Dendrobium thyrsiflorum stems with lower erianin content and D. chrysotoxum stems with higher erianin content), belonging to the same Dendrobium section (Chrysotoxae). A systematic analysis of bibenzyl structure and content in two stems revealed that gigantol might be an erianin biosynthetic intermediate, which was verified by introducing deuterium-labeled gigantol. Chemical structure analyses indicated that gigantol was modified by two kinds of enzymes (hydroxylases and O-methyltransferases), leading to erianin synthesis. Up-regulated hydroxylases and O-methyltransferases (OMTs) were screened out and were performed by molecular docking simulation experiments. We propose a rational biosynthetic pathway from gigantol to erianin, as well as relevant enzymes involved in the process. Our findings should significantly contribute to comprehensive resolution of the erianin biosynthetic pathway, promote its large-scale industrial production as well as contribute to biosynthesis studies of other bibenzyls.
Collapse
Affiliation(s)
- Lihang Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuying Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Najing Cheng
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Hu A, Li K. Erianin Impedes the Proliferation and Metastatic Migration Through Suppression of STAT-3 Phosphorylation in Human Esophageal Cancer Cells. Appl Biochem Biotechnol 2024; 196:5859-5874. [PMID: 38165593 DOI: 10.1007/s12010-023-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
In this study, we have investigated erianin, a natural phenolic drug that impedes proliferation and metastatic migration through suppression of STAT-3 phosphorylation in human esophageal cancer cells. Eca-109 cells were treated with different concentrations of erianin (4, 8, 12 µM) for 24 h, and then cell proliferation, apoptosis, and metastatic markers were evaluated. Erianin-induced cytotoxicity and cell proliferation were examined using MTT and crystal violet staining techniques. The measurement of reactive oxygen species (ROS) and the study of apoptotic changes were conducted through flow cytometry. Furthermore, protein expression analyses via western blotting included an evaluation of JAK-STAT3, cell survival, cell cycle, proliferation, and apoptosis-related proteins. Moreover, erianin treatment-associated MMP expressions were studied by RT-PCR. In this study, erianin treatment induces substantial cytotoxicity and ROS production based on the concentrations in Eca-109 cells. Moreover, erianin inhibits the MAPK phosphorylation, proliferation, and metastatic protein in Eca-109 cells. STAT-3 is a crucial transcriptional factor that regulates numerous downstream proteins, such as proliferation, anti-apoptosis, and metastatic proteins. In this study, erianin treatment inhibited the protein expression of IL-6, IL-10, JAK-1, and p-STAT-3 expressions leading to induce apoptosis in Eca-109 cells. Moreover, erianin inhibited the expression of proliferation, metastatic, and anti-apoptotic markers in Eca-109 cells. Hence, erianin suppressed the JAK/STAT-3 signaling pathway and demonstrates potential as a chemotherapeutic agent for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Anxi Hu
- Department of Thoracic Surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China.
| |
Collapse
|
7
|
Yan W, Zhou Y, Yuan X, Bai P, Tang M, Chen L, Wei H, Yang J. The cytotoxic natural compound erianin binds to colchicine site of β-tubulin and overcomes taxane resistance. Bioorg Chem 2024; 150:107569. [PMID: 38905886 DOI: 10.1016/j.bioorg.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Erianin, a natural compound derived from Dendrobium, has shown significant anticancer properties against a wide range of cancer cells. Despite the identification of multiple mechanisms of action for erianin, none of these mechanisms fully account for its broad-spectrum effect. In this study, we aimed to identify the cellular target and underlying mechanism responsible for the broad-spectrum antitumor effects of erianin. We found that erianin effectively inhibited tubulin polymerization in cancer cells and purified tubulin. Through competition binding assays and X-ray crystallography, it was revealed that erianin bound to the colchicine site of β-tubulin. Importantly, the X-ray crystal structure of the tubulin-erianin complex was solved, providing clear insight into the orientation and position of erianin in the colchicine-binding site. Erianin showed activity against paclitaxel-resistant cells, evidenced by G2/M cell cycle arrest, apoptosis-related PARP and Caspase-3 cleavage, and in vivo xenograft studies. The study concluded that erianin bound reversibly to the colchicine site of β-tubulin, inhibited tubulin polymerization, and displayed anticancer activity against paclitaxel-resistant cells, offering valuable insights for further exploration as potential anticancer agents.
Collapse
Affiliation(s)
- Wei Yan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yongzhao Zhou
- Integrated Care Management Center, West China Hospital, Sichuan University, China.
| | - Xue Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Peng Bai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoche Wei
- Department of General Surgery, Gastric Cancer Center, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wei X, Liu Q, Liu L, Wang D, Liu J, Zhu Q, Xu Z, Chen Q, Xu W. Discovery of the Natural Bibenzyl Compound Erianin in Dendrobium Inhibiting the Growth and EMT of Gastric Cancer through Downregulating the LKB1-SIK2/3-PARD3 Pathway. Int J Mol Sci 2024; 25:7973. [PMID: 39063214 PMCID: PMC11277420 DOI: 10.3390/ijms25147973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Erianin, a bibenzyl compound found in dendrobium extract, has demonstrated broad anticancer activity. However, its mechanism of action in gastric cancer (GC) remains poorly understood. LKB1 is a tumor-suppressor gene, and its mutation is an important driver of various cancers. Yet some studies have reported contradictory findings. In this study, we combined bioinformatics and in vitro and in vivo experiments to investigate the effect and potential mechanism of Erianin in the treatment of GC. The results show that LKB1 was highly expressed in patients' tumor tissues and GC cells, and it was associated with poor patient prognosis. Erianin could promote GC cell apoptosis and inhibit the scratch repair, migration, invasion, and epithelial-mesenchymal transition (EMT) characteristics. Erianin dose-dependently inhibited the expression of LKB1, SIK2, SIK3, and PARD3 but had no significant effect on SIK1. Erianin also inhibited tumor growth in CDX mice model. Unexpectedly, 5-FU also exhibited a certain inhibitory effect on LKB1. The combination of Erianin and 5-FU significantly improved the anti-tumor efficacy of 5-FU in the growth of GC cells and xenograft mouse models. In summary, Erianin is a potential anti-GC compound that can inhibit GC growth and EMT properties by targeting the LKB1-SIK2/3-PARD3-signaling axis. The synergistic effect of Erianin and 5-FU suggests a promising therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (X.W.); (Q.Z.); (Q.C.)
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Qunshan Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Liu Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Dan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Jiajia Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (X.W.); (Q.Z.); (Q.C.)
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Ziming Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (X.W.); (Q.Z.); (Q.C.)
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (X.W.); (Q.Z.); (Q.C.)
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.L.); (L.L.); (D.W.); (J.L.); (Z.X.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, China
| |
Collapse
|
9
|
Han S, Chen S, Wang J, Huang S, Xiao Y, Deng G. Erianin promotes apoptosis and inhibits Akt-mediated aerobic glycolysis of cancer cells. J Cancer 2024; 15:2380-2390. [PMID: 38495480 PMCID: PMC10937289 DOI: 10.7150/jca.92780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Highly activated aerobic glycolysis provides the metabolic requirements for tumor cell growth and proliferation. Erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has been reported to exert antitumor activity in multiple cancers. However, whether Erianin exerts inhibitory effects on aerobic glycolysis and the inherent mechanism remain poorly defined in non-small cell lung cancer (NSCLC). Here, we showed that Erianin inhibited the cell viability and proliferation, and induced apoptosis in NSCLC cells. Moreover, Erianin overtly suppressed aerobic glycolysis via decreasing HK2 expression. Mechanistically, Erianin dose-dependently curbed the Akt-GSK3β signaling pathway phosphorylation activation, which afterwards downregulated HK2 expression. Meanwhile, Erianin inhibited HCC827 tumor growth in vivo. Taken together, our results suggest that the natural product Erianin can suppress aerobic glycolysis and exert potent anticancer effects via the Akt-GSK3β signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Shuangze Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde 415000, Hunan, China
| | - Sheng Huang
- Department of General, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
10
|
Li Q, Gan X, Zhang M, Zhang G, Li Y, Gao L. Erianin promotes endogenous neurogenesis in traumatic brain injury rats. Sci Rep 2024; 14:4108. [PMID: 38374284 PMCID: PMC10876537 DOI: 10.1038/s41598-023-50573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The objective of this study was to explore the positive influence and potential mechanism of Erianin on the recovery of brain cells following a traumatic brain injury (TBI). TBI rat models were prepared and treated with Erianin injection via tail vein. The assessment included evaluating the rats' levels of oxidative stress, inflammation, neuronal damage, mitochondrial damage, neuronal regeneration, transformation of pro-inflammatory microglial cells, activation status of the ERK signal pathway, and the functionality of their learning and memory. After administering Erianin, there was a suppression of oxidative stress, inflammation, nerve cell damage, and mitochondrial damage in the TBI rats. Additionally, there was an increase in neuronal regeneration in the cortex and hippocampus, inhibition of pro-inflammatory microglial cell transformation in the cortex, improvement in learning and memory function in TBI rats, and simultaneous inhibition of the activation of the ERK1/c-Jun signal pathway. The findings suggest that Erianin has the potential to reduce oxidative stress and inflammatory reaction in rats with TBI, safeguard nerve cells against apoptosis, stimulate the growth of new neural cells, ultimately enhancing the cognitive abilities and memory function of the rats. The inhibition of the ERK signaling pathway could be closely associated with these effects.
Collapse
Affiliation(s)
- Qingquan Li
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaokui Gan
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Gao
- Department of Shanghai Tenth People's Hospital Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, No. 301 Extend Middle Road, Shanghai, 200072, China.
| |
Collapse
|
11
|
Lv J, Wang Z, Liu H. Erianin suppressed lung cancer stemness and chemotherapeutic sensitivity via triggering ferroptosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:479-486. [PMID: 37209271 DOI: 10.1002/tox.23832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
The previous research has focused on the suppressive effects of Erianin on tumor progression, but its impact on cancer stemness has not been reported. This study aimed to investigate the effects of Erianin on lung cancer stemness. First, we screened various concentrations Erianin to ensure that it did not affect lung cancer cell viability. Subsequently, we found that Erianin significantly attenuated lung cancer stemness through various analyses, including qRT-PCR, western blot, sphere-formation, and ALDH activity detection. Furthermore, Erianin was shown to enhance chemosensitivity of lung cancer cells. Mechanistically, three inhibitors (cell apoptosis inhibitor, necrosis inhibitor, and ferroptosis inhibitor) were added into lung cancer cells with Erianin treatment, respectively, and we found that Erianin mainly suppressed lung cancer stemness through ferroptosis. Taken together, this study reveals that Erianin has the potential to suppress lung cancer stemness and could be a valuable chemotherapeutic enhancer for lung cancer.
Collapse
Affiliation(s)
- Jian Lv
- Department of Thoracic Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ze Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hongchao Liu
- Department of Interventional Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Ma L, Li M, Zhang Y, Liu K. Recent advances of antitumor leading compound Erianin: Mechanisms of action and structural modification. Eur J Med Chem 2023; 261:115844. [PMID: 37804769 DOI: 10.1016/j.ejmech.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Erianin, a bioactive compound extracted from Dendrobium, a traditional Chinese medicine, exhibits remarkable anti-cancer properties through diverse molecular mechanisms and has attracted the attention of medicinal chemists. However, the low solubility in water, rapid metabolism and elimination from the body lead to poor bioavailability of Erianin, and greatly hinder its clinical application. The development of new Erianin derivatives is continuously proceed to improve its anticancer effects. In recent years, although important progress in the development of Erianin and the publication of some reviews in this aspect, the mechanism against various cancers, pharmacokinetic study, structural modification as well as structure-activity relationships have not been thoroughly considered. This review is aimed at providing complete picture regarding the above aspects by reviewing studies from 2000 to 2023.06. This review also supplies some important viewpoints on the design and future directions for the development of Erianin derivatives as possible clinically effective anticancer agents.
Collapse
Affiliation(s)
- Lu Ma
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
14
|
Tsai SW, Wang JH, Chang YK, Lin CC. Erianin alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation. Open Life Sci 2023; 18:20220703. [PMID: 37711216 PMCID: PMC10499012 DOI: 10.1515/biol-2022-0703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder. Its pathogenesis is complicated but highly related to aberrant Th17 overactivation. Uncontrolled Th17 cell expansion and activation in populations and associated activities contribute to the progression of RA. Although clinical RA remedies are available, not all RA patients respond to these treatments, and adverse effects are always a concerning issue during treatment. To expand the repertoire of possible anti-RA remedies, we chose the phytochemical compound erianin, isolated from Dendrobium sp., and evaluated its antiarthritic effect in vitro and in vivo. We found that erianin efficiently controlled the differentiation and activation of Th17 cell development from primary CD4 T cells, limiting IL-17A cytokine production and RORγT transcript generation. In line with molecular docking models, the essential signaling pathway for Th17 polarization, the JAK/STAT3 pathway, was inhibited upon erianin treatment, with dose-dependent inhibition of phosphorylation shown by western blotting. More importantly, erianin treatment reduced arthritic manifestations and proinflammatory cytokine levels in collagen-induced arthritis (CIA) mice, as well as protecting the joint histological microstructure. Overall, erianin revealed a promising inhibitory effect on Th17 overactivation and decreased disability in CIA mice. Therefore, erianin could be further developed as a candidate RA remedy.
Collapse
Affiliation(s)
- Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Jou-Hsuan Wang
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung807, Taiwan
| |
Collapse
|
15
|
Xie L, Huang J, Xiong T, Ma Y. Secondary Metabolomic Analysis and In Vitro Bioactivity Evaluation of Stems Provide a Comprehensive Comparison between Dendrobium chrysotoxum and Dendrobium thyrsiflorum. Molecules 2023; 28:6039. [PMID: 37630293 PMCID: PMC10458425 DOI: 10.3390/molecules28166039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The stems of Dendrobium chrysotoxum (DC) are commonly used as health-promoting foods due to their excellent biological activities. However, the stems of D. thyrsiflorum (DT) are often used to meet the scarcity of DC in production because of their highly similar morphology. However, the related metabolomic and bioactive information on the stems of DC and DT are largely deficient. Here, secondary metabolites of DC and DT stems were identified using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry, and their health-promoting functions were evaluated using several in vitro arrays. A total of 490 metabolites were identified in two stems, and 274 were significantly different. We screened out 10 key metabolites to discriminate the two species, and 36 metabolites were determined as health-promoting constituents. In summary, DT stems with higher extract yield, higher total phenolics and flavonoids, and stronger in vitro antioxidant activities demonstrated considerable potential in food and health fields.
Collapse
Affiliation(s)
- Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; (L.X.); (T.X.)
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 473000, China
| | - Tingjian Xiong
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; (L.X.); (T.X.)
| | - Yao Ma
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 473000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Li G, Zhang H, Lai H, Liang G, Huang J, Zhao F, Xie X, Peng C. Erianin: A phytoestrogen with therapeutic potential. Front Pharmacol 2023; 14:1197056. [PMID: 37608888 PMCID: PMC10440559 DOI: 10.3389/fphar.2023.1197056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023] Open
Abstract
Erianin, a phytoestrogen with therapeutic potential, is one of the major active components of Dendrobll caulis. Erianin has a variety of pharmacological effects, such as anti-tumor, anti-inflammatory, anti-diabetic retinopathy, anti-psoriasis, and antibacterial effects. Especially, in regard to the anti-tumor effect of erianin, the underlying molecular mechanism has been partly clarified. In fact, the numerous pharmacological actions of erianin are complex and interrelated, mainly including ERK1/2, PI3K/Akt, JAK2/STAT3, HIF-1α/PD-L1, PPT1/mTOR, JNK/c-Jun, and p38 MAPK signal pathway. However, on account of the poor water solubility and the low bioavailability of erianin, greatly affected and limited its further development and application. And it is worthwhile and meaningful to explore more extensive pharmacological effects and mechanisms, clarify pharmacokinetics, and synthesize the derivatives of erianin. Conclusively, in this paper, the pharmacological effects of erianin and its mechanism, pharmacokinetics, and derivatives studies were reviewed, in order to provide a reference for the development and application of erianin.
Collapse
Affiliation(s)
- Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Huiqiong Zhang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Hui Lai
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Gang Liang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Fulan Zhao
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaofang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Yang Y, Liu Q, Wang X, Gou S. Design, Synthesis, and Biological Evaluation of Histone Deacetylase Inhibitors Derived from Erianin and Its Derivatives. ChemMedChem 2023; 18:e202300108. [PMID: 37058395 DOI: 10.1002/cmdc.202300108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
Multi-target histone deacetylase (HDAC) inhibitors can be designed by introducing dominant structures of natural products to enhance activity and efficacy while avoiding the toxicity from other targets. In this study, we reported a series of novel HDAC inhibitors based on erianin and amino erianin upon pharmacophore fusion strategy. Two representative compounds, N-hydroxy-2-(2-methoxy-5- (3,4,5-trimethoxyphenethyl)phenoxy)acetamide and N-Hydroxy-8-((2-methoxy-5- (3,4,5-trimethoxyphenethyl)phenyl)amino)octanamide, possessed good inhibitory effect against five cancer cells tested (IC50 =0.30-1.29 μΜ, 0.29-1.70 μΜ) with strong HDAC inhibition, and low toxicity toward L02 cells, which were selected for subsequent biological studies in PANC-1 cells. They were also found to promote the intracellular generation of reactive oxygen species, cause DNA damage, block the cell cycle at G2/M phase, and activate the mitochondria-related apoptotic pathway to induce cell apoptosis, which are significant for the discovery of new HDAC inhibitors.
Collapse
Affiliation(s)
- Yawen Yang
- Pharmaceutical Research Center and, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Qingqing Liu
- Pharmaceutical Research Center and, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
- School of Pharmacy, Jilin Medical University, Jilin City, 132013, Jilin Province, China
| | - Xinyi Wang
- Pharmaceutical Research Center and, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| |
Collapse
|
18
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
19
|
Yang Z, Liu R, Qiu M, Mei H, Hao J, Song T, Zhao K, Zou D, Wang H, Gao M. The roles of ERIANIN in tumor and innate immunity and its' perspectives in immunotherapy. Front Immunol 2023; 14:1170754. [PMID: 37187758 PMCID: PMC10175588 DOI: 10.3389/fimmu.2023.1170754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Traditional Chinese medicine has been used in China for thousands of years. In 2022, the 14th Five-Year Plan for the Development of Traditional Chinese Medicine was released, aiming to enhance traditional Chinese medicine health services and improve policies and systems for high-quality traditional Chinese medicinal development by 2025. ERIANIN, the main component of the traditional Chinese medicine Dendrobium, plays an important role in anti-inflammatory, antiviral, antitumor, antiangiogenic, and other pharmacological effects. ERIANIN has broad-spectrum antitumor effects, and its tumor-suppressive effects have been confirmed in the study of various diseases, such as precancerous lesions of the stomach, gastric cancer, liver cancer, lung cancer, prostate cancer, bladder cancer, breast cancer, cervical cancer, osteosarcoma, colorectal cancer, leukaemia, nasopharyngeal cancer and melanoma through the multiple signaling pathways. Thus, the aim of this review was to systematically summarise the research on ERIANIN with the aim of serving as a reference for future research on this compound and briefly discuss some future perspectives development of ERIANIN in combined immunotherapy.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ruxue Liu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Hanwei Mei
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Teng Song
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Dandan Zou
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| |
Collapse
|
20
|
Lei P, Chen Q, Chen H, Zhou Y, Jin L, Wang W, Chen F. Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of N-Fluorocarboxamides. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
22
|
Ma TL, Chen JX, Zhu P, Zhang CB, Zhou Y, Duan JX. Focus on ferroptosis regulation: Exploring novel mechanisms and applications of ferroptosis regulator. Life Sci 2022; 307:120868. [DOI: 10.1016/j.lfs.2022.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
23
|
Nie H, Wang N, Huang J, Ni Z, Xue K, Song L, Wang M, Wu F. Radiosynthesis and tumor microPET/CT imaging of 18F-fluoroethoxylerianin, a 18F-Labeled Erianin Analogue. SYNOPEN 2022. [DOI: 10.1055/a-1818-8330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract: Erianin is an active constituent of Dendrobium candidum. In this work, 18F -fluoroethoxylerianin([18F]FEE), a 18F-Labeled Erianin analogue, was designed and synthesized to evaluate the property of Erianin and related analogues by in vivo PET imaging. The initial product was separated and purified by liquid phase separation module Explora LC and simple homemade solid phase extraction, and high purity [18F]FEE was finally obtained. The radiochemical purity of [18F]FEE was determined by Radio-TLC and Radio-HPLC. [18F]FEE showed good stability in normal saline and serum, and could be quickly eliminated from mice. Cell experiments, biological distribution, and small animal PET/CT further showed that [18F]FEE had a high uptake rate in HepG2 tumor cells, and showed good imaging ability in HepG2 tumor model. The results of this study indicate that the synthesized 18F-Labeled Erianin analogue is an effective new probe for positron emission tomography (PET) imaging of HepG2 hepatocellular carcinoma, which provides an intuitive and reliable theoretical basis for the development of erianin as an anticancer drug.
Collapse
Affiliation(s)
- Hui Nie
- Department of pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Nian Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jinwen Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhuang Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Kangyan Xue
- Department of pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Lixing Song
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, shanghai, China
| |
Collapse
|
24
|
Yan L, Zhang Z, Liu Y, Ren S, Zhu Z, Wei L, Feng J, Duan T, Sun X, Xie T, Sui X. Anticancer Activity of Erianin: Cancer-Specific Target Prediction Based on Network Pharmacology. Front Mol Biosci 2022; 9:862932. [PMID: 35372513 PMCID: PMC8968680 DOI: 10.3389/fmolb.2022.862932] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Erianin is a major bisbenzyl compound extracted from Dendrobium chrysotoxum Lindl., an important traditional Chinese herb. In recent years, a growing body of evidence has proved the potential therapeutic effects of erianin on various cancers, including hepatoma, melanoma, non-small-cell lung carcinoma, myelogenous leukemia, breast cancer, and osteosarcoma. Especially, the pharmacological activities of erianin, such as antioxidant and anticancer activity, have been frequently demonstrated by plenty of studies. In this study, we firstly conducted a systematic review on reported anticancer activity of erianin. All updated valuable information regarding the underlying action mechanisms of erianin in specific cancer was recorded and summarized in this paper. Most importantly, based on the molecular structure of erianin, its potential molecular targets were analyzed and predicted by means of the SwissTargetPrediction online server (http://www.swisstargetprediction.ch). In the meantime, the potential therapeutic targets of 10 types of cancers in which erianin has been proved to have anticancer effects were also predicted via the Online Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim). The overlapping targets may serve as valuable target candidates through which erianin exerts its anticancer activity. The clinical value of those targets was subsequently evaluated by analyzing their prognostic role in specific cancer using Kaplan-Meier plotter (http://Kmplot.com/analysis/) and Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/). To better assess and verify the binding ability of erianin with its potential targets, molecular flexible docking was performed using Discovery Studio (DS). The valuable targets obtained from the above analysis and verification were further mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) to explore the possible signaling pathways disturbed/regulated by erianin. Furthermore, the in silico prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of erianin was also performed and provided in this paper. Overall, in this study, we aimed at 1) collecting all experiment-based important information regarding the anticancer effect and pharmacological mechanism of erianin, 2) providing the predicted therapeutic targets and signaling pathways that erianin might act on in cancers, and 3) especially providing in silico ADMET properties of erianin.
Collapse
Affiliation(s)
- Lili Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Hangzhou Orthopedic Institute, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuyi Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lu Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| |
Collapse
|
25
|
Orchidaceae-Derived Anticancer Agents: A Review. Cancers (Basel) 2022; 14:cancers14030754. [PMID: 35159021 PMCID: PMC8833831 DOI: 10.3390/cancers14030754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Orchids are commonly used in folk medicine for the treatment of infections and tumors but little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. According to the published data, numerous species of orchids contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader research, ’including American and African species, as well as the correct identification of samples, is essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential. Abstract Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.
Collapse
|
26
|
Li X, Liu X, Xing Y, Zeng L, Liu X, Shen H, Ma J. Erianin Controls Collagen-Mediated Retinal Angiogenesis via the RhoA/ROCK1 Signaling Pathway Induced by the alpha2/beta1 Integrin-Collagen Interaction. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35060996 PMCID: PMC8787642 DOI: 10.1167/iovs.63.1.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Erianin has been reported to inhibit tumor activity by suppressing the expression of integrins. It is hypothesized that erianin can inhibit retinal neovascularization in collagen by suppressing the expression of integrins. With an aim to test this hypothesis, the regulation of erianin on collagen-mediated retinal angiogenesis via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) signaling pathway induced by α2 and β1 integrin-collagen interactions was investigated. Methods The effects of erianin on human retinal vascular endothelial cells (HRVECs) were assessed in vitro using a hypoxia model in a three-dimensional cell culture induced by cobalt (II) chloride (CoCl2). A hypoxia-induced retinopathy model in adult zebrafish and zebrafish embryos was established to assess the antiangiogenic effect of erianin with and without vitreous collagen in vivo. The expression of α2 and β1 integrin and RhoA/ROCK1 pathway in HRVECs and zebrafish retinas were analyzed. Results In vitro, collagen improved the angiogenic potential of HRVECs, including migration, adhesion, and tube formation, in a three-dimensional cell culture model. Erianin suppressed the angiogenic processes of the CoCl2-induced hypoxia HRVEC model in a concentration-dependent manner. In vivo, erianin reduced retinal angiogenesis in the hypoxia-induced retinopathy model in adult and embryo zebrafish. Erianin inhibited the expression of α2 and β1 integrin and RhoA/ROCK1 in a hypoxia-induced model in vitro in three-dimensional cell culture and in vivo in adult zebrafish. Conclusions Collagen-mediated retinal angiogenesis may be regulated by erianin via the RhoA/ROCK1 signaling pathway induced by α2 and β1 integrin-collagen interactions. These findings suggest that erianin has the therapeutic potential on intraocular collagen-mediated retinal angiogenesis.
Collapse
Affiliation(s)
- Xueke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lingyan Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Sheng Y, Chen Y, Zeng Z, Wu W, Wang J, Ma Y, Lin Y, Zhang J, Huang Y, Li W, Zhu Q, Wei X, Li S, Wisanwattana W, Li F, Liu W, Suksamrarn A, Zhang G, Jiao W, Wang F. Identification of Pyruvate Carboxylase as the Cellular Target of Natural Bibenzyls with Potent Anticancer Activity against Hepatocellular Carcinoma via Metabolic Reprogramming. J Med Chem 2021; 65:460-484. [PMID: 34931827 DOI: 10.1021/acs.jmedchem.1c01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer cell proliferation in some organs often depends on conversion of pyruvate to oxaloacetate via pyruvate carboxylase (PC) for replenishing the tricarboxylic acid cycle to support biomass production. In this study, PC was identified as the cellular target of erianin using the photoaffinity labeling-click chemistry-based probe strategy. Erianin potently inhibited the enzymatic activity of PC, which mediated the anticancer effect of erianin in human hepatocellular carcinoma (HCC). Erianin modulated cancer-related gene expression and induced changes in metabolic intermediates. Moreover, erianin promotes mitochondrial oxidative stress and inhibits glycolysis, leading to insufficient energy required for cell proliferation. Analysis of 14 natural analogs of erianin showed that some compounds exhibited potent inhibitory effects on PC. These results suggest that PC is a cellular target of erianin and reveal the unrecognized function of PC in HCC tumorigenesis; erianin along with its analogs warrants further development as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongqiu Zeng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuling Ma
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Sichuan Xincheng Biological Co., LTD, Chengdu 611731, China
| | - Jichao Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhua Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiyu Zhu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao Wei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wisanee Wisanwattana
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Wei Jiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
28
|
The Regulatory Effects and the Signaling Pathways of Natural Bioactive Compounds on Ferroptosis. Foods 2021; 10:foods10122952. [PMID: 34945503 PMCID: PMC8700948 DOI: 10.3390/foods10122952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Natural bioactive compounds abundantly presented in foods and medicinal plants have recently received a remarkable attention because of their various biological activities and minimal toxicity. In recent years, many natural compounds appear to offer significant effects in the regulation of ferroptosis. Ferroptosis is the forefront of international scientific research which has been exponential growth since the term was coined. This type of regulated cell death is driven by iron-dependent phospholipid peroxidation. Recent studies have shown that numerous organ injuries and pathophysiological processes of many diseases are driven by ferroptosis, such as cancer, arteriosclerosis, neurodegenerative disease, diabetes, ischemia-reperfusion injury and acute renal failure. It is reported that the initiation and inhibition of ferroptosis plays a pivotal role in lipid peroxidation, organ damage, neurodegeneration and cancer growth and progression. Recently, many natural phytochemicals extracted from edible plants have been demonstrated to be novel ferroptosis regulators and have the potential to treat ferroptosis-related diseases. This review provides an updated overview on the role of natural bioactive compounds and the potential signaling pathways in the regulation of ferroptosis.
Collapse
|
29
|
Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X. The role of ferroptosis in lung cancer. Biomark Res 2021; 9:82. [PMID: 34742351 PMCID: PMC8572460 DOI: 10.1186/s40364-021-00338-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world. Although medical treatment has made impressive progress in recent years, it is still one of the leading causes of cancer-related deaths in men and women. Ferroptosis is a type of non-apoptotic cell death modality, usually characterized by iron-dependent lipid peroxidation, rather than caspase-induced protein cleavage. Excessive or lack of ferroptosis is associated with a variety of diseases, including cancer and ischaemia-reperfusion injury. Recent preclinical evidence suggests that targeting ferroptotic pathway is a potential strategy for the treatment of lung cancer. In this review, we summarize the core mechanism and regulatory network of ferroptosis in lung cancer cells, and highlight ferroptosis induction-related tumor therapies. The reviewed information may provide new insights for targeted lung cancer therapy.
Collapse
Affiliation(s)
- Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Malebari AM, Wang S, Greene TF, O’Boyle NM, Fayne D, Khan MF, Nathwani SM, Twamley B, McCabe T, Zisterer DM, Meegan MJ. Synthesis and Antiproliferative Evaluation of 3-Chloroazetidin-2-ones with Antimitotic Activity: Heterocyclic Bridged Analogues of Combretastatin A-4. Pharmaceuticals (Basel) 2021; 14:1119. [PMID: 34832901 PMCID: PMC8624998 DOI: 10.3390/ph14111119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Antimitotic drugs that target tubulin are among the most widely used chemotherapeutic agents; however, the development of multidrug resistance has limited their clinical activity. We report the synthesis and biological properties of a series of novel 3-chloro-β-lactams and 3,3-dichloro-β-lactams (2-azetidinones) that are structurally related to the tubulin polymerisation inhibitor and vascular targeting agent, Combretastatin A-4. These compounds were evaluated as potential tubulin polymerisation inhibitors and for their antiproliferative effects in breast cancer cells. A number of the compounds showed potent activity in MCF-7 breast cancer cells, e.g., compound 10n (3-chloro-4-(3-hydroxy-4-methoxy-phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) and compound 11n (3,3-dichloro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-azetidin-2-one), with IC50 values of 17 and 31 nM, respectively, and displayed comparable cellular effects to those of Combretastatin A-4. Compound 10n demonstrated minimal cytotoxicity against non-tumorigenic HEK-293T cells and inhibited the in vitro polymerisation of tubulin with significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that β-lactam 10n caused a mitotic catastrophe by targeting tubulin. In addition, compound 10n promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2 and Mcl-1. Molecular docking was used to explore the potential molecular interactions between novel 3-chloro-β-lactams and the amino acid residues of the colchicine binding active site cavity of β-tubulin. Collectively, these results suggest that 3-chloro-2-azetidinones, such as compound 10n, could be promising lead compounds for further clinical anti-cancer drug development.
Collapse
Affiliation(s)
- Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shu Wang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| | - Thomas F. Greene
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (D.F.); (M.F.K.)
| | - Mohemmed Faraz Khan
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (D.F.); (M.F.K.)
| | - Seema M. Nathwani
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.M.Z.)
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, 2 DO2R590 Dublin, Ireland; (B.T.); (T.M.)
| | - Thomas McCabe
- School of Chemistry, Trinity College Dublin, 2 DO2R590 Dublin, Ireland; (B.T.); (T.M.)
| | - Daniela M. Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.M.Z.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| |
Collapse
|
31
|
Chen H, Li R, Zhang F, Yao Q, Guo Y. A Scientometric Visualization Analysis for Natural Products on Cancer Research from 2008 to 2020. Front Pharmacol 2021; 12:650141. [PMID: 34421584 PMCID: PMC8377543 DOI: 10.3389/fphar.2021.650141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background: An increasing number of studies have shown that natural products have anti-tumor effects, and it has become a hotspot in cancer research. However, few bibliometric analyses have been examined in this field systematically. The current study aimed to explore the status and provide the developing trends in the natural products on cancer research. Methods: Publications on natural products in cancer research were extracted from the Web of Science core collection database. CiteSpace (5.6.R3) software and GraphPad prism 6 were used to analyze and plot the references. Results: On February 1, 2021, 34,611 records of natural products in cancer research published from 2008 to 2020 were collected. The United States was the driving force, with a strong academic reputation in this area. The top-contributing institution was the Chinese Academy of Sciences. Most publications were published in Molecules. Efferth Thomas was the most prolific author, while Newman DJ was the most cited and frequently co-cited author. Flavonoid, curcumin, and polyphenol were the most widely studied natural products. Oleanolic acid and rosmarinic acid have gradually become research hotspots recently. Breast cancer, prostate cancer, and colorectal cancer were the most common types of cancer in this field. “Natural killer cell” was the leading research hotspot. The keywords of “leaf extract,” “molecular docking” and “gold nanoparticle” appeared most recently as research frontiers. Conclusion: Our results provided a general overview of the major research directions of natural products research in cancer. The mechanisms of natural products, especially those related to molecular docking, gold nanoparticle, gut microbiota, and immune checkpoints may soon become hotspots and should be closely monitored.
Collapse
Affiliation(s)
- Haitao Chen
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongrong Li
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Zhang
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Xu Y, Fang R, Shao J, Cai Z. Erianin induces triple-negative breast cancer cells apoptosis by activating PI3K/Akt pathway. Biosci Rep 2021; 41:BSR20210093. [PMID: 34036307 PMCID: PMC8202065 DOI: 10.1042/bsr20210093] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25-30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism. METHODS After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79. RESULTS Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin. CONCLUSIONS Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Rong Fang
- School of Medicine, Ningbo University, Ningbo 315020, P.R. China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
33
|
Yang A, Li MY, Zhang ZH, Wang JY, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Zuo HX, Ma J, Jin X. Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113598. [PMID: 33220359 DOI: 10.1016/j.jep.2020.113598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium chrysotoxum Lindl is a cultivation of Dendrobium which belongs to the family of Orchidaceae. D. chrysotoxum Lindl is a traditional Chinese medicine with a wide range of clinical applications including tonic, astringent, analgesic and anti-inflammatory properties as early as the 28th century B.C. Erianin is a representative index component for the quality control of the D. chrysotoxum Lindl, which is included in the Pharmacopoeia of the People's Republic of China (2020 version). AIM OF THE STUDY To clarify the anti-tumour mechanisms of erianin in vitro and in vivo. MATERIALS AND METHODS We detected the anti-tumour activity of erianin using in vitro HeLa cell models and in vivo cervical cancer xenograft models. We performed MTT, western blot, RT-PCR, homology modeling, flow cytometry, and immunoprecipitation assays to study the proteins, genes, and pathways related to erianin's anti-tumour activity. LysoTracker Red staining was performed to detect lysosome function. Transwell, wound healing, tube formation, colony formation and EdU labelling assays were performed to determine cell proliferation, migration and invasion abilities, respectively. Cytotoxic T lymphocytes ability was confirmed using HeLa/T-cell co-culture model. RESULTS Experimental data demonstrated that erianin inhibited PD-L1 expression and induced the lysosomal degradation of PD-L1. Erianin suppressed HIF-1α synthesis through mTOR/p70S6K/4EBP1 pathway, and inhibited RAS/Raf/MEK/MAPK-ERK pathway. Immunoprecipitation experiments demonstrated that erianin reduced the interaction between RAS and HIF-1α. Experiments using a co-cultivation system of T cells and HeLa cells confirmed that erianin restored cytotoxic T lymphocytes ability to kill tumour cells. Erianin inhibited PD-L1-mediated angiogenesis, proliferation, invasion and migration. The anti-proliferative effects of erianin were supported using in vivo xenotransplantation experiments. CONCLUSIONS Collectively, these results revealed previously unknown properties of erianin and provided a new basis for improving the efficacy of immunotherapy against cervical cancer and other malignant tumours through PD-L1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Bibenzyls/pharmacology
- Bibenzyls/therapeutic use
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression Regulation/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lysosomes/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Docking Simulation
- Neovascularization, Pathologic/metabolism
- Phenol/pharmacology
- Phenol/therapeutic use
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- TOR Serine-Threonine Kinases/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- raf Kinases/metabolism
- ras Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Ao Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
34
|
He L, Su Q, Bai L, Li M, Liu J, Liu X, Zhang C, Jiang Z, He J, Shi J, Huang S, Guo L. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur J Med Chem 2020; 204:112530. [PMID: 32711292 DOI: 10.1016/j.ejmech.2020.112530] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/30/2020] [Indexed: 02/05/2023]
Abstract
Orchidaceous plant Dendrobium genus is often used as a tonic, and its phenolic components have attracted attention for its anti-tumor and anti-diabetic complications. Bibenzyls is one of the essential phenolic active ingredients in the Dendrobium genus. At present, 89 bibenzyl derivatives have been extracted and identified from 46 Dendrobium species. The activity studies have shown that 42 compounds have pharmaceutical activity. Among them, 23 compounds showed antitumor activity; 7 compounds showed anti-diabetes and its complications activity; 10 compounds exhibited neuroprotective effects; 18 compounds showed antioxidant effects; 11 compounds had anti-inflammatory activity; 3 compounds had Antiplatelet aggregation effects; 3 compounds had antibacterial and antiviral effects. The Bibenzyls is small-molecular compounds of natural origin and widely sourced. Previous studies showed that the bibenzyls has good anti-tumor, anti-diabetes and its complications, and neuroprotective effects, and it has great potential for treating tumors, diabetes and its complications, Alzheimer's disease (AD) and Parkinson's disease (PD). Additionally, compounds such as moscatilin (1), gigantol (2) and chrysotoxine (3) have been further studied as lead compounds, and compounds exhibited therapeutical effects had been synthesized. Enough pieces of evidences have shown that the Bibenzyls have good development prospects. This article reviews the pharmacological effects of bibenzyls in Dendrobium species and provides an idea for its further development.
Collapse
Affiliation(s)
- Li He
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Su
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Meifeng Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juanru Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaomei Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cunyan Zhang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhongliang Jiang
- Department of Hematology, Miller School of Medicine, University of Miami, Miami, USA
| | - Jun He
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Li Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
35
|
Chen YT, Hsieh MJ, Chen PN, Weng CJ, Yang SF, Lin CW. Erianin Induces Apoptosis and Autophagy in Oral Squamous Cell Carcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:183-200. [PMID: 31903779 DOI: 10.1142/s0192415x2050010x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a leading cause of cancer-related deaths worldwide. It has a very poor prognosis with over a 5-year survival rate of only 50%. Thus, it is important to identify effective therapeutic interventions against oral cancer. Apoptosis and autophagy have reported genetically regulated in physiology and diseases, which close relationship. Many natural compound study objects anticancer effect have been studied between apoptosis and autophagy relationship. The present study was designed to evaluate the effect of erianin on human oral cancer cell proliferation. Results of the study revealed that treatment with erianin significantly reduced the viability of different OSCC cell lines. Erianin exerted its cytotoxic effect by inducing cell cycle arrest and caspase-dependent apoptotic pathways. Both intrinsic and extrinsic pathways were found to be involved in erianin-mediated cell death. In addition, treatment with erianin also increased autophagy in OSCC cells. With further analysis, it was found that erianin induced both apoptosis and autophagy by regulating MAPK signaling pathways. Taken together, our study indicates that erianin plays an important role in reducing oral cancer cell viability, and thus, can be considered as a potential anticancer agent.
Collapse
Affiliation(s)
- Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Holistic Wellness, MingDao University, Changhua, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|