1
|
Wang J, Tan L, Yu X, Cao X, Jia B, Chen R, Li J. lncRNA ZNRD1-AS1 promotes malignant lung cell proliferation, migration, and angiogenesis via the miR-942/TNS1 axis and is positively regulated by the m 6A reader YTHDC2. Mol Cancer 2022; 21:229. [PMID: 36581942 PMCID: PMC9801573 DOI: 10.1186/s12943-022-01705-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Lung cancer is the most prevalent form of cancer and has a high mortality rate, making it a global public health concern. The N6-methyladenosine (m6A) modification is a highly dynamic and reversible process that is involved in a variety of essential biological processes. Using in vitro, in vivo, and multi-omics bioinformatics, the present study aims to determine the function and regulatory mechanisms of the long non-coding (lnc)RNA zinc ribbon domain-containing 1-antisense 1 (ZNRD1-AS1). METHODS The RNAs that were bound to the m6A 'reader' were identified using YTH domain-containing 2 (YTHDC2) RNA immunoprecipitation (RIP)-sequencing. Utilizing methylated RIP PCR/quantitative PCR, pull-down, and RNA stability assays, m6A modification and ZNRD1-AS1 regulation were analyzed. Using bioinformatics, the expression levels and clinical significance of ZNRD1-AS1 in lung cancer were evaluated. Using fluorescent in situ hybridization and quantitative PCR assays, the subcellular location of ZNRD1-AS1 was determined. Using cell migration, proliferation, and angiogenesis assays, the biological function of ZNRD1-AS1 in lung cancer was determined. In addition, the tumor suppressor effect of ZNRD1-AS1 in vivo was validated using a xenograft animal model. Through bioinformatics analysis and in vitro assays, the downstream microRNAs (miRs) and competing endogenous RNAs were also predicted and validated. RESULTS This study provided evidence that m6A modification mediates YTHDC2-mediated downregulation of ZNRD1-AS1 in lung cancer and cigarette smoke-exposed cells. Low levels of ZNRD1-AS1 expression were linked to adverse clinicopathological characteristics, immune infiltration, and prognosis. ZNRD1-AS1 overexpression was shown to suppress lung cancer cell proliferation, migration, and angiogenesis in vitro and in vivo, and to reduce tumor growth in nude mice. ZNRD1-AS1 expression was shown to be controlled by treatment of cells with either the methylation inhibitor 3-Deazaadenosine or the demethylation inhibitor Meclofenamic. Furthermore, the miR-942/tensin 1 (TNS1) axis was demonstrated to be the downstream regulatory signaling pathway of ZNRD1-AS1. CONCLUSIONS ZNRD1-AS1 serves an important function and has clinical relevance in lung cancer. In addition, the findings suggested that m6A modification could mediate the regulation of the ZNRD1-AS1/miR-942/TNS1 axis via the m6A reader YTHDC2.
Collapse
Affiliation(s)
- Jin Wang
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Lirong Tan
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Xueting Yu
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Xiyuan Cao
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Beibei Jia
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Rui Chen
- grid.452666.50000 0004 1762 8363Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215004 China
| | - Jianxiang Li
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| |
Collapse
|
2
|
Wang Y, Wu Y, Xie S. CircPTK2 inhibits cell cisplatin (CDDP) resistance by targeting miR-942/TRIM16 axis in non-small cell lung cancer (NSCLC). Bioengineered 2022; 13:3651-3664. [PMID: 35230201 PMCID: PMC8973636 DOI: 10.1080/21655979.2021.2024321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent years, the problem of cancer resistance has become more and more prominent, seriously affecting treatment efficiency. Circular RNAs (circRNAs) play an important role in cell progression and cancer mechanisms. However, there is a lack of systematic studies on its function in non-small cell lung cancer (NSCLC) resistance. CircPTK2, microRNA-942 (miR-942), and Tripartite motif 16 (TRIM16) levels were detected by Real-time quantitative reverse transcriptase PCR (qRT-PCR). Extracellular acidification rate (ECAR), glucose consumption, and lactate production were assessed using the Seahorse XF96 Glycolysis Analyzer, glucose, and lactate assay kits, respectively. The protein expression was measured with the western bolt Transwell assay was used to determine migration and invasion of transfected cells. (4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry were applied to carry out cell proliferation and apoptosis, respectively. The relationship among circPTK2, miR-942, and TRIM16 were determined by using the dual-luciferase reporter assay and RIP assay. circPTK2 (hsa_circ_0008305) and TRIM16 were low expressed, while miR-942 was significantly highly expressed in NSCLC tissues and cell lines. Moreover, overexpression of circPTK2 remarkably inhibited cell growth, metastasis, and glycolysis in A549/CDDP and H1299/CDDP cells. Promotion of miR-942 or inhibition of TRIM16 could reverse the effects of high circPTK2 expression on cell growth, metastasis, and glycolysis in A549/CDDP and H1299/CDDP cells. CircPTK2 overexpression inhibited the growth of A549/CDDP cells in vivo. Furthermore, circPTK2 weakened CDDP resistance of NSCLC through modulating miR-942/TRIM16 axis, providing a novel sight for the treatment of NSCLC and improving the understanding of the CDDP resistance mechanism of NSCLC.
Collapse
Affiliation(s)
- Yongfu Wang
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuna, China
| | - Yuanlin Wu
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuna, China
| | - Shaoqiang Xie
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuna, China
| |
Collapse
|
3
|
Zuo L, Zhu Y, Han J, Liu H. Circular RNA circSHPRH inhibits the malignant behaviors of bladder cancer by regulating the miR-942/BARX2 pathway. Aging (Albany NY) 2022; 14:1891-1909. [PMID: 35200157 PMCID: PMC8908925 DOI: 10.18632/aging.203911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
Bladder cancer (BCa) is one of the most common tumors of the genitourinary system. However, the detailed molecular mechanism of BCa progression is still unclear. Recently, an increasing number of studies have demonstrated that circular RNAs (circRNAs) play a critical role in the tumorigenesis and progression of BCa. In this article, we showed that circSHPRH expression was obviously decreased in BCa tissues, compared with adjacent normal tissues. Moreover, a low circSHPRH level was positively correlated with a high grade, a high pathological stage, lymphatic metastasis and an unfavorable prognosis for BCa patients. Cell function studies indicated that silencing circSHPRH dramatically increased the proliferation, migration and invasion of BCa cells. Animal experiments revealed that circSHPRH overexpression repressed tumor growth. Mechanistic studies demonstrated that circSHPRH could combine with miR-942 and serve as a sponge of miR-942, which targets BARX2 in BCa cells. Rescue experiments showed that suppression of miR-942 or BARX2 overexpression could significantly abrogate the promoting effects of circSHPRH silencing on BCa cell proliferation and invasion. Furthermore, circSHPRH overexpression partly eliminated the suppressive effects of miR-942 on BARX2 expression. In addition, circSHPRH knockdown promoted activation of the Wnt/β-catenin signaling pathway by regulating BARX2. Taken together, our findings indicate that circSHPRH serves as a sponge of miR-942 to inhibit BCa progression by upregulating BARX2 expression, thereby inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524003, Guangdong Province, China
| | - Yi Zhu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| | - Jinli Han
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Hongwei Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| |
Collapse
|
4
|
Mobarra N, Gholamalizadeh H, Abdulhussein KA, Raji S, Taheri Asl F, Mirvahabi MS, Rafiee M, Pakzad R. Serum level and tumor tissue expression of Ribonucleotide-diphosphate Reductase subunit M2 B: a potential biomarker for colorectal cancer. Mol Biol Rep 2022; 49:3657-3663. [DOI: 10.1007/s11033-022-07205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
|
5
|
Rafat M, Yadegar N, Dadashi Z, Shams K, Mohammadi M, Abyar M. The prominent role of miR-942 in carcinogenesis of tumors. Adv Biomed Res 2022; 11:63. [PMID: 36133499 PMCID: PMC9483553 DOI: 10.4103/abr.abr_226_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.
Collapse
|
6
|
Du L, Wang L, Yang H, Duan J, Lai J, Wu W, Fan S, Zhi X. Sex Comb on Midleg Like-2 Accelerates Hepatocellular Carcinoma Cell Proliferation and Metastasis by Activating Wnt/β-Catenin/EMT Signaling. Yonsei Med J 2021; 62:1073-1082. [PMID: 34816637 PMCID: PMC8612862 DOI: 10.3349/ymj.2021.62.12.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the influences of sex comb on midleg like-2 (SCML2) on hepatocellular carcinoma (HCC) and potentially related mechanisms. MATERIALS AND METHODS SCML2 expression in tumor tissues and cells was analyzed using the TCGA database and/or qRT-PCR. The proliferation of HCC cells was detected by CCK-8, colony formation, and EdU assays. The migration and invasion of HCC cells were detected by transwell and wound healing assays. Apoptosis of HCC cells was determined by flow cytometry. Additionally, qRT-PCR and Western blot were used to detect the expression of SCML2 and Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling. A xenograft model in mice was established to verify the in vitro findings. RESULTS We found that SCML2 was highly expressed in HCC tissues and cells and that high expression of SCML2 was correlated with poor prognosis in HCC patients. SCML2 overexpression promoted proliferation, invasion, and migration and repressed apoptosis of HCC cells. The reverse results were obtained in SCML2-silenced cells. Further, we found that SCML2 activated the Wnt/β-catenin/EMT pathway. SCML2 silencing reduced the protein levels of Wnt3a, β-catenin, N-cadherin, Vimentin, and Snail and enhanced E-cadherin protein expression both in vivo and in vitro. CONCLUSION SCML2 silencing inhibits the proliferation, migration, and invasion of HCC cells by regulating the Wnt/β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Lei Du
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Lina Wang
- Clinical Laboratory, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Hong Yang
- Department of Physical Therapy, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianping Duan
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianming Lai
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Wu
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Shaohua Fan
- Blood Purification Centre, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| | - Xiaoli Zhi
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Ni L, Li Z, Ren H, Kong L, Chen X, Xiong M, Zhang X, Ning B, Li J. Berberine inhibits non-small cell lung cancer cell growth through repressing DNA repair and replication rather than through apoptosis. Clin Exp Pharmacol Physiol 2021; 49:134-144. [PMID: 34448246 DOI: 10.1111/1440-1681.13582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
At present, there are still many problems in the treatment of lung cancer, such as high cost, side effects and low quality of life. The advantages of traditional Chinese medicine (TCM) in the treatment of lung cancer are reflected. Berberine has been increasingly popular in colorectal cancer treatment, but little is known about its bioactivity against non-small cell lung cancer (NSCLC). Cell proliferation, cell apoptosis, cDNA microarray, gene and protein expression, and NSCLC transplanted tumour growth were performed. Berberine suppressed NSCLC cell proliferation and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously transplanted tumour lung tumour models, leading to prolonged survival of tumour-bearing mice. However, berberine did not induce the cleavage of Caspase 3 and PARP1, and could not induce apoptosis in all NSCLC cells. Moreover, 646 genes were differentially expressed upon berberine administration, which were involved in seven signal pathways, such as DNA replication. In cDNA microarray, berberine downregulated the expression of RRM1, RRM2, LIG1, POLE2 that involving DNA repair and replication. Our findings demonstrate that berberine inhibits NSCLC cells growth through repressing DNA repair and replication rather than through apoptosis. Berberine could be used as a promising therapeutic candidate for NSCLC patients.
Collapse
Affiliation(s)
- Lulu Ni
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Zhongjie Li
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Hongli Ren
- The Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingzhong Kong
- Department of Rehabilitation Acupuncture Medicine, Bozhou People's Hospital, Bozhou, China
| | - Xu Chen
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Mengrui Xiong
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Xiuqin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bingbing Ning
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangan Li
- Department of Emergency, Wuxi No 2 People's Hospital, Wuxi, China
| |
Collapse
|
8
|
Long Noncoding RNA HCG11 Acts as a Tumor Suppressor in Gastric Cancer by Regulating miR-942-5p/BRMS1 Axis. JOURNAL OF ONCOLOGY 2021; 2021:9961189. [PMID: 34054958 PMCID: PMC8131154 DOI: 10.1155/2021/9961189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
The functions of long noncoding RNAs (lncRNAs) have been widely investigated in human cancers, including gastric cancer (GC). The purpose of this study was to elucidate the role of lncRNA HCG11 in GC. In this study, mRNA and protein expressions were detected by quantitative real-time polymerase chain reaction assays (RT-qPCR) and Western blot analysis. The proliferation ability of GC cells was examined by (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide) MTT assays. The invasion and migration abilities of GC cells were evaluated by Transwell assays. The binding sites between miR-942-5p and HCG11/BRMS1 were confirmed by dual-luciferase reporter assays. Results showed that LncRNA HCG11 was downregulated in GC cells. Functionally, overexpression of HCG11 inhibited GC cell proliferation, migration, and invasion. In addition, lncRNA HCG11 was found to act as a molecular sponge of miR-942-5p. Furthermore, miR-942-5p promoted GC progression by suppressing lncRNA HCG11 expression. Besides that, BRMS1 was confirmed as a direct target of miR-942-5p. More importantly, breast cancer metastasis suppressor 1 (BRMS1) inhibited GC progression by upregulating lncRNA HCG11 and downregulating miR-942-5p. In conclusion, LncRNA HCG11 inhibited cell proliferation, migration, and invasion in GC by sponging miR-942-5p and upregulating BRMS1.
Collapse
|
9
|
Gao YJ, Chen F, Zhang LJ. C1q-like 1 is frequently up-regulated in lung adenocarcinoma and contributes to the proliferation and invasion of tumor cells. J Chemother 2021; 33:476-485. [PMID: 33825671 DOI: 10.1080/1120009x.2021.1906035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aims to investigate the effects of C1q-like 1 (C1QL1) on the growth and migration of lung adenocarcinoma (LUAD) cells and the underlying mechanism. The expression of C1QL1 in LUAD tissues and its prognostic value were analyzed using the data from The Cancer Genome Atlas (TCGA) database. To investigate the function of C1QL1, loss-of-function and gain-of-function assays were conducted in Calu-3 cells and LTEP-a-2 cells, respectively. Cell growth was evaluated by CCK-8 and colony formation assays. Transwell assays were performed to assess cell invasive and migratory abilities. qRT-PCR and Western blotting were performed to detect RNA and protein expression, respectively. Firstly, we found that C1QL1 was highly expressed and predicted poor outcomes in LUAD patients from TCGA database. Moreover, the mRNA and protein expression levels of C1QL1 were higher in LUAD cells than that in normal lung cells. Results of functional experiments illustrated that depletion of C1QL1 restrained the growth, invasion and migration of Calu-3 cells, meanwhile over-expression of C1QL1 presented the opposite results in LTEP-a-2 cells. Furthermore, we discovered that down-regulation of C1QL1 elevated the protein level of E-cadherin and reduced the protein levels of N-cadherin, Vimentin and Snail in Calu-3 cells, whereas over-expression of C1QL1 led to the opposite outcomes in LTEP-a-2 cells. Our data indicated that C1QL1 functioned as a crucial driver in LUAD cell growth and motility, which might be achieved by modulating epithelial-mesenchymal transition (EMT). These consequences are of important relevance for the design of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Feng Chen
- Department of Thoracic Surgery Ward, Shandong First Medical University Affiliated Tumor Hospital (Shandong Cancer Hospital and Institute, Shandong Tumor Hospital), Jinan, Shandong, China
| | - Lian-Jun Zhang
- Jinan Evidence Medicine Technology Development Center, Jinan, Shandong, China
| |
Collapse
|
10
|
Zhao L, Ye J, Lu Y, Sun C, Deng X. lncRNA SNHG17 promotes pancreatic carcinoma progression via cross-talking with miR-942. Am J Transl Res 2021; 13:1037-1050. [PMID: 33841638 PMCID: PMC8014386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Long non-coding RNA (lncRNA) SNHG17 has been shown to modulate the biological behavior of multiple cancers (e.g., colorectal and lung cancers). However, its involvement in pancreatic cancer (PC) has not been explored; therefore, in the present study, we sought to examine this involvement. METHODS First, the mRNA expression levels of various genes were quantified in PC tissues and cell lines using quantitative reverse-transcription PCR (qRT-PCR). The interaction between SNHG17 and miR-942 was explored by bioinformatics prediction as well as a dual luciferase reporter assay. The proliferation and viability of pancreatic carcinoma cells were examined using cell counting kit-8 and MTT assays, respectively. Cellular migratory and invasive properties were evaluated using transwell migration and wound healing assays. Cell death was measured using flow cytometry. Protein expression was quantified by western blotting. RESULTS SNHG17 expression was markedly higher in human PC specimens and cell lines than in normal healthy tissues and pancreatic epithelial cells. MiR-942 expression displayed the opposite trend. Bioinformatics prediction and a dual luciferase reporter assay confirmed that SNHG17 serves as a sponge for miR-942. Loss-of-function assay revealed that SNHG17 silencing reduced the proliferation and viability of PC cells, impaired their migratory and invasive capacities, and led to their apoptosis. All these changes could be reversed by miR-942 inhibition. Further mechanical studies showed that SNHG17 silencing decreased the expression of several tumor modulators, including XXX, and this decrease was countered by miR-942 inhibition. CONCLUSION Our study provides experimental evidence for an interaction between SNHG17 and miR-942, which may unveil a new approach for PC pharmacotherapy.
Collapse
Affiliation(s)
- Liangchao Zhao
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Jinhua Ye
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Yifan Lu
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Changjie Sun
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Xiaxing Deng
- Pancreatic Disease Center, Shanghai Ruijin HospitalShanghai, China
| |
Collapse
|
11
|
Li X, Yang R, Xu Y, Zhang Y. Circ_0001438 participates in the pathogenesis of preeclampsia via the circ_0001438/miR-942/NLRP3 regulatory network. Placenta 2020; 104:40-50. [PMID: 33253995 DOI: 10.1016/j.placenta.2020.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is a common pregnancy disorder with multisystem complications. The growing data suggest that circular RNAs (circRNAs) involve in the development of PE. This study proposed to investigate the function and potential mechanisms of circ_0001438 in PE. METHODS The expression of circ_0001438, miR-942 and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The expression at the protein level of NLRP3, interleukin 1 beta (IL-1β), interleukin 10 (IL-10), B-cell lymphoma 2 (Bcl-2), Cleaved-caspase-3 (Cleaved-casp-3), N-cadherin and E-cadherin was detected by Western blot. Cell proliferation was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and colony formation assay. Cell apoptosis was determined by flow cytometry assay. Cell migration and invasion were monitored by transwell assay. The target genes were obtained and verified by the online bioinformatics tool and dual-luciferase reporter assay. RESULTS The expression of circ_0001438 and NLRP3 was enhanced in PE placenta tissues. Circ_0001438 knockdown promoted cell proliferation, migration and invasion but inhibited apoptosis and inflammatory responses in HTR-8/Svneo cells, and these effects were reversed by the inhibition of miR-942, a target of circ_0001438. Moreover, NLRP3 was bounded by miR-942. The enrichment of miR-942 accelerated cell proliferation, migration and invasion but depleted apoptosis and inflammatory responses, while these impacts were partly abolished by NLRP3 overexpression. DISCUSSION Circ_0001438 sponged miR-942 to regulate the expression of NLRP3, and circ_0001438 aggravated the dysfunctions of human villous trophoblasts by mediating the miR-942/NLRP3 axis at least in part.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Obstetrics, Jinan Maternal and Child Health Hospital, Shandong, China
| | - Rui Yang
- Department of Outpatient, Jinan Maternal and Child Health Hospital, Shandong, China
| | - Ying Xu
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Shandong, China
| | - Yongshui Zhang
- Department of Medicine, Jinan Maternal and Child Health Hospital, Shandong, China.
| |
Collapse
|
12
|
Zhou C, Chen Z, Zhao L, Zhao W, Zhu Y, Liu J, Zhao X. A novel circulating miRNA-based signature for the early diagnosis and prognosis prediction of non-small-cell lung cancer. J Clin Lab Anal 2020; 34:e23505. [PMID: 33463758 PMCID: PMC7676218 DOI: 10.1002/jcla.23505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a significant public health issue worldwide. The aim of our study was to develop a serum miRNA-based molecular signature for the early detection and prognosis prediction of NSCLC. METHODS The significantly altered circulating miRNAs were profiled in GSE24709. The top ten upregulated miRNAs were miR-432, miR-942, miR-29c-5p, miR-601, miR-613, miR-520d-3p, miR-1261, miR-132-5p, miR-302b, and miR-154-5p, while the top ten downregulated miRNAs were miR-562, miR-18b, miR-9-3p, miR-154-3p, miR-20b, miR-18a, miR-487a, miR-20a, miR-103, and miR-144. Then, the top four upregulated serum miRNAs (miR-432, miR-942, miR-29c-5p, and miR-601) were validated by real-time quantitative PCR. The clinical significance of two candidate serum miRNAs, miR-942 and miR-601, was further explored. RESULTS Our results showed that the expression levels of serum miR-942 and serum miR-601 were significantly upregulated in NSCLC. In addition, serum miR-942 and serum miR-601 showed better performance than CEA, CYFRA21-1, and SCCA for early diagnosis of NSCLC. Combining serum miR-942 and serum miR-601 enhanced the efficacy of detecting early-stage NSCLC. Moreover, high serum miR-942 and serum miR-601 were both associated with adverse clinical variables and poor survival. The NSCLC patients with simultaneously high serum miR-942 and serum miR-601 suffered worst clinical outcome, while those with simultaneously low serum miR-942 and serum miR-601 had most favorable outcome. The multivariate analysis showed that serum miR-942 and serum miR-601 were independent prognostic factors for NSCLC. CONCLUSIONS Taken together, serum miR-942 and serum miR-601 might serve as a promising molecular signature for the early detection and prognosis prediction of NSCLC.
Collapse
Affiliation(s)
- Chengwei Zhou
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Zixuan Chen
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Lili Zhao
- Department of Preventive Health CareThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Weijun Zhao
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Yonggang Zhu
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Jiayuan Liu
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Xiaodong Zhao
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| |
Collapse
|
13
|
Li S, Yan G, Liu W, Li C, Wang X. Circ0106714 inhibits tumorigenesis of colorectal cancer by sponging miR-942-5p and releasing DLG2 via Hippo-YAP signaling. Mol Carcinog 2020; 59:1323-1342. [PMID: 33128289 DOI: 10.1002/mc.23259] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/11/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the role of circ0106714-miR-942-5p-discs large homolog 2 (DLG2), a novel interactome, in colorectal cancer (CRC). Circ0106714 was found to be the most significantly downregulated circular RNA in CRC using a bioinformatics method, and we researched whether the ability of circ0106714 to sponge miR-942-5p and release DLG2 could affect CRC development via Hippo-YES-associated protein (YAP) signaling. We first employed qRT-PCR and immunoblotting to detect messenger RNA (mRNA) and protein expression, respectively. Live imaging of mice tumor xenografts was then conducted to study the effect of circ0106714 on tumor progression in vivo. Reporter gene assays were subsequently conducted to verify the predicted targeting relationship between circ0106714, miR-942-5p, and DLG2 mRNA in SW480 and HCT116 cell lines. As well as using flow cytometry for both apoptosis and cell cycle profile analyses, CCK-8 and clone foci formation assays were performed to assess cell survival. Wound healing assay and transwell invasion assay were later carried out to evaluate the migration and invasion of the cell lines. Findings revealed that circ0106714 and DLG2 were significantly downregulated, while miR-942-5p was significantly upregulated in human CRC tissues and cell lines. However, circ0106714 upregulation significantly suppressed tumor progression in vivo and inhibited the malignancy phenotypes of tumor cells in vitro by targeting miR-942-5p. Also discovered in this research was that miR-942-5p could directly target DLG2 mRNA, thus enhancing the malignancy phenotypes of CRC cells. We even found that DLG2 overexpression resulted in enhanced phosphorylation of YAP, a critical downstream effector of DLG2. This downstream effector was demonstrated to have a tumor-suppressive capacity in CRC cell lines. In sum, circ0106714 could suppress CRC by sponging miR-942-5p and releasing DLG2, thus promoting YAP phosphorylation.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chenyao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Jin YM, Ye Y, Bao WQ, Tong Y, Ni SB, Liu JP, Zhao B. CACNA1B facilitates breast cancer cell growth and migration by regulating cyclin D1 and EMT: the implication of CACNA1B in breast cancer. J Recept Signal Transduct Res 2020; 42:1-8. [PMID: 33100116 DOI: 10.1080/10799893.2020.1837871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study mainly aimed to explore the influences of Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B) on the development of breast cancer and the related mechanism. MATERIALS AND METHODS The information of patients with breast cancer from TCGA database was used for analyses of CACNA1B expression and its prognostic value. Loss- and gain- of functions of CACNA1B were conducted in MCF7 and Bcap-37 cells, respectively. CCK-8, colony formation and transwell assays were applied for evaluating the cell viability and motility. Western blot was used for protein expression detection. RESULTS We revealed that highly expressed CACNA1B in breast cancer tissues was related to poor prognosis according to the data gained from TCGA database. The outcomes of functional assays showed that depletion of CACNA1B restrained MCF7 cell growth, invasion and migration and high-expression of CACNA1B fortified the growth, invasion and migration in Bcap-37 cells. Finally, we manifested that silencing CACNA1B obviously raised the protein expression level of E-cadherin and reduced the protein levels of Cyclin D1, N-cadherin and Snail in MCF7 cells, whilst, over-expression of CACNA1B reduced the level of E-cadherin and increased the expression of Cyclin D1, N-cadherin and Snail in Bcap-37 cells. CONCLUSIONS These results identified CACNA1B as a forwarder of the growth, invasion and migration in breast cancer cells.
Collapse
Affiliation(s)
- Yong-Mei Jin
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Ying Ye
- Central Laboratory, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Wen-Qing Bao
- Gallbladder Diseases Center, East Hospital of Tongji University, Shanghai, China
| | - Yang Tong
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Shu-Bin Ni
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Jian-Ping Liu
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Bin Zhao
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| |
Collapse
|
15
|
Zhang Y, Zhang J, Mao L, Li X. Long noncoding RNA HCG11 inhibited growth and invasion in cervical cancer by sponging miR-942-5p and targeting GFI1. Cancer Med 2020; 9:7062-7071. [PMID: 32794340 PMCID: PMC7541137 DOI: 10.1002/cam4.3203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as essential regulators in cancer tumorigenesis. Our study aimed to explore the underlying mechanism of lncRNA human leukocyte antigen complex group 11 (HCG11) in cervical cancer (CC) progression. Long noncoding RNA HCG11 was downregulated in CC. Functional assays demonstrated that lncRNA HCG11 inhibited CC cell proliferation and invasion. Then, we confirmed that lncRNA HCG11 could directly bind to miR-942-5p. Moreover, inhibition of miR-942-5p suppressed the growth and invasion of CC cells, and growth factor-independent transcription repressor 1 (GFI1) gene was the target gene of miR-942-5p. Long noncoding RNA HCG11 increased the expression of GFI1 and suppressed cell proliferation and invasion by acting as a miR-942-5p sponge. Finally, the overexpression of lncRNA HCG11 suppressed the proliferation and metastasis of CC cells in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lin Mao
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xing Li
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
16
|
Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, Zhang L. Overexpression of circ_0001445 decelerates hepatocellular carcinoma progression by regulating miR-942-5p/ALX4 axis. Biotechnol Lett 2020; 42:2735-2747. [PMID: 32856218 DOI: 10.1007/s10529-020-02985-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) have been verified to have essential regulatory roles in diverse human cancers, including hepatocellular carcinoma (HCC). In this study, we aimed to explore the roles of circ_0001445 in HCC. Herein, circ_0001445 was decreased and miR-942-5p was increased in HCC tissues and cells. Circ_0001445 overexpression or miR-942-5p inhibition repressed cell cycle process, migration, invasion, epithelial-mesenchymal transition and glycolysis in HCC cells. Mechanistically, circ_0001445 could promote ALX4 expression through targeting miR-942-5p. Moreover, miR-942-5p overexpression reversed the inhibitory effect of circ_0001445 on HCC cell progression. The effect of miR-942-5p on HCC cell development was rescued following the elevation of ALX4. In addition, circ_0001445 overexpression restrained tumorigenesis in vivo. In conclusion, circ_0001445 played a negative role in HCC progression by modulating miR-942-5p/ALX4 axis, which might provide a novel target for HCC therapy.
Collapse
Affiliation(s)
- Qinhong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lijing Zhou
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Kang JH, Li MJ, Luan PP, Jiang DK, Chen YW, Xu X, Yu Q, Xu YW, Su Q, Peng WH, Jian WX. NLRC3 silencing accelerates the invasion of hepatocellular carcinoma cell via IL-6/JAK2/STAT3 pathway activation. Cell Biol Int 2020; 44:2053-2064. [PMID: 32584509 DOI: 10.1002/cbin.11414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Nucleotide-binding domain, leucine-rich repeat family with a caspase activation and recruitment domain 3 (NLRC3) participates in both immunity and cancer. The aim of this study was to determine the role of NLRC3 in human hepatocellular carcinoma (HCC) and the underlying mechanisms. We collected human liver tissues from nonalcoholic steatohepatitis (NASH), HCC, and adjacent normal tissues to characterize the pattern of NLRC3 expression by real-time quantitative polymerase chain reaction and immunohistochemistry. Then, we used the HCC cell line, HuH-7, transfected with small interfering RNA to silence the NLRC3 expression. 5-Ethynyl-2'-deoxyuridine assay, scratch assay, and transwell invasion assay were used for assessing proliferation, migration, and invasion, respectively. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were conducted to assess cell apoptosis. The expression of NLRC3 was reduced in human HCC tissues, compared with normal liver and nonalcoholic steatohepatitis tissues. After knocking down of NLRC3, the proliferation, migration, and invasion were increased in HuH-7 cells. And flow cytometry and TUNEL assay showed that HuH-7 cell apoptosis was suppressed after NLRC3 knockdown. As for the underlying mechanisms, knockdown of NLRC3 in HuH-7 cells was associated with the activation of Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway under interleukin-6 (IL-6) stimulation. NLRC3 expression was downregulated in human HCC tissues. NLRC3 silencing in HuH-7 cells can promote the proliferation, migration, and invasion of hepatocellular carcinoma cells. JAK2/STAT3 pathway activation induced by IL-6 may be the underlying mechanism for HCC when NLRC3 expression is silenced. And the invasion of HuH-7 cells was partially suppressed by the STAT3 specific inhibitor (cryptotanshinone). Therefore, NLRC3 may play a significant role in HCC and might be a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jian-Hua Kang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Jie Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pei-Pei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - De-Ke Jiang
- Department of Infectious Diseases and Hepatology Unit, State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Hui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Xia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wang Q, Wu J, Huang H, Jiang Y, Huang Y, Fang H, Zheng G, Zhou X, Wu Y, Lei C, Hu D. lncRNA LIFR-AS1 suppresses invasion and metastasis of non-small cell lung cancer via the miR-942-5p/ZNF471 axis. Cancer Cell Int 2020; 20:180. [PMID: 32489316 PMCID: PMC7245777 DOI: 10.1186/s12935-020-01228-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNA 942-5p (miR-942-5p) has been reported to promote migration and invasion in non-small cell lung cancer (NSCLC), but the underlying mechanism is not completely understood. The interplay between long non-coding RNAs (lncRNAs) and miRNAs plays a crucial role in tumor progression. Methods In the present study, we performed bioinformatic and biochemical analyses to identify miR-942-5p-interacting lncRNAs. The function and clinical significance of the candidate lncRNA(s) in NSCLC were determined. Results We identified LIFR-AS1 as a pivotal miR-942-5p-interacting lncRNA. Overexpression of miR-942-5p caused a reduction of LIFR-AS1 in NSCLC cells. LIFR-AS1 showed the ability to sponge miR-942-5p, leading to derepression of ZNF471. Functionally, LIFR-AS1 overexpression inhibited NSCLC cell migration and invasion, whereas LIFR-AS1 silencing yielded an opposite effect. In vivo studies confirmed that LIFR-AS1 overexpression suppressed lung metastasis of NSCLC cells. Rescue experiments demonstrated that enforced expression of miR-942-5p or depletion of ZNF471 restored the migration and invasion capacity of LIFR-AS1-overexpressing cells. Moreover, overexpression of ZNF471 restrained NSCLC cell invasion. Clinically, LIFR-AS1 downregulation was significantly correlated with TNM stage, lymph node metastasis, and reduced overall survival in NSCLC patients. Conclusions we provide first evidence for the involvement of the LIFR-AS1/miR-942-5p/ZNF471 axis in NSCLC invasion and metastasis. LIFR-AS1 may represent a novel target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Qun Wang
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, 430070 China.,Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China.,WuHan University, Wuhan, China
| | - Jing Wu
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Hui Huang
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Yan Jiang
- Department of Pneumology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Ying Huang
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Hongyan Fang
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Gang Zheng
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xiaochun Zhou
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Yujuan Wu
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Changjiang Lei
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, China
| | - Desheng Hu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, 430070 China
| |
Collapse
|
19
|
Downregulation of miR-1826 Indicates a Poor Prognosis for Osteosarcoma Patients and Regulates Tumor Cell Proliferation, Migration, and Invasion. Int J Genomics 2020; 2020:7968407. [PMID: 32104674 PMCID: PMC7036115 DOI: 10.1155/2020/7968407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Osteosarcoma (OS) is the most frequent bone tumor with high metastasis. This study is aimed at assessing the expression and prognostic significance of microRNA-1826 (miR-1826) in OS patients, as well as its biological function in tumor progression. Methods Quantitative Real-Time PCR was employed to measure the expression of miR-1826 in OS tissues and cell lines. Kaplan-Meier survival analysis and Cox regression model were used to evaluate the prognostic value of miR-1826. CCK-8 and Transwell assay were conducted to investigate the effect of miR-1826 on OS cell proliferation, migration, and invasion. Results miR-1826 expression was downregulated in OS tissues and cell lines and associated with OS patients' clinical stage and distant metastasis. Low levels of miR-1826 were related with shorter survival time and determined as an independent prognostic indicator for the overall survival of OS patients. The overexpression of miR-1826 in OS cells led to inhibited cell proliferation, migration, and invasion. Conclusion The decreased expression of miR-1826 predicts a poor prognosis in OS patients, and its overexpression inhibits OS cell proliferation, migration, and invasion. This newly identified miR-1826 provides a novel sight into the pathogenesis of OS and offers a candidate prognostic biomarker and therapeutic target for OS treatment.
Collapse
|