1
|
Sun Y, Aliyari SR, Parvatiyar K, Wang L, Zhen A, Sun W, Han X, Zhang A, Kato E, Shi H, De Schutter E, McBride WH, French SW, Cheng G. STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage. Cell Death Differ 2025:10.1038/s41418-025-01457-z. [PMID: 39939798 DOI: 10.1038/s41418-025-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
Acute ionizing radiation (IR) causes severe DNA damage, leading to cell cycle arrest, cell death, and activation of the innate immune system. The role and signaling pathway of stimulator of interferon genes (STING) in IR-induced tissue damage and cell death are not well understood. This study revealed that STING is crucial for promoting apoptosis in response to DNA damage caused by acute IR both in vitro and in vivo. STING binds to poly (ADP‒ribose) (PAR) produced by activated poly (ADP‒ribose) polymerase-1 (PARP1) upon IR. Compared with that in WT cells, apoptosis was suppressed in Stinggt-/gt- cells. Excessive PAR production by PARP1 due to DNA damage enhances STING phosphorylation, and inhibiting PARP1 reduces cell apoptosis after IR. In vivo, IR-induced crypt cell death was significantly lower in Stinggt-/gt- mice or with low-dose PARP1 inhibitor, PJ34, resulting in substantial resistance to abdominal irradiation. STING deficiency or inhibition of PARP1 function can reduce the expression of the proapoptotic gene PUMA, decrease the localization of Bax on the mitochondrial membrane, and thus reduce cell apoptosis. Our findings highlight crucial roles for STING and PAR in the IR-mediated induction of apoptosis, which may have therapeutic implications for controlling radiation-induced apoptosis or acute radiation symptoms. STING responds to acute ionizing radiation-mediated DNA damage by directly binding to poly (ADP-ribose) (PAR) produced by activated poly (ADP-ribose) polymerase-1 (PARP1), and mainly induces cell apoptosis through Puma-Bax interaction. STING deficiency or reduced production of PAR protected mice against Acute Radiation Syndrome.
Collapse
Affiliation(s)
- Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Saba R Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lulan Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Wei Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Adele Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ethan Kato
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Helen Shi
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Elena De Schutter
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - William H McBride
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Siva Venkatesh IP, Majumdar A, Basu A. Prophylactic Administration of Gut Microbiome Metabolites Abrogated Microglial Activation and Subsequent Neuroinflammation in an Experimental Model of Japanese Encephalitis. ACS Chem Neurosci 2024; 15:1712-1727. [PMID: 38581382 DOI: 10.1021/acschemneuro.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.
Collapse
MESH Headings
- Gastrointestinal Microbiome/physiology
- Neuroinflammatory Diseases/drug therapy
- Neuroinflammatory Diseases/immunology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/microbiology
- Microglia/drug effects
- Microglia/immunology
- Encephalitis, Japanese/drug therapy
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/microbiology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/therapeutic use
- Encephalitis Viruses, Japanese/drug effects
- Encephalitis Viruses, Japanese/immunology
- Encephalitis Viruses, Japanese/pathogenicity
- Survival Analysis
- Chemokines/immunology
- Chemokines/metabolism
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/metabolism
- Cytokine Release Syndrome/prevention & control
- Humans
- Female
- Animals
- Mice
- Apoptosis/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/virology
- Viral Load/drug effects
- Time Factors
Collapse
Affiliation(s)
| | - Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
3
|
Kanwal A, Azeem F, Nadeem H, Ashfaq UA, Aadil RM, Kober AKMH, Rajoka MSR, Rasul I. Molecular Mechanisms of Cassia fistula against Epithelial Ovarian Cancer Using Network Pharmacology and Molecular Docking Approaches. Pharmaceutics 2022; 14:1970. [PMID: 36145718 PMCID: PMC9500712 DOI: 10.3390/pharmaceutics14091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest reproductive tract malignancies that form on the external tissue covering of an ovary. Cassia fistula is popular for its anti-inflammatory and anticarcinogenic properties in conventional medications. Nevertheless, its molecular mechanisms are still unclear. The current study evaluated the potential of C. fistula for the treatment of EOC using network pharmacology approach integrated with molecular docking. Eight active constituents of C. fistula were obtained from two independent databases and the literature, and their targets were retrieved from the SwissTargetPrediction. In total, 1077 EOC associated genes were retrieved from DisGeNET and GeneCardsSuite databases, and 800 potential targets of eight active constituents of C. fistula were mapped to the 1077 EOC targets and intersected targets from two databases. Ultimately, 98 potential targets were found from C. fistula for EOC. Finally, the protein-protein interaction network (PPI) topological interpretation revealed AKT1, CTNNB1, ESR1, and CASP3 as key targets. This is the first time four genes have been found against EOC from C. fistula. The major enriched pathways of these candidate genes were established by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) investigations. To confirm the network pharmacology findings, the molecular docking approach demonstrated that active molecules have higher affinity for binding to putative targets for EOC suppression. More pharmacological and clinical research is required for the development of a drug to treat EOC.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - A. K. M. Humayun Kober
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (eg, phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
5
|
High Expression of Interferon Pathway Genes CXCL10 and STAT2 Is Associated with Activated T-Cell Signature and Better Outcome of Oral Cancer Patients. J Pers Med 2022; 12:jpm12020140. [PMID: 35207629 PMCID: PMC8877377 DOI: 10.3390/jpm12020140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
To improve the survival rate of cancer patients, biomarkers for both early diagnosis and patient stratification for appropriate therapeutics play crucial roles in precision oncology. Investigation of altered gene expression and the relevant molecular pathways in cancer cells are helpful for discovering such biomarkers. In this study, we explore the potential prognostic biomarkers for oral cancer patients through systematically analyzing five oral cancer transcriptomic data sets (TCGA, GSE23558, GSE30784, GSE37991, and GSE138206). Gene Set Enrichment Analysis (GSEA) was individually applied to each data set and the upregulated Hallmark molecular pathways of each data set were intersected to generate 13 common pathways including interferon-α/γ pathways. Among the 5 oral cancer data sets, 43 interferon pathway genes were commonly upregulated and 17 genes exhibited prognostic values in TCGA cohort. After validating in another oral cancer cohort (GSE65858), high expressions of C-X-C motif chemokine ligand 10 (CXCL10) and Signal transducer and activator of transcription 2 (STAT2) were confirmed to be good prognostic biomarkers. GSEA of oral cancers stratified by CXCL10/STAT2 expression showed that activation of T-cell pathways and increased tumor infiltration scores of Type 1 T helper (Th1) and CD8+ T cells were associated with high CXCL10/STAT2 expression. These results suggest that high CXCL10/STAT2 expression can predict a favorable outcome in oral cancer patients.
Collapse
|