1
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
2
|
Dib H, Abu-Samha M, Younes K, Abdelfattah MAO. Evaluating the Physicochemical Properties-Activity Relationship and Discovering New 1,2-Dihydropyridine Derivatives as Promising Inhibitors for PIM1-Kinase: Evidence from Principal Component Analysis, Molecular Docking, and Molecular Dynamics Studies. Pharmaceuticals (Basel) 2024; 17:880. [PMID: 39065731 PMCID: PMC11279803 DOI: 10.3390/ph17070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we evaluated the physicochemical properties related to the previously reported anticancer activity of a dataset comprising thirty 1,2-dihydropyridine derivatives. We utilized Principal Component Analysis (PCA) to identify the most significant influencing factors. The PCA analysis showed that the first two principal components accounted for 59.91% of the total variance, indicating a strong correlation between the molecules and specific descriptors. Among the 239 descriptors analyzed, 18 were positively correlated with anticancer activity, clustering with the 12 most active compounds based on their IC50 values. Six of these variables-LogP, Csp3, b_1rotN, LogS, TPSA, and lip_don-are related to drug-likeness potential. Thus, we then ranked the 12 compounds according to these six variables and excluded those violating the drug-likeness criteria, resulting in a shortlist of nine compounds. Next, we investigated the binding affinity of these nine shortlisted compounds with the use of molecular docking towards the PIM-1 Kinase enzyme (PDB: 2OBJ), which is overexpressed in various cancer cells. Compound 6 exhibited the best docking score among the docked compounds, with a docking score of -11.77 kcal/mol, compared to -12.08 kcal/mol for the reference PIM-1 kinase inhibitor, 6-(5-bromo-2-hydroxyphenyl)-2-oxo-4-phenyl-1,2-dihydropyridine-3-carbonitrile. To discover new PIM-1 kinase inhibitors, we designed nine novel compounds featuring hybrid structures of compound 6 and the reference inhibitor. Among these, compound 31 displayed the best binding affinity, with a docking score of -13.11 kcal/mol. Additionally, we performed PubChem database mining using the structure of compound 6 and the similarity search tool, identifying 16 structurally related compounds with various reported biological properties. Among these, compound 52 exhibited the best binding affinity, with a docking score of -13.03 kcal/mol. Finally, molecular dynamics (MD) studies were conducted to confirm the stability of the protein-ligand complexes obtained from docking the studied compounds to PIM-1 kinase, validating the potential of these compounds as PIM-1 kinase inhibitors.
Collapse
Affiliation(s)
- Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (M.A.-S.); (M.A.O.A.)
| | | | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (M.A.-S.); (M.A.O.A.)
| | | |
Collapse
|
3
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
4
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kalinkin AI, Sigin VO, Kuznetsova EB, Ignatova EO, Vinogradov II, Vinogradov MI, Vinogradov IY, Zaletaev DV, Nemtsova MV, Kutsev SI, Tanas AS, Strelnikov VV. Epigenomic Profiling Advises Therapeutic Potential of Leukotriene Receptor Inhibitors for a Subset of Triple-Negative Breast Tumors. Int J Mol Sci 2023; 24:17343. [PMID: 38139172 PMCID: PMC10743620 DOI: 10.3390/ijms242417343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype, with a poor survival rate compared to others subtypes. For a long time, chemotherapy was the only systemic treatment for TNBC, and the identification of actionable molecular targets might ultimately improve the prognosis for TNBC patients. We performed a genome-wide analysis of DNA methylation at CpG islands on a collection of one hundred ten breast carcinoma samples and six normal breast tissue samples using reduced representation bisulfite sequencing with the XmaI restriction enzyme (XmaI-RRBS) and identified a subset of TNBC samples with significant hypomethylation at the LTB4R/LTB4R2 genes' CpG islands, including CpG dinucleotides covered with cg12853742 and cg21886367 HumanMethylation 450K microarray probes. Abnormal DNA hypomethylation of this region in TNBC compared to normal samples was confirmed by bisulfite Sanger sequencing. Gene expression generally anticorrelates with promoter methylation, and thus, the promoter hypomethylation detected and confirmed in our study might be revealed as an indirect marker of high LTB4R/LTB4R2 expression using a simple methylation-sensitive PCR test. Analysis of RNA-seq expression and DNA methylation data from the TCGA dataset demonstrates that the expression of the LTB4R and LTB4R2 genes significantly negatively correlates with DNA methylation at both CpG sites cg12853742 (R = -0.4, p = 2.6 × 10-6; R = -0.21, p = 0.015) and cg21886367 (R = -0.45, p = 7.3 × 10-8; R = -0.24, p = 0.005), suggesting the upregulation of these genes in tumors with abnormal hypomethylation of their CpG island. Kaplan-Meier analysis using the TCGA-BRCA gene expression and clinical data revealed poorer overall survival for TNBC patients with an upregulated LTB4R. To this day, only the leukotriene inhibitor LY255283 has been tested on an MCF-7/DOX cell line, which is a luminal A breast cancer molecular subtype. Other studies compare the effects of Montelukast and Zafirlukast (inhibitors of the cysteinyl leukotriene receptor, which is different from LTB4R/LTB4R2) on the MDA-MB-231 (TNBC) cell line, with high methylation and low expression levels of LTB4R. In our study, we assess the therapeutic effects of various drugs (including leukotriene receptor inhibitors) with the DepMap gene effect and drug sensitivity data for TNBC cell lines with hypomethylated and upregulated LTB4R/LTB4R2 genes. LY255283, Minocycline, Silibinin, Piceatannol, Mitiglinide, 1-Azakenpaullone, Carbetocin, and Pim-1-inhibitor-2 can be considered as candidates for the additional treatment of TNBC patients with tumors demonstrating LTB4R/LTB4R2 hypomethylation/upregulation. Finally, our results suggest that the epigenetic status of leukotriene B4 receptors is a novel, potential, predictive, and prognostic biomarker for TNBC. These findings might improve individualized therapy for TNBC patients by introducing new therapeutic adjuncts as anticancer agents.
Collapse
Affiliation(s)
- Alexey I. Kalinkin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir O. Sigin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Ekaterina B. Kuznetsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ekaterina O. Ignatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Nikolay Nikolaevich Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ilya I. Vinogradov
- Regional Clinical Oncology Dispensary, 390011 Ryazan, Russia;
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Maxim I. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Igor Y. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Dmitry V. Zaletaev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Marina V. Nemtsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Alexander S. Tanas
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir V. Strelnikov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| |
Collapse
|
6
|
Khatamian N, Motavalizadehkakhky A, Homayouni Tabrizi M, Mehrzad J, Zhiani R. Preparation and characterization of the myricetin-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its antitumor and anti-angiogenic activities in vitro and in vivo in mice bearing tumor models. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractMyricetin is a flavonoid with anticancer properties. This study aimed to formulate myricetin in the form of solid lipid nanoparticles (SLN), decorated with chitosan (CS) and active-targeted with folic acid (FA). After characterization, the in vitro release, cytotoxicity, antioxidant, and ability of the formulation to induce apoptosis using flow cytometry, fluorescent microscopy, and real-time qPCR were examined. Then in vivo anti-angiogenesis on chick chorioallantoic membrane (CAM) and antitumor activities on mice bearing tumor models were investigated. The present study showed that the size of 310 nm and zeta potential of + 30 mV were acceptable for oral administration. The Michaelis–Menten model fitted the drug release pattern with lag during 144 h of the study. The cytotoxicity assay showed that myricetin-SLN-CS-FA significantly killed cancer cells at the concentrations of 6.25, 12.5, 25, 50 and 100 µg/mL (*p < 0.05, **p < 0.01, and ***p < 0.001). The highest level of apoptosis was shown at the concentration of 45 µg/ml in flow cytometry, and fluorescent studies. These results showed the anticancer properties of myricetin-SLN-CS-FA in a dose-dependent manner. The real-time results also indicated that the formulation exerted its cytotoxic effect by activating apoptosis genes. The DPPH, ABTS, and FRAP studies also demonstrated the significant antioxidant properties of the myricetin-SLN-CS-FA (*p < 0.05, **p < 0.01, and ***p < 0.001). The anti-angiogenic activities of the formulations depicted in the CAM assay significantly decrease the number and length of the vessels (*p < 0.05, **p < 0.01, and ***p < 0.001), and also affect VEGF and VEGFR, genes involved in angiogenesis (**p < 0.01, and ***p < 0.001). The antitumor studies indicated the statistically significant effects of myricetin-SLN-CS-FA on reducing tumor volume (*p < 0.05 and ***p < 0.001). The H&E staining of the liver and monitoring of the animal weights also indicated the safety of the formulation. The analysis of mRNA expression in liver and tumor demonstrated that myricetin-SLN-CS-FA exerts its antitumor activities by modulating the inflammatory and oxidative responses in the tissues.
Collapse
|
7
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Han L, Zhang L. CCL21/CCR7 axis as a therapeutic target for autoimmune diseases. Int Immunopharmacol 2023; 121:110431. [PMID: 37331295 DOI: 10.1016/j.intimp.2023.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Chemokine receptor 7 (CCR7) is a G protein-coupled receptor containing 7 transmembrane domains that is expressed on various cells, such as naive T/B cells, central memory T cells, regulatory T cells, immature/mature dendritic cells (DCs), natural killer cells, and a minority of tumor cells. Chemokine ligand 21 (CCL21) is the known high-affinity ligand that binds to CCR7 and drives cell migration in tissues. CCL21 is mainly produced by stromal cells and lymphatic endothelial cells, and its expression is significantly increased under inflammatory conditions. Genome-wide association studies (GWAS) have shown a strong association between CCL21/CCR7 axis and disease severity in patients with rheumatoid arthritis, sjogren's syndrome, systemic lupus erythematosus, polymyositis, ankylosing spondylitis, and asthma. Disrupting CCL21/CCR7 interaction with antibodies or inhibitors prevents the migration of CCR7-expressing immune and non-immune cells at the site of inflammation and reduces disease severity. This review emphasizes the importance of the CCL21 /CCR7 axis in autoimmune diseases and evaluates its potential as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Le Han
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Islam R, Yan MP, Yen KP, Rasol NE, Meng CK, Wai LK. Synthesis and biological evaluation of chromone derivatives against triple-negative breast cancer cells. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
10
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Xu J, Shen C, Xie Y, Qiu B, Ren X, Zhou Y, Li G, Zheng G, Huang N. Design, synthesis, and bioactivity evaluation of macrocyclic benzo[b]pyrido[4,3-e][1,4]oxazine derivatives as novel Pim-1 kinase inhibitors. Bioorg Med Chem Lett 2022; 72:128874. [PMID: 35779826 DOI: 10.1016/j.bmcl.2022.128874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Pim-1 kinase is a serine/threonine kinase which is vital in many tumors. The Pim-1 inhibitor 10-DEBC and its derivatives discovered in our previous work were modified through macrocyclization strategy. A series of benzo[b]pyridine[4,3-e][1,4]oxazine macrocyclic compounds were designed, synthesized, and evaluated as novel Pim-1 kinase inhibitors. Among these compounds, compound H5 exhibited the highest activity with an IC50 value of 35 nM. In addition, the crystal complex structure of Pim-1 kinase bound with compound H3 was determined, and the structure-activity relationship of these macrocyclic compounds was analyzed, which provides the structural basis of further optimization of novel macrocyclic Pim-1 kinase inhibitors..
Collapse
Affiliation(s)
- Jiwei Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Cheng Shen
- National Institute of Biological Sciences, Beijing, 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuting Xie
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Boxiang Qiu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xintong Ren
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yu Zhou
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Gudong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guojun Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
12
|
Zhao Y, Aziz AUR, Zhang H, Zhang Z, Li N, Liu B. A systematic review on active sites and functions of PIM-1 protein. Hum Cell 2022; 35:427-440. [PMID: 35000143 DOI: 10.1007/s13577-021-00656-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The Proviral Integration of Molony murine leukemia virus (PIM)-1 protein contributes to the solid cancers and hematologic malignancies, cell growth, proliferation, differentiation, migration, and other life activities. Many studies have related these functions to its molecular structure, subcellular localization and expression level. However, recognition of specific active sites and their effects on the activity of this constitutively active kinase is still a challenge. Based on the close relationship between its molecular structure and functional activity, this review covers the specific residues involved in the binding of ATP and different substrates in its catalytic domain. This review then elaborates on the relevant changes in protein conformation and cell functions after PIM-1 binds to different substrates. Therefore, this intensive study can improve the understanding of PIM-1-regulated signaling pathways by facilitating the discovery of its potential phosphorylation substrates.
Collapse
Affiliation(s)
- Youyi Zhao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
13
|
Relationship between the transcriptional expression of PIM1 and local control in patients with head and neck squamous cell carcinomas treated with radiotherapy. Eur Arch Otorhinolaryngol 2022; 279:3679-3684. [PMID: 34993612 PMCID: PMC9130163 DOI: 10.1007/s00405-021-07223-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022]
Abstract
Purpose Proviral integration site for Moloney murine leukemia virus (PIMs) are proto-oncogenes encoding serine/threonine kinases that phosphorylate a variety of substrates involved in the regulation of cellular processes. Elevated expression of PIM-1 has been associated with poor prognosis in several types of cancer. There are no studies that have analyzed the response to radiotherapy in patients with head and neck squamous cell carcinoma (HNSCC) according to the expression of PIM-1. The aim of our study was to analyze the relationship between the transcriptional expression of PIM-1 and local response to radiotherapy in HNSCC patients. Methods We determined the transcriptional expression of PIM-1 in 135 HNSCC patients treated with radiotherapy, including patients treated with chemoradiotherapy (n = 65) and bioradiotherapy (n = 15). Results During the follow-up, 48 patients (35.6%) had a local recurrence of the tumor. Patients with local recurrence had a higher level of PIM-1 expression than those who achieved local control of the disease (P = 0.017). Five-year local recurrence-free survival for patients with a high expression of PIM-1 (n = 43) was 44.6% (95% CI 29.2–60.0%), and for patients with low expression (n = 92) it was 71.9% (95% CI 62.5–81.3%) (P = 0.007). According to the results of multivariate analysis, patients with a high PIM-1 expression had a 2.2-fold increased risk of local recurrence (95% CI 1.22–4.10, P = 0.009). Conclusion Patients with elevated transcriptional expression levels of PIM-1 had a significantly higher risk of local recurrence after radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00405-021-07223-4.
Collapse
|
14
|
Pinelli S, Alinovi R, Poli D, Corradi M, Pelosi G, Tiseo M, Goldoni M, Cavallo D, Mozzoni P. Overexpression of microRNA‑486 affects the proliferation and chemosensitivity of mesothelioma cell lines by targeting PIM1. Int J Mol Med 2021; 47:117. [PMID: 33955505 PMCID: PMC8083808 DOI: 10.3892/ijmm.2021.4950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Dysregulated levels of microRNAs (miRNAs or miRs), involved in oncogenic pathways, have been proposed to contribute to the aggressiveness of malignant pleural mesothelioma (MPM). Previous studies have highlighted the downregulation of miRNA miR-486-5p in patients with mesothelioma and the introduction of miRNA mimics to restore their reduced or absent functionality in cancer cells is considered an important therapeutic strategy. The aim of the present study was to evaluate the mechanisms through which miRNAs may influence the functions, proliferation and sensitivity to cisplatin of MPM cells. In the present study, a miR-486-5p mimic was transfected into the H2052 and H28 MPM cell lines, and cell viability, proliferation, apoptosis and mitochondrial membrane potential were monitored. miR-486-5p overexpression led to a clear impairment of cell proliferation, targeting CDK4 and attenuating cell cycle progression. In addition, transfection with miR-486-5p mimic negatively regulated the release of inflammatory factors and the expression of Provirus integration site for Moloney murine leukaemia virus 1 (PIM1). The sensitivity of the cells to cisplatin was enhanced by enhancing the apoptotic effects of the drug and impairing mitochondrial function. On the whole, the present study demonstrates that miR-486-5p may play an important role in MPM treatment by targeting multiple pathways involved in tumour development and progression. These activities may be mostly related to the downregulation of PIM1, a crucial regulator of cell survival and proliferation. Furthermore, these results provide support for the combined use of miR-486-5p with chemotherapy as a therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, I-00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, I-00078 Rome, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| |
Collapse
|
15
|
Bearss JJ, Padi SKR, Singh N, Cardo‐Vila M, Song JH, Mouneimne G, Fernandes N, Li Y, Harter MR, Gard JMC, Cress AE, Peti W, Nelson ADL, Buchan JR, Kraft AS, Okumura K. EDC3 phosphorylation regulates growth and invasion through controlling P-body formation and dynamics. EMBO Rep 2021; 22:e50835. [PMID: 33586867 PMCID: PMC8025014 DOI: 10.15252/embr.202050835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/20/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P-bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P-body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P-body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P-bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer-relevant functions and suggest that modulation of P-body activity may represent a new paradigm for cancer treatment.
Collapse
Affiliation(s)
| | - Sathish KR Padi
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
| | - Neha Singh
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Marina Cardo‐Vila
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of ArizonaTucsonAZUSA
| | - Jin H Song
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Nikita Fernandes
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Yang Li
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Matthew R Harter
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Jaime MC Gard
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Anne E Cress
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Wolfgang Peti
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | | | - J Ross Buchan
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Andrew S Kraft
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of MedicineUniversity of ArizonaTucsonAZUSA
| | - Koichi Okumura
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of PhysiologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
16
|
Ntzifa A, Strati A, Koliou GA, Zagouri F, Pectasides D, Pentheroudakis G, Christodoulou C, Gogas H, Magkou C, Petraki C, Kosmidis P, Aravantinos G, Kotoula V, Fountzilas G, Lianidou E. Androgen Receptor and PIM1 Expression in Tumor Tissue of Patients With Triple-negative Breast Cancer. Cancer Genomics Proteomics 2021; 18:147-156. [PMID: 33608311 DOI: 10.21873/cgp.20249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Effective targeted therapies for triple-negative breast cancer (TNBC) are limited. In a subset of TNBC, androgen receptor (AR) plays an important role, while the human proviral integration site for Moloney murine leukemia virus-1 (PIM1) overexpression is also implicated. PIM1 kinases phosphorylate AR, thus regulating its transcriptional activity, regardless of the presence or not of androgens. We evaluated the expression of AR and PIM1 and their prognostic significance in TNBC. MATERIALS AND METHODS AR and PIM1 transcripts were quantified by quantitative reverse transcription polymerase chain reaction in formalin-fixed paraffin-embedded tumor from 141 patients with TNBC. RESULTS AR was expressed in 38.3%, PIM1 in 10.6%, while co-expression of AR and PIM1 was detected in 7/141 cases (5.0%). No prognostic significance of AR or PIM1 was reached for overall or disease-free survival. CONCLUSION Co-expression of AR and PIM1 exists in only in a small percentage of patients with TNBC. The implications of this finding in the therapeutic management of patients with TNBC should be investigated in larger patient cohorts.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - George Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece.,Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | | | - Paris Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece.,German Oncology Center, Limassol, Cyprus
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece;
| |
Collapse
|
17
|
Panchal NK, Sabina EP. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci 2020; 255:117866. [PMID: 32479955 DOI: 10.1016/j.lfs.2020.117866] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
The PIM Kinases belong to the family of a proto-oncogene that essentially phosphorylates the serine/threonine residues of the target proteins. They are primarily categorized into three types PIM-1, PIM-2, PIM-3 which plays an indispensable regulatory role in signal transduction cascades, by promoting cell survival, proliferation, and drug resistance. These kinases are overexpressed in several solid as well as hematopoietic tumors which supports in vitro and in vivo malignant cell growth along with survival by regulating cell cycle and inhibiting apoptosis. They lack regulatory domain which makes them constitutively active once transcribed. PIM kinases usually appear to be important downstream effectors of oncoproteins which overexpresses and helps in mediating drug resistance to available agents, such as rapamycin. Structural studies of PIM kinases revealed that they have unique hinge regions where two Proline resides and makes ATP binding unique, by offering a target for an increasing number of potent PIM kinase inhibitors. Preclinical studies of those inhibitory compounds in various cancers indicate that these novel agents show promising activity and some of them currently being under examination. In this review, we have outlined PIM kinases molecular mechanism and signaling pathways along with matriculation in various cancer and list of inhibitors often used.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - E P Sabina
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|