1
|
Shin N, Lee HJ, Sim DY, Ahn CH, Park SY, Koh W, Khil J, Shim BS, Kim B, Kim SH. Anti-Warburg Mechanism of Ginsenoside F2 in Human Cervical Cancer Cells via Activation of miR193a-5p and Inhibition of β-Catenin/c-Myc/Hexokinase 2 Signaling Axis. Int J Mol Sci 2024; 25:9418. [PMID: 39273365 PMCID: PMC11394963 DOI: 10.3390/ijms25179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the β-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, β-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed β-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of β-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit β-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of β-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of β-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of β-catenin/c-Myc/HK signaling in cervical cancer cells.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Wonil Koh
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Jaeho Khil
- Institute of Sports Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| |
Collapse
|
2
|
Liu C, Yu C, Song G, Fan X, Peng S, Zhang S, Zhou X, Zhang C, Geng X, Wang T, Cheng W, Zhu W. Comprehensive analysis of miRNA-mRNA regulatory pairs associated with colorectal cancer and the role in tumor immunity. BMC Genomics 2023; 24:724. [PMID: 38036953 PMCID: PMC10688136 DOI: 10.1186/s12864-023-09635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) which can act as post-transcriptional regulators of mRNAs via base-pairing with complementary sequences within mRNAs is involved in processes of the complex interaction between immune system and tumors. In this research, we elucidated the profiles of miRNAs and target mRNAs expression and their associations with the phenotypic hallmarks of colorectal cancers (CRC) by integrating transcriptomic, immunophenotype, methylation, mutation and survival data. RESULTS We conducted the analysis of differential miRNA/mRNA expression profile by GEO, TCGA and GTEx databases and the correlation between miRNA and targeted mRNA by miRTarBase and TarBase. Then we detected using qRT-PCR and validated the diagnostic value of miRNA-mRNA regulator pairs by the ROC, calibration curve and DCA. Phenotypic hallmarks of regulatory pairs including tumor-infiltrating lymphocytes, tumor microenvironment, tumor mutation burden, global methylation and gene mutation were also described. The expression levels of miRNAs and target mRNAs were detected in 80 paired colon tissue samples. Ultimately, we picked up two pivotal regulatory pairs (miR-139-5p/ STC1 and miR-20a-5p/ FGL2) and verified the diagnostic value of the complex model which is the combination of 4 signatures above-mentioned in 3 testing GEO datasets and an external validation cohort. CONCLUSIONS We found that 2 miRNAs by targeting 2 metastasis-related mRNAs were correlated with tumor-infiltrating macrophages, HRAS, and BRAF gene mutation status. Our results established the diagnostic model containing 2 miRNAs and their respective targeted mRNAs to distinguish CRCs and normal controls and displayed their complex roles in CRC pathogenesis especially tumor immunity.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Chun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Guoxin Song
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China, Jiangsu
| | - Xingchen Fan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Shuang Peng
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Shiyu Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Xin Zhou
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Cheng Zhang
- Department of Science and Technology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China, Jiangsu
| | - Xiangnan Geng
- Department of Clinical Engineer, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China, Jiangsu
| | - Tongshan Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Wenfang Cheng
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Wei Zhu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu.
| |
Collapse
|
3
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Zhao Y, Liu Y, Shi X. LncRNA AC012360.1 facilitates growth and metastasis by regulating the miR-139-5p/LPCAT1 axis in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2023; 38:2192-2203. [PMID: 37300846 DOI: 10.1002/tox.23856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in tumorigenesis and tumor progression. However, whether lncRNA AC012360.1 contributes to hepatocellular carcinoma (HCC) is unknown. In HCC tissues, differentially expressed lncRNAs were identified by bioinformatics. AC012360.1 level was validated and its role in HCC progression was investigated. Among the top 10 upregulated lncRNAs, AC012360.1 exhibited the greatest increase in HCC tissues. Additionally, AC012360.1 was upregulated in HCC tissues/cells. Moreover, AC012360.1 knockdown refrained cell proliferation/metastasis and tumor growth. Conversely, AC012360.1 overexpression showed an oncogenic role. AC012360.1 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) contained miR-139-5p binding sites. Furthermore, miR-139-5p silencing partially mitigated the role of AC012360.1 knockdown, while LPCAT1 knockdown partially abolished the tumor-promoting effect of AC012360.1 overexpression. In conclusion, AC012360.1 exhibited its oncogenic function in HCC through sponging miR-139-5p and upregulating LPCAT1 expression.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Lin X, Ding JM, Zheng XZ, Chen JG. Immunity-related long noncoding RNA WDFY3-AS2 inhibited cell proliferation and metastasis through Wnt/β-catenin signaling in oral squamous cell carcinoma. Arch Oral Biol 2023; 147:105625. [PMID: 36657277 DOI: 10.1016/j.archoralbio.2023.105625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Long noncoding RNA WDFY3-AS2 has been shown to play dual roles in the modulation of cancer progression. This study aimed at clarifying the biological role of WDFY3-AS2 as well as the association between WDFY3-AS2 expression, β-catenin expression, and OSCC immunity in oral squamous cell carcinoma (OSCC). DESIGN Bioinformatics analyses, CCK8, EdU, wound healing, transwell, RT-qPCR, western blot, immunofluorescence, in situ hybridization, and immunohistochemistry assays were adopted for exploring the role of WDFY3-AS2 in OSCC. RESULTS Bioinformatics analyses showed that WDFY3-AS2 conferred a poor prognosis for OSCC patients. Further analyses identified WDFY3-AS2 as an independent prognostic indicator for OSCC. Moreover, silencing WDFY3-AS2 inhibits OSCC cell proliferation, migration and invasion. Gene set enrichment analysis indicated that WDFY3-AS2 participated in the regulation of Wnt signaling. In addition, WDFY3-AS2 expression was positively associated with β-catenin mRNA levels, the key component of Wnt signaling. Interestingly, WDFY3-AS2 knockdown inhibited β-catenin expression and nuclear translocation, thus suppressing OSCC progression through Wnt signaling. Furthermore, WDFY3-AS2 expression correlated with an immunosuppressive phenotype in the tumor immune microenvironment. In situ hybridization and immunohistochemistry verified that WDFY3-AS2 was positively associated with total and nuclear β-catenin protein levels and negatively associated with CD4 expression. CONCLUSIONS This study demonstrates that the immunity-associated WDFY3-AS2 augments OSCC proliferation and metastasis through Wnt/β-catenin signaling and may serve as a novel treatment target and a new prognostic factor for OSCC.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, China.
| | - Jian-Ming Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, China
| | - Xiong-Zhou Zheng
- Department of otorhinolaryngology, Xianyou County General Hospital, Xianyou 351200, Fujian, China
| | - Jian-Guang Chen
- Department of otorhinolaryngology, Xianyou County General Hospital, Xianyou 351200, Fujian, China.
| |
Collapse
|
6
|
Geng Z, Huang Y, Wu S, Zhu D, Li W. FUT8-AS1/miR-944/Fused in Sarcoma/Transcription Factor 4 Feedback Loop Participates in the Development of Oral Squamous Cell Carcinoma through Activation of Wnt/β-Catenin Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:233-245. [PMID: 36697118 DOI: 10.1016/j.ajpath.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
As a common type of head and neck squamous cell carcinoma, oral squamous cell carcinoma (OSCC) is a lethal and deforming disease. Long noncoding RNAs have emerged as critical modulators in different malignancies. However, the role of fucosyltransferase 8 antisense RNA 1 (FUT8-AS1) in OSCC still remains elusive. In this study, quantitative RT-PCR and Western blot were used for the measurement of RNAs and proteins. Mechanism assays explored the putative correlation among genes. In vitro assays evaluated the changes in OSCC cell malignant phenotype, whereas in vivo assays highlighted the influence of FUT8-AS1 on tumor growth. FUT8-AS1, aberrantly up-regulated in OSCC tissues and cells, could exacerbate OSCC cell malignant behaviors. The cancerogenic property of FUT8-AS1 in OSCC was further confirmed via animal experiments. Furthermore, FUT8-AS1 enhanced the expression of transcription factor 4 (TCF4) via sponging miR-944 and recruiting fused in sarcoma (FUS), thus affecting OSCC cell biological behaviors via modulation on Wnt/β-catenin signaling activity. In addition, TCF4 was validated as the transcriptional activator of FUT8-AS1. To conclude, TCF4-mediated FUT8-AS1 could exacerbate OSCC cell malignant behaviors and facilitate tumor growth via modulation on miR-944/FUS/TCF4.
Collapse
Affiliation(s)
- Zushi Geng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinzhen Huang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Wu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Ji J, Xiong C, Peng J, Zhang N, Zhang Y, Yang H, Zhu W. Circ_0068631 sponges miR-139-5p to promote the growth and metastasis of cutaneous squamous cell carcinoma by upregulating HOXB7. Skin Res Technol 2023; 29:e13248. [PMID: 36823512 PMCID: PMC10155854 DOI: 10.1111/srt.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are often dysregulated in cancers and closely related to cancer progression, including cutaneous squamous cell carcinoma (CSCC). However, the role and mechanism of circ_0068631 in CSCC progression have not been reported. METHODS The expression of circ_0068631, microRNA-139-5p (miR-139-5p), and homeobox B7 (HOXB7) was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, and colony formation assay were used to measure cell proliferation. Cell apoptosis was assessed by flow cytometry. Cell migration was detected by transwell assay. The interaction between miR-139-5p and circ_0068631 or HOXB7 was confirmed by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the function of circ_0068631 in vivo. RESULTS Circ_0068631 was upregulated in CSCC tissues and cells, and its silencing could inhibit CSCC cell proliferation and metastasis while promoting apoptosis in vitro, as well as restrain CSCC tumor growth in vivo. Circ_0068631 acted as a sponge of miR-139-5p, and miR-139-5p inhibition reversed the repressive effect of circ_0068631 knockdown on CSCC cell progression. Furthermore, HOXB7 was a target of miR-139-5p, and miR-139-5p inhibited the malignant behaviors by downregulating HOXB7 expression in CSCC cells. Further, circ_0068631 sponged miR-139-5p to regulate HOXB7 expression. CONCLUSION Circ_0068631 functioned as a novel oncogene in CSCC progression by regulating miR-139-5p/HOXB7 axis, suggesting that circ_0068631 may be a potential target for CSCC treatment. HIGHLIGHTS Circ_0068631 was overexpressed in CSCC tissues and cells. Circ_0068631 downregulation suppressed CSCC progression via miR-139-5p. Circ_0068631 regulated HOXB7 via sponging miR-139-5p.
Collapse
Affiliation(s)
- Jun Ji
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Chengcheng Xiong
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Jing Peng
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Niannian Zhang
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Yan Zhang
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Honghong Yang
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Wenwen Zhu
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| |
Collapse
|
8
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
9
|
Gong YF, Zhang Y, Li LY, Han W, Liu Y. Downregulation of miR-599 predicts poor outcome in cervical cancer patients and promotes the progression of cervical cancer. Taiwan J Obstet Gynecol 2022; 61:249-254. [PMID: 35361384 DOI: 10.1016/j.tjog.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Cervical cancer remains a leading cause of gynecological cancer-related death. In this study, we aimed to investigate the expression pattern of miR-599 and its prognostic significance in cervical cancer. MATERIALS AND METHODS The RT-qPCR analysis was used to detect the expression levels of miR-599 in cervical cancer tissues and cell lines. The association between miR-599 expression and clinical characteristics of cervical cancer patients was analyzed using the χ2 test. The Kaplan-Meier analysis and multivariate Cox proportional hazards model were used to explore the prognostic significance of miR-599. Then, CCK-8 assays, transwell migration, and invasion assays were used to assess the effects of miR-599 on tumor cell proliferation, migration, and invasion of cervical cancer cells, respectively. RESULTS miR-599 expression was significantly downregulated in cervical cancer tissues and cells compared with non-cancerous tissues and HaCaT cells, respectively. Statistical analysis revealed that miR-599 expression was associated with lymph node metastasis and FIGO stage. The miR-599 expression was an independent prognostic factor for overall survival. Functionally, overexpression of miR-599 suppressed cell proliferation, migration, and invasion of cervical cancer cells, while downregulation of miR-599 had opposite effects. CONCLUSION miR-599 acts as a tumor suppressor in cervical cancer that inhibiting cell proliferation, migration, and invasion of cervical cancer cells, suggesting that miR-599 may be a potential prognostic biomarker and novel targeted strategy for cervical cancer.
Collapse
Affiliation(s)
- Yu-Feng Gong
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, China
| | - Yu Zhang
- Department of Laboratory, the Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, China
| | - Li-Yang Li
- Department of Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Wen Han
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, China
| | - Yang Liu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, China.
| |
Collapse
|
10
|
Zhao Y, Li M, Miao N, Wei W, Dong Y, Tao C, Chen J, Pei Y, Guo L. Use of miRNA Sequencing to Reveal Hub miRNAs and the Effect of miR-582-3p/SMAD2 in the Progression of Hepatocellular Carcinoma. Front Genet 2022; 13:819553. [PMID: 35386287 PMCID: PMC8977860 DOI: 10.3389/fgene.2022.819553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/04/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma is a common tumor with a high fatality rate worldwide, and exploring its pathogenesis and deterioration mechanism is a focus for many researchers. Increasing evidence has shown that miRNAs are involved in the occurrence and progression of a variety of cancers, including hepatocellular carcinoma. Therefore, this study mainly aimed identify key miRNAs related to hepatocellular carcinoma and explore their potential functions and clinical significance. In this study, we performed miRNA sequencing on three pairs of hepatocellular carcinoma tissue samples and screened 26 differentially expressed miRNAs. Then 2 key miRNAs (miR-139-5p and miR-582-3p) were screened by Kaplan-Meier curve analysis, Cox multivariate analysis and qPCR methods. The expression of miR-582-3p was positively correlated with clinicopathological parameters in patients with hepatocellular carcinoma. Subsequently, miRwalk and starbase were used to predict the target genes of key miRNAs, and then the key pairs miR-582-3p/SMAD2 identified by WGCNA, PPI, qPCR and Pearson correlation analysis. Finally, a dual luciferase experiment, the rescue-of-function experiment and qPCR confirmed that miR-582-3p directly targets SMAD2 and regulates the proliferation, migration and invasion of HepG2 cells by targeting SMAD2. At the same time, interference with SMAD2 can influence the effect of miR-582-3p on HepG2 cells. In conclusion, our findings confirm that miR-582-3p is an independent factor for the prognosis of hepatocellular carcinoma patients, and can regulate the progression of hepatocellular carcinoma cells by targeting SMAD2.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Gastrointestinal Endoscopy, Eastern Hepatobiliary Surgery Hospital,The Third Hospital Affiliated of Naval Medical University, Shanghai, China
| | - Meizhang Li
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Nana Miao
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Wei Wei
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Yulong Dong
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Chenjie Tao
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongyan Pei
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Lieping Guo
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Long non-coding RNA UCA1 enhances cervical cancer cell proliferation and invasion by regulating microRNA-299-3p expression. Oncol Lett 2021; 22:772. [PMID: 34589151 PMCID: PMC8442166 DOI: 10.3892/ol.2021.13033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
The long non-coding RNA, urothelial cancer-associated 1 (UCA1) is an important regulator in several tumors. However, to the best of our knowledge, the clinical roles of UCA1 in cervical cancer remain unclear. Thus, the present study aimed to investigate the function and mechanism of UCA1 in cervical cancer. Reverse transcription-quantitative PCR analysis was performed to detect UCA1 and microRNA (miR)-299-3p expression in cervical cancer tissues and cell lines. The Cell Counting Kit-8 and Transwell assays were performed to assess cell proliferation and invasion, respectively. Furthermore, the dual-luciferase reporter assay was performed to confirm the association between UCA1 and miR-299-3p. Rescue experiments were performed to determine the mechanism of the UCA1/miR-299-3p axis. The results demonstrated that UCA1 expression was upregulated in cervical cancer tissues and cell lines. Furthermore, overexpression of UCA1 enhanced the proliferation and invasion of cervical cancer cells, the effects of which were reversed following UCA1 knockdown. Notably, UCA1 interacted with miR-299-3p and negatively regulated miR-299-3p expression. In addition, miR-299-3p expression was downregulated in cervical cancer tissues and cell lines. Overexpression of miR-299-3p suppressed the proliferation and invasion of cervical cancer cells, reversing the effects of UCA1 knockdown on cervical cancer cell proliferation. Taken together, the results of the present study suggest that UCA1 promotes cell proliferation and invasion by regulating miR-299-3p expression in cervical cancer.
Collapse
|
12
|
Cheng CW, Liao WL, Chen PM, Yu JC, Shiau HP, Hsieh YH, Lee HJ, Cheng YC, Wu PE, Shen CY. MiR-139 Modulates Cancer Stem Cell Function of Human Breast Cancer through Targeting CXCR4. Cancers (Basel) 2021; 13:cancers13112582. [PMID: 34070538 DOI: 10.3390/cancers13112582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Elevated expression of C-X-C motif chemokine receptor 4 (CXCR4) correlates with chemotaxis, invasion, and cancer stem cell (CSC) properties within several solid-tumor malignancies. Recent studies reported that microRNA (miRNA) modulates the stemness of embryonic stem cells. We aimed to investigate the role of miRNA, via CXCR4-modulation, on CSC properties in breast cancer using cell lines and xenotransplantation mouse model and evaluated miR-193 levels in 191 patients with invasive ductal carcinoma. We validated miR-139 directly targets the 3'-untranslated region of CXCR4. Hoechst 33342 fluorescence-activated cell sorting (FACS) and sphere-forming assay were used to identify CSCs. MiR-139 suppressed breast CSCs with mesenchymal traits; led to decreased migration and invasion abilities through down-regulating CXCR4/p-Akt signaling. In lung cancer xenograft model of nude mice transplanted with human miR-139-carrying MDA-MB-231 cells, metastatic lung nodules were suppressed. Clinically, microdissected breast tumor tissues showed miR-139 reduction, compared to adjacent non-tumor tissues, that was significantly associated with worse clinicopathological features, including larger tumor size, advanced tumor stage and lymph node metastasis; moreover, reduced miR-139 level was predominately occurred in late-stage HER2-oreexpression tumors. Collectively, our findings highlight miR-139-mediated suppression of CXCR4/p-Akt signaling and thereby affected mesenchymal stem-cell genesis, indicating its potential as a therapeutic target for invasive breast cancer.
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40433, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung 40433, Taiwan
| | - Po-Ming Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical College, Taipei 11490, Taiwan
| | - Hui-Ping Shiau
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yu-Chun Cheng
- School of Medicine, Fu Jen Catholic University, New Taipei 24206, Taiwan
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Environmental Science, China Medical University, Taichung 40433, Taiwan
| |
Collapse
|
13
|
Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas. Biomolecules 2021; 11:biom11050764. [PMID: 34065237 PMCID: PMC8160722 DOI: 10.3390/biom11050764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.
Collapse
|
14
|
Yan Y, Jin X, Sun H, Pang S, Kong X, Bu J, Xu S. MiR-139-5p Targetedly Regulates YAF2 and Mediates the AKT/P38 MAPK Signaling Pathway to Alleviate the Metastasis of Non-Small Cell Lung Cancer Cells and Their Resistance Against Cisplatin. Cancer Manag Res 2021; 13:3639-3650. [PMID: 33981163 PMCID: PMC8109024 DOI: 10.2147/cmar.s254671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To explore relevant mechanisms of miR-139-5p in alleviating the metastasis of non-small cell lung cancer cells (NSCLC) and their resistance against cisplatin. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) assays were carried out to determine the protein levels of miR-139-5p and YAF2, and cisplatin (DDP)-resistant NSCLC cell strains were established. Subsequently, an MTT assay was employed to evaluate the viability of the cell strains, a Transwell assay to evaluate cell invasion activity, and flow cytometry to analyze cell apoptosis rate. Finally, a Western blot assay was carried out to determine the protein levels of P-PI3K and p-p38. Results NSCLC tissues showed lower miR-139-5p expression and higher YAF2 expression than paracancerous tissues and human normal lung epithelial cells, and miR-139-5p was related to the prognosis of NSCLC patients. Overexpression of miR-139-5p or knock-down of YAF2 inhibited the proliferation and invasion of NSCLC cells and induced their apoptosis. Additionally, the dual-luciferase reporter assay verified a targeting relationship between miR-139-5p and YAF2. Overexpression of miR-139-5p and knockdown of YAF2 reversed the resistance of A549/DDP cells against DDP, inactivated p38 and Akt proteins, and inhibited the AKT/p38 MAPK signaling pathway. Furthermore, inhibiting the AKT/p38 MAPK signaling pathway with MK2206 resisted the effects of knock-down of miR-139-5p on DDP resistance in NSCLC cells. Conclusion MiR-139-5p targetedly regulates YAF2 and mediates the AKT/p38 MAPK signaling pathway to alleviate the metastasis of NSCLC cells and their resistance against cisplatin, which may be a novel target for improving the therapeutic effect on NSCLC.
Collapse
Affiliation(s)
- Yubo Yan
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| | - Xiangyuan Jin
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| | - HaoBo Sun
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| | - Sainan Pang
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| | - Xianglong Kong
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| | - Jianlong Bu
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Tumer Hospital, Harbin, Heilongjiang Province, 150000, People's Republic of China
| |
Collapse
|
15
|
Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol 2021; 183:681-694. [PMID: 33957202 DOI: 10.1016/j.ijbiomac.2021.04.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
SOX transcription factors are critical regulators of development, homeostasis and disease progression and their dysregulation is a common finding in various cancers. SOX9 belongs to SOXE family located on chromosome 17. MicroRNAs (miRNAs) possess the capacity of regulating different transcription factors in cancer cells by binding to 3'-UTR. Since miRNAs can affect differentiation, migration, proliferation and other physiological mechanisms, disturbances in their expression have been associated with cancer development. In this review, we evaluate the relationship between miRNAs and SOX9 in different cancers to reveal how this interaction can affect proliferation, metastasis and therapy response of cancer cells. The tumor-suppressor miRNAs can decrease the expression of SOX9 by binding to the 3'-UTR of mRNAs. Furthermore, the expression of downstream targets of SOX9, such as c-Myc, Wnt, PI3K/Akt can be affected by miRNAs. It is noteworthy that other non-coding RNAs including lncRNAs and circRNAs regulate miRNA/SOX9 expression to promote/inhibit cancer progression and malignancy. The pre-clinical findings can be applied as biomarkers for diagnosis and prognosis of cancer patients.
Collapse
|
16
|
Rahnama S, Bakhshinejad B, Farzam F, Bitaraf A, Ghazimoradi MH, Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci 2021; 277:119488. [PMID: 33862117 DOI: 10.1016/j.lfs.2021.119488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma is recognized as one of the leading causes of death worldwide. Although there have been considerable advancements in understanding the causative molecular mechanisms of this malignancy, effective therapeutic strategies are still in limited use. It has been revealed that non-coding RNAs (ncRNAs) play critical roles in glioblastoma development, while interactions between the regulatory molecules such as long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs) remain to be fully deciphered. Over the recent years, researchers have discovered a new category of RNA molecules called competing endogenous RNA (ceRNA). This kind of RNA can contribute to molecular interactions in the form of ceRNA networks (ceRNETs). Multiple lines of evidence have demonstrated that dysregulation of various ceRNA networks is involved in glioblastoma development. Therefore, gaining insights into these dysregulations might offer potential for the early diagnosis of glioblastoma patients and identification of efficient therapeutic targets. In this review, we provide an overview of recent discoveries on ceRNA networks and the involvement of dysregulated networks in posing limitations to temozolomide therapy. We also describe signaling pathways relevant to the progression of glioblastoma.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Zhang J, He H, Wang K, Xie Y, Yang Z, Qie M, Liao Z, Zheng Z. miR-326 inhibits the cell proliferation and cancer stem cell-like property of cervical cancer in vitro and oncogenesis in vivo via targeting TCF4. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1638. [PMID: 33490150 PMCID: PMC7812208 DOI: 10.21037/atm-20-6830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Cervical cancer ranks as one of the most prevalent female malignancies globally, and its treatment with new targets has been the focus of current research. The present study set out to investigate the function of microRNA-326 (miR-326) in vitro and in vivo and to verify the direct targeting of transcription factor 4 (TCF4) by miR-326. Methods The detection of messenger RNA (mRNA) expressing miR-326 and TCF4 in cervical cancer cell lines and tumor samples was conducted using quantitative real-time polymerase chain (qRT-PCR). A dual-luciferase reporter assay was carried out to detect the target relationship of miR-326 with TCF4. A Cell Counting Kit-8 (CCK-8) assay was employed to detect the effect of miR-326 on CasKi cell viability. Flow cytometry and western blotting were employed to examine the effects of miR-326 on cancer stem cell (CSC)-like property. Tumor weight was measured in orthotopic xenograft mouse models. Immunohistochemistry was employed to analyze the protein expression levels of Ki-67, proliferating cell nuclear antigen (PCNA), CD44, and SRY-box 4 (SOX4). Result Downregulation of the mRNA expression levels of miR-326 was observed in cervical cancer cell lines and tumor tissue, while the levels of TCF4 were upregulated. The dual-luciferase reporter assay revealed binding of miR-326 to the three prime untranslated region (3'-UTR) of TCF4. In vitro assays demonstrated that miR-326 inhibited CasKi cell proliferation through regulating TCF4. miR-326 also suppressed the CSC-like property of CasKi cells by targeting TCF4. Furthermore, the protein expression levels of cyclin D1, β-catenin, and c-Myc were decreased when miR-326 was added to TCF4-transfected cells. In vivo assays demonstrated that miR-326 inhibited tumor weight, growth, and the protein expression levels of Ki-67, PCNA, CD44, SOX4, and β-catenin. Conclusions miR-326 acted in a tumor-suppressive manner through its regulation of TCF4, and has potential as a biomarker or therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Haining He
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Kana Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhongmei Yang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Mingrong Qie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Liao
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenrong Zheng
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
18
|
Okada R, Goto Y, Yamada Y, Kato M, Asai S, Moriya S, Ichikawa T, Seki N. Regulation of Oncogenic Targets by the Tumor-Suppressive miR-139 Duplex ( miR-139-5p and miR-139-3p) in Renal Cell Carcinoma. Biomedicines 2020; 8:biomedicines8120599. [PMID: 33322675 PMCID: PMC7764717 DOI: 10.3390/biomedicines8120599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
We previously found that both the guide and passenger strands of the miR-139 duplex (miR-139-5p and miR-139-3p, respectively) were downregulated in cancer tissues. Analysis of TCGA datasets revealed that low expression of miR-139-5p (p < 0.0001) and miR-139-3p (p < 0.0001) was closely associated with 5-year survival rates of patients with renal cell carcinoma (RCC). Ectopic expression assays showed that miR-139-5p and miR-139-3p acted as tumor-suppressive miRNAs in RCC cells. Here, 19 and 22 genes were identified as putative targets of miR-139-5p and miR-139-3p in RCC cells, respectively. Among these genes, high expression of PLXDC1, TET3, PXN, ARHGEF19, ELK1, DCBLD1, IKBKB, and CSF1 significantly predicted shorter survival in RCC patients according to TCGA analyses (p < 0.05). Importantly, the expression levels of four of these genes, PXN, ARHGEF19, ELK1, and IKBKB, were independent prognostic factors for patient survival (p < 0.05). We focused on PXN (paxillin) and investigated its potential oncogenic role in RCC cells. PXN knockdown significantly inhibited cancer cell migration and invasion, possibly by regulating epithelial-mesenchymal transition. Involvement of the miR-139-3p passenger strand in RCC molecular pathogenesis is a new concept. Analyses of tumor-suppressive-miRNA-mediated molecular networks provide important insights into the molecular pathogenesis of RCC.
Collapse
Affiliation(s)
- Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
19
|
Sun J, Wang S, Liu P, Liu Y. MiR-139-5p-ZEB1 is a Molecular Regulator of Growth, Invasion, and Epithelial-to-Mesenchymal Transition of Cervical Cancer. Cancer Manag Res 2020; 12:12723-12733. [PMID: 33328767 PMCID: PMC7735720 DOI: 10.2147/cmar.s267634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To verify that miR-139-5p-zinc finger E-box-binding homeobox 1 (ZEB1) is a molecular regulator of the biological function and epithelial–mesenchymal transition (EMT) of cervical cancer (CC) cells. Methods Cancerous tissues, corresponding paracancerous tissues, and serum were sampled from patients with CC. MiR-139-5p and ZEB1 in tissue specimens, serum specimens, and purchased CC cell lines were quantified, and Pearson correlation coefficient was adopted for correlation analysis of miR-139-5p in clinical specimens. Receiver operating characteristic (ROC) curves were adopted to analyze the diagnostic value of miR-139-5p and ZEB1 for CC. The expression of genes in CC cells was changed by transfection. The proliferation, colony formation, invasion, and apoptosis of cells were determined, and the protein level of EMT markers (N-cadherin, vimentin, and E-cadherin) was also quantified. Moreover, the targeting relationship between miR-139-5p and ZEB1 was determined. Results Our data showed that the expression of miR-139-5p decreased greatly in CC tissues, and it also significantly decreased in the serum, while the expression of serum ZEB1 was opposite. In addition, the miR-139-5p expression in CC tissues was positively correlated with that in serum, while serum miR-139-5p was negatively correlated with serum ZEB1. The areas under the curves (AUCs) of the two for identifying CC were 0.923 and 0.890, respectively. Both up-regulation of miR-139-5p and down-regulation of ZEB1 suppressed the colony formation, proliferation, invasion, and EMT of CC cells, and intensified their apoptosis. Moreover, miR-139-5p negatively regulated the transcription of ZEB1, and down-regulation of the former could reverse the molecular regulatory effects of down-regulating ZEB1 on the above biological behaviors of CC cells. Conclusion The above data imply that miR-139-5p-ZEB1 axis may be the key to curbing the progression of CC.
Collapse
Affiliation(s)
- Jinrui Sun
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province 030012, People's Republic of China
| | - Shanshan Wang
- Department of Cardiology, Yidu Central Hospital of Weifang City, Weifang, Shandong, People's Republic of China
| | - Ping Liu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province 030012, People's Republic of China
| | - Yulan Liu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
20
|
Zhao C, Yang F, Wei X, Zhang J. miR-139-5p upregulation alleviated spontaneous recurrent epileptiform discharge-induced oxidative stress and apoptosis in rat hippocampal neurons via regulating the Notch pathway. Cell Biol Int 2020; 45:463-476. [PMID: 33247610 DOI: 10.1002/cbin.11509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 11/08/2022]
Abstract
Epilepsy was characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs) in neurons. Previous studies suggested that microRNA (miR)-139-5p and the Notch pathway were implicated in epilepsy; however, their interaction remained vague. Rat primary hippocampal neurons were isolated and identified by immunofluorescence staining. The cells were then used for SREDs model construction and further subjected to flow cytometry for apoptosis detection. Contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), super oxidase dismutase (SOD) contents, and reactive oxygen species (ROS), and the level of mitochondrial membrane potential (MMP) were determined using commercial kits. Target gene and potential binding sites of miR-139-5p were predicted with TargetScan and confirmed by dual-luciferase reporter assay. Expressions of miR-139-5p, Notch pathway-related proteins and apoptosis-related proteins were measured by quantitative real-time polymerase chain reaction and western blot as needed. The results showed that the hippocampal neurons were microtubule-associated protein 2 (MAP2)-positive. miR-139-5p was downregulated in SREDs model cells. SREDs promoted apoptosis and increased the contents of LDH, MDA, and ROS and the level of MMP while reducing miR-139-5p expression and SOD content in cells, which was reversed by miR-139-5p overexpression. Notch-1 was recognized as the target gene of miR-139-5p, and its expression was negatively regulated by miR-139-5p. Besides, Notch-1 overexpression reversed the effects of miR-139-5p upregulation on the expressions of Notch pathway-related proteins and apoptosis-related proteins, cell apoptosis, oxidative stress and MMP in SREDs-treated cells. Our results indicated that miR-139-5p upregulation alleviated SREDs-induced oxidative stress and cell apoptosis via regulating the Notch pathway, which provides new insights into the role of miRNA in the occurrence and development of epilepsy.
Collapse
Affiliation(s)
- Chensheng Zhao
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, China
| | - Fan Yang
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, China
| | - Xiaona Wei
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, China
| | - Jingwen Zhang
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, China
| |
Collapse
|
21
|
Song K, Li L, Quan Q, Wei Y, Hu S. Inhibited histone deacetylase 3 ameliorates myocardial ischemia-reperfusion injury in a rat model by elevating microRNA-19a-3p and reducing cyclin-dependent kinase 2. IUBMB Life 2020; 72:2696-2709. [PMID: 33217223 DOI: 10.1002/iub.2402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Over the years, the roles of microRNAs (miRNAs) and histone deacetylase 3 (HDAC3) in human diseases have been investigated. This study focused on the effect of miR-19a-3p and HDAC3 in myocardial ischemia-reperfusion (I/R) injury (MIRI) by targeting cyclin-dependent kinase 2 (CDK2). METHODS The I/R rat models were established by coronary artery ligation, which were then treated with RGFP966 (an inhibitor of HDAC3), miR-19a-3p agomir or antagomir, or silenced CDK2 to explore their roles in the cardiac function, pathological changes of myocardial tissues, myocardial infarction area, inflammatory factors and oxidative stress factors in rats with MIRI. The expression of miR-19a-3p, HDAC3, and CDK2 was determined by RT-qPCR and western blot assay, and the interaction among which was also verified by online prediction, luciferase activity assay and ChIP assay. RESULTS The results indicated that HDAC3 and CDK2 were upregulated while miR-19a-3p was downregulated in myocardial tissues of I/R rats. The inhibited HDAC3/CDK2 or elevated miR-19a-3p could promote cardiac function, attenuate pathological changes, inflammatory reaction, oxidative stress, myocardial infarction area and apoptosis of myocardial tissues. HDAC3 mediates miR-19a-3p and CDK2 is targeted by miR-19a-3p. CONCLUSION Inhibited HDAC3 ameliorates MIRI in a rat model by elevating miR-19a-3p and reducing CDK2, which may contribute to the treatment of MIRI.
Collapse
Affiliation(s)
- Kaiyou Song
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| | - Lianting Li
- Internal Medicine Department, Junan County Hospital of Traditional Chinese Medicine, Linyi, China
| | - Qingqing Quan
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, China
| | - Yanjin Wei
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| | - Shunpeng Hu
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| |
Collapse
|
22
|
Li J, He X, Wu X, Liu X, Huang Y, Gong Y. miR-139-5p Inhibits Lung Adenocarcinoma Cell Proliferation, Migration, and Invasion by Targeting MAD2L1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:2953598. [PMID: 33204298 PMCID: PMC7657690 DOI: 10.1155/2020/2953598] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND miR-139-5p is lowly expressed in various human cancers and exerts its antitumor effect through different molecular mechanisms, yet the molecular mechanism of miR-139-5p in lung adenocarcinoma (LUAD) remains to be further elucidated. The study is aimed at investigating the role and the regulatory mechanism of miR-139-5p in LUAD progression. METHODS Differential analysis was performed on miRNA expression data in the TCGA-LUAD dataset. qRT-PCR was employed to detect the transcription levels of miR-139-5p and MAD2L1 in LUAD cells, while western blot was carried out for the detection of MAD2L1 protein expression. CCK-8 and Transwell assays were implemented to assess LUAD cell proliferation, migration, and invasion. A dual-luciferase reporter gene assay was conducted to verify the direct targeting relationship between miR-139-5p and MAD2L1. RESULTS miR-139-5p was significantly downregulated in LUAD cells in comparison with that in human normal bronchial epithelial cells. Overexpressing miR-139-5p inhibited LUAD cell proliferation, migration, and invasion, while opposite results could be observed when miR-139-5p was inhibited. MAD2L1 was identified as a direct target of miR-139-5p in LUAD. Besides, the inhibitory effect of miR-139-5p overexpression on LUAD cell proliferation, migration, and invasion was attenuated by overexpressing MAD2L1. CONCLUSION Our study suggests that miR-139-5p is lowly expressed in LUAD cells and inhibits LUAD cell proliferation, migration, and invasion by targeted suppressing MAD2L1 expression. It is of potential significance for the prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Thoracic Surgery, Tangshan People's Hospital, Tangshan, China
| | - Xi He
- Department of Thoracic Surgery, Tangshan People's Hospital, Tangshan, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Xiaohui Liu
- Department of Thoracic Surgery, Tangshan People's Hospital, Tangshan, China
| | - Yixiong Huang
- Department of Thoracic Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian, China
| | - Yuchen Gong
- Department of Respiration, China Coast Guard of the Chinese People's Armed Police Force Hospital, Zhejiang Province, China
| |
Collapse
|
23
|
Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res 2020; 53:33. [PMID: 32758292 PMCID: PMC7405349 DOI: 10.1186/s40659-020-00301-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is a common and fatal malignancy of the female reproductive system. Human papillomavirus (HPV) is the primary causal agent for cervical cancer, but HPV infection alone is insufficient to cause the disease. Actually, most HPV infections are sub-clinical and cleared spontaneously by the host immune system; very few persist and eventually develop into cervical cancer. Therefore, other host or environmental alterations could also contribute to the malignant phenotype. One of the candidate co-factors is the β-catenin protein, a pivotal component of the Wnt/β-catenin signaling pathway. β-Catenin mainly implicates two major cellular activities: cell–cell adhesion and signal transduction. Recent studies have indicated that an imbalance in the structural and signaling properties of β-catenin leads to various cancers, such as cervical cancer. In this review, we will systematically summarize the role of β-catenin in cervical cancer and provide new insights into therapeutic strategies.
Collapse
Affiliation(s)
- Bingqi Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lei Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
24
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
25
|
Cui X, Chen J, Zheng Y, Shen H. Circ_0000745 Promotes the Progression of Cervical Cancer by Regulating miR-409-3p/ATF1 Axis. Cancer Biother Radiopharm 2020; 37:766-778. [PMID: 32644859 DOI: 10.1089/cbr.2019.3392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer (CC) is a common gynecological malignancy with a high risk of recurrence and death. Circular RNAs play a crucial role in the occurrence and development of tumors. This study aimed to investigate the function and mechanism of circ_0000745 in CC. Methods: The levels of circ_0000745, miR-409-3p, and activating transcription factor 1 (ATF1) were determined by quantitative real-time polymerase chain reaction or western blot assay. Cell proliferation was assessed by colony formation assay. Cell migration and invasion were evaluated by transwell assay. Glycolysis was analyzed by measuring extracellular acidification rate, glucose uptake, and lactate production. Also, the protein levels of glucose transporter 1 and lactate dehydrogenase A were detected using western blot. The relationship among circ_0000745, miR-409-3p, and ATF1 were confirmed by dual-luciferase reporter assay. Moreover, xenograft assay was performed to analyze tumor growth in vivo. Results: Circ_0000745 and ATF1 were upregulated, whereas miR-409-3p was downregulated in CC tissues and cells. Knockdown of circ_0000745 repressed proliferation, migration, invasion, and glycolysis of CC cells. Circ_0000745 regulated CC progression by targeting miR-409-3p. Circ_0000745 modulated ATF1 expression through sponging miR-409-3p. MiR-409-3p hindered CC progression by targeting ATF1. Furthermore, depletion of circ_0000745 impeded tumor growth in vivo. Conclusion: Circ_0000745 promoted the progression of CC through modulating miR-409-3p/ATF1 axis, indicating a promising biomarker for CC therapy.
Collapse
Affiliation(s)
- Xia Cui
- Department of Gynecology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiming Chen
- Department of Gynecology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yafeng Zheng
- Department of Gynecology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Huaji Shen
- Department of Gynecology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
26
|
Khalili N, Nouri-Vaskeh M, Hasanpour Segherlou Z, Baghbanzadeh A, Halimi M, Rezaee H, Baradaran B. Diagnostic, prognostic, and therapeutic significance of miR-139-5p in cancers. Life Sci 2020; 256:117865. [PMID: 32502540 DOI: 10.1016/j.lfs.2020.117865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
miRNAs are a group of non-coding RNAs that have regulatory functions in post-transcriptional gene expression. These molecules play a fundamental role in cellular processes, for instance cell proliferation, apoptosis, migration, and invasion. Scientific investigations have previously established that miRNAs can either promote or suppress tumor development by mediating different signaling pathways. miR-139-5p, located on chromosome 11q13.4, has been examined extensively in cancers. Studies have demonstrated that miR-139-5p might be an attractive cancer biomarker. Herein, we will review how miR-139-5p acts in cancer diagnosis, prognosis, and therapy, as well as elucidating its major target genes and associated signaling pathways.
Collapse
Affiliation(s)
- Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Rezaee
- Infectious Diseases and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Liu J, Yang J, Gao F, Li S, Nie S, Meng H, Sun R, Wan Y, Jiang Y, Ma X, Cheng W. A microRNA-Messenger RNA Regulatory Network and Its Prognostic Value in Cervical Cancer. DNA Cell Biol 2020; 39:1328-1346. [PMID: 32456463 DOI: 10.1089/dna.2020.5590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is the fourth commonest cancer in women worldwide. Increasing evidence proves that microRNA (miRNA)-messenger RNA (mRNA) network is involved in CC. In this study, miRNA and mRNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Differently expressed miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) were obtained by "Empirical Analysis of Digital Gene Expression Data in R (EdgeR)" package. Then, functional analyses were conducted. With Cytoscape software, a protein-protein interaction (PPI) network was established to identify hub genes that were used for building an miRNA-hub gene network. Next, a prognostic signature based on hub genes was constructed by Cox regression analysis, and its prognostic value was assessed by a nomogram. Finally, the relationship between immune cell infiltration and the three genes in the prognostic model was investigated by using the CIBERSORT algorithm. We screened out 5096 DE-mRNAs and 114 DE-miRNAs between healthy cervical and CC tissues. Then, 102 target DE-mRNAs of upregulated DE-miRNAs and 150 target DE-mRNAs of downregulated DE-miRNAs were obtained. PPI network demonstrated 20 hub nodes with higher connectivity. DE-mRNAs were mostly enriched in pathways in cancer, cell cycle, and proteoglycans in cancer. The miRNA-hub gene network showed that most hub genes could be potentially modulated by miR-200c-3p, miR-23b-3p, and miR-106b-5p. Quantitative real-time PCR proved that 10 miRNAs were downregulated and 6 mRNAs were upregulated markedly in CC tissues. Furthermore, a prognostic signature was established based on enhancer of zeste homolog 2 (EZH2), Fms-related tyrosine kinase 1 (FLT1), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The area under the curve value of the 5-year receiver operating characteristic curve was 0.609. The three genes were also found to be related to the infiltration of six types of immune cells, including dendritic cells, macrophages M0 and M1, mast cells, and monocytes. In conclusion, the development of CC is regulated by the miRNA-mRNA network we proposed in this study.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Cui Y, Zhang C, Ma S, Guo W, Cao W, Guan F. CASC5 is a potential tumour driving gene in lung adenocarcinoma. Cell Biochem Funct 2020; 38:733-742. [PMID: 32283571 DOI: 10.1002/cbf.3540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
Abstract
Previous studies have shown that cancer susceptibility candidate 5 (CASC5) plays important roles in several types of cancer. But its expression and clinical significance in human pan-cancer remain largely unclear. In the present study, we comprehensively analysed the expression profile and prognostic values of CASC5 in pan-cancer across 33 cancer types based on the online TCGA analysis databases. CASC5 was found to be abnormally expressed in 16 types of cancer. In addition, dysregulated expression of CASC5 was closely associated with patient overall survival (OS) in kidney renal papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD) and thymoma (THYM). By comparative analysis, we found that CASC5 was significantly up-regulated in LUAD and predicted poor patient OS. High CASC5 expression was closely correlated with tumour advanced stages of patients with LUAD. Through GSEA based on the KEGG database, CASC5 was found to be closely related to DNA replication and microRNA regulation in LUAD. Functionally, knockdown of CASC5 could inhibit cell proliferation of LUAD cells in vitro, rather than affecting cell migration and invasion. Mechanistically, CASC5 promoted proliferation of LUAD cells by targeting miR-139-5p. Collectively, our findings reveal that CASC5 is a novel oncogenic gene in LUAD and may be a potential clinical target and (or) biomarker for this human malignancy. SIGNIFICANCE OF THE STUDY: In this study, we for the first time comprehensively analysed the transcriptional level and prognostic significance of CASC5 in human pan-cancer across 33 cancer types using online TCGA databases. Our study indicates that CASC5 is aberrantly expressed in many tumours and is closely related to the patient overall survival of several tumour types. Our findings reveal that CASC5 is a novel oncogene in LUAD based on bioinformatic analysis and functional experiments. Mechanistically, CASC5 promoted LUAD proliferation by targeting miR-139-5p. Results of this study suggest that CASC5 is a potential clinical target and (or) biomarker for LUAD.
Collapse
Affiliation(s)
- Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Cao
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Zhou T, Wu L, Ma N, Tang F, Zong Z, Chen S. LncRNA PART1 regulates colorectal cancer via targeting miR-150-5p/miR-520h/CTNNB1 and activating Wnt/β-catenin pathway. Int J Biochem Cell Biol 2019; 118:105637. [PMID: 31669140 DOI: 10.1016/j.biocel.2019.105637] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 01/26/2023]
Abstract
Numerous studies have reported that lncRNAs could play a significant role in carcinogenesis. PART1, as an identified lncRNA, was an oncogene in several cancers. However, the underling mechanism of PART1 regulating colorectal cancer remains unknown. qRT-PCR was used to measure relevant RNAs expression. CCK8 and colony formation were combined to evaluate cell proliferation. Tunel and flow cytometry were performed to access cell apoptosis. Wound healing and Transwell assay testified cell invasion and migration ability. Relevant protein expression level was measured via Western blot assay. TOP/FOP luciferase assay determined the activity of Wnt/β-catenin pathway. According to experiment findings, PART1 was up-regulated in CRC tissues and cell lines. Inhibition of PART1 hindered CRC cell proliferation, invasion and migration, while promoting CRC cell apoptosis. Experiments in vivo also validated this result. Mechanistically, PART1 sponged miR-150-5p/miR-520 h to up-regulate CTNNB1, thus activating Wnt/β-catenin pathway in CRC. In summary, PART1 could up-regulate CTNNB1 via sponging miR-150-5p/miR-520 h.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, PR China
| | - Lili Wu
- Department of Ultrasonology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, PR China
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, PR China
| | - Zhen Zong
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of NanChang University, Nanchang, 330006, Jiangxi, PR China.
| | - Shuang Chen
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, PR China.
| |
Collapse
|