1
|
Wenlun W, Chaohang Y, Yan H, Wenbin L, Nanqing Z, Qianmin H, Shengcai W, Qing Y, Shirui Y, Feng Z, Lingyun Z. Developing a ceRNA-based lncRNA-miRNA-mRNA regulatory network to uncover roles in skeletal muscle development. FRONTIERS IN BIOINFORMATICS 2025; 4:1494717. [PMID: 39882307 PMCID: PMC11774864 DOI: 10.3389/fbinf.2024.1494717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.). LncRNA-miRNA relationships were predicted using miRcode and lncBaseV2, with miRNA-mRNA pairs identified via miRcode, miRDB, and Targetscan7. Based on the ceRNA theory, we constructed and visualized the lncRNA-miRNA-mRNA regulatory network using ggalluvial among other R packages. GO, Reactome, KEGG, and GSEA explored interactions in muscle development and regeneration. We identified five candidate lncRNAs (Xist, Gas5, Pvt1, Airn, and Meg3) as potential mediators in these processes and microgravity-induced muscle wasting. Additionally, we created a detailed lncRNA-miRNA-mRNA regulatory network, including interactions such as lncRNA Xist/miR-126/IRS1, lncRNA Xist/miR-486-5p/GAB2, lncRNA Pvt1/miR-148/RAB34, and lncRNA Gas5/miR-455-5p/SOCS3. Significant signaling pathway changes (PI3K/Akt, MAPK, NF-κB, cell cycle, AMPK, Hippo, and cAMP) were observed during muscle development, regeneration, and atrophy. Despite bioinformatics challenges, our research underscores the significant roles of lncRNAs in muscle protein synthesis, degradation, cell proliferation, differentiation, function, and metabolism under both normal and microgravity conditions. This study offers new insights into the molecular mechanisms governing skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Wang Wenlun
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Yu Chaohang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Huang Yan
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Li Wenbin
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhou Nanqing
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Hu Qianmin
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Wu Shengcai
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Yuan Qing
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Yu Shirui
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhang Feng
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhu Lingyun
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
2
|
Spella M, Bochalis E, Athanasopoulou K, Chroni A, Dereki I, Ntaliarda G, Makariti I, Psarias G, Constantinou C, Chondrou V, Sgourou A. "Crosstalk between non-coding RNAs and transcription factor LRF in non-small cell lung cancer". Noncoding RNA Res 2024; 9:759-771. [PMID: 38577020 PMCID: PMC10990748 DOI: 10.1016/j.ncrna.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epigenetic approaches in direct correlation with assessment of critical genetic mutations in non-small cell lung cancer (NSCLC) are currently very intensive, as the epigenetic components underlying NSCLC development and progression have attained high recognition. In this level of research, established human NSCLC cell lines as well as experimental animals are widely used to detect novel biomarkers and pharmacological targets to treat NSCLC. The epigenetic background holds a great potential for the identification of epi-biomarkers for treatment response however, it is highly complex and requires precise definition as these phenomena are variable between NSCLC subtypes and systems origin. We engaged an in-depth characterization of non-coding (nc)RNAs prevalent in human KRAS-mutant NSCLC cell lines A549 and H460 and mouse KRAS-mutant NSCLC tissue by Next Generation Sequencing (NGS) and quantitative Real Time PCRs (qPCRs). Also, the transcription factor (TF) LRF, a known epigenetic silencer, was examined as a modulator of non-coding RNAs expression. Finally, interacting networks underlying epigenetic variations in NSCLC subtypes were created. Data derived from our study highlights the divergent epigenetic profiles of NSCLC of human and mouse origin, as well as the significant contribution of 12qf1: 109,709,060-109,747,960 mouse chromosomal region to micro-RNA upregulated species. Furthermore, the novel epigenetic miR-148b-3p/lncPVT1/ZBTB7A axis was identified, which differentiates human cell line of lung adenocarcinoma from large cell lung carcinoma, two characteristic NSCLC subtypes. The detailed recording of epigenetic events in NSCLC and combinational studies including networking between ncRNAs and TFs validate the identification of significant epigenetic features, prevailing in NSCLC subtypes and among experimental models. Our results enrich knowledge in the field and empower research on the epigenetic prognostic biomarkers of the disease progression, NSCLC subtypes discrimination and advancement to patient-tailored treatments.
Collapse
Affiliation(s)
- Magda Spella
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Eleftherios Bochalis
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyri Chroni
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Irene Dereki
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Giannoula Ntaliarda
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Ifigeneia Makariti
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Caterina Constantinou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
3
|
Liu J, Chang X, Qian L, Chen S, Xue Z, Wu J, Luo D, Huang B, Fan J, Guo T, Nie X. Proteomics-Derived Biomarker Panel Facilitates Distinguishing Primary Lung Adenocarcinomas With Intestinal or Mucinous Differentiation From Lung Metastatic Colorectal Cancer. Mol Cell Proteomics 2024; 23:100766. [PMID: 38608841 PMCID: PMC11092395 DOI: 10.1016/j.mcpro.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis of primary lung adenocarcinomas with intestinal or mucinous differentiation (PAIM) remains challenging due to the overlapping histomorphological, immunohistochemical (IHC), and genetic characteristics with lung metastatic colorectal cancer (lmCRC). This study aimed to explore the protein biomarkers that could distinguish between PAIM and lmCRC. To uncover differences between the two diseases, we used tandem mass tagging-based shotgun proteomics to characterize proteomes of formalin-fixed, paraffin-embedded tumor samples of PAIM (n = 22) and lmCRC (n = 17).Then three machine learning algorithms, namely support vector machine (SVM), random forest, and the Least Absolute Shrinkage and Selection Operator, were utilized to select protein features with diagnostic significance. These candidate proteins were further validated in an independent cohort (PAIM, n = 11; lmCRC, n = 19) by IHC to confirm their diagnostic performance. In total, 105 proteins out of 7871 proteins were significantly dysregulated between PAIM and lmCRC samples and well-separated two groups by Uniform Manifold Approximation and Projection. The upregulated proteins in PAIM were involved in actin cytoskeleton organization, platelet degranulation, and regulation of leukocyte chemotaxis, while downregulated ones were involved in mitochondrial transmembrane transport, vasculature development, and stem cell proliferation. A set of ten candidate proteins (high-level expression in lmCRC: CDH17, ATP1B3, GLB1, OXNAD1, LYST, FABP1; high-level expression in PAIM: CK7 (an established marker), NARR, MLPH, S100A14) was ultimately selected to distinguish PAIM from lmCRC by machine learning algorithms. We further confirmed using IHC that the five protein biomarkers including CDH17, CK7, MLPH, FABP1 and NARR were effective biomarkers for distinguishing PAIM from lmCRC. Our study depicts PAIM-specific proteomic characteristics and demonstrates the potential utility of new protein biomarkers for the differential diagnosis of PAIM and lmCRC. These findings may contribute to improving the diagnostic accuracy and guide appropriate treatments for these patients.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liujia Qian
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangzhi Xue
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiannan Guo
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Xiong X, Jian G. E2F1‑mediated RAB34 upregulation accelerates the proliferation and inhibits the cell cycle arrest and apoptosis of acute myeloid leukemia cells. Exp Ther Med 2023; 26:389. [PMID: 37456160 PMCID: PMC10347365 DOI: 10.3892/etm.2023.12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease that is mainly arisen from myeloid stem/progenitor cells. The pathogenesis of AML is complex. Ras-related protein member RAS oncogene GTPases (RAB) 34 protein has been reported to serve an important role in the development of cancer. However, to the best of our knowledge, the role of RAB34 in AML has not been previously reported. The GEPIA database was used to predict the expression levels of RAB34 in patients with AML. Reverse transcription-quantitative PCR and western blotting were used to detect the expression of RAB34 in AML cell lines. Cell transfection with short hairpin (sh)RNAs targeting RAB34 was used to interfere with RAB34 expression. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining were used to measure cell proliferation. Flow cytometry was used to investigate cell cycle distribution and apoptosis. Western blotting was used to assess the protein expression levels of RAB34 and E2F transcription factor 1 (E2F1), and cell cycle- and apoptosis-associated proteins, including Bcl-2, Bax, CDK4, CDK8 and cyclin D1. The potential binding between E2F1 and RAB34 was then verified by luciferase reporter and chromatin immunoprecipitation assays. Subsequently, cells were co-transfected with RAB34 shRNA and the E2F1 overexpression plasmid before cell proliferation, cell cycle and apoptosis were analyzed further. The expression of RAB34 was found to be significantly increased in AML cell lines. Knocking down RAB34 expression in AML cells was found to significantly inhibit cell proliferation, induce cell cycle arrest and promote apoptosis. E2F1 activated the transcription of RAB34 and E2F1 elevation reversed the impacts of RAB34 silencing on cell proliferation, cell cycle and apoptosis in AML. Therefore, these findings suggest that E2F1-mediated RAB34 upregulation may accelerate the malignant progression of AML.
Collapse
Affiliation(s)
- Xiaojie Xiong
- Clinical Laboratory, The First Affiliated Hospital of HaiNan Medical University, Haikou, Hainan 570102, P.R. China
| | - Gang Jian
- Department of Pharmacy, The First Affiliated Hospital of HaiNan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
5
|
Sanchez-Cabrero D, Garcia-Guede Á, Burdiel M, Pernía O, Colmenarejo-Fernandez J, Gutierrez L, Higuera O, Rodriguez IE, Rosas-Alonso R, Rodriguez-Antolín C, Losantos-García I, Vera O, De Castro-Carpeño J, Ibanez de Caceres I. miR-124 as a Liquid Biopsy Prognostic Biomarker in Small Extracellular Vesicles from NSCLC Patients. Int J Mol Sci 2023; 24:11464. [PMID: 37511221 PMCID: PMC10380700 DOI: 10.3390/ijms241411464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite advances in non-small cell lung cancer (NSCLC) research, this is still the most common cancer type that has been diagnosed up to date. microRNAs have emerged as useful clinical biomarkers in both tissue and liquid biopsy. However, there are no reliable predictive biomarkers for clinical use. We evaluated the preclinical use of seven candidate miRNAs previously identified by our group. We collected a total of 120 prospective samples from 88 NSCLC patients. miRNA levels were analyzed via qRT-PCR from tissue and blood samples. miR-124 gene target prediction was performed using RNA sequencing data from our group and interrogating data from 2952 NSCLC patients from two public databases. We found higher levels of all seven miRNAs in tissue compared to plasma samples, except for miR-124. Our findings indicate that levels of miR-124, both free-circulating and within exosomes, are increased throughout the progression of the disease, suggesting its potential as a marker of disease progression in both advanced and early stages. Our bioinformatics approach identified KPNA4 and SPOCK1 as potential miR-124 targets in NSCLC. miR-124 levels can be used to identify early-stage NSCLC patients at higher risk of relapse.
Collapse
Affiliation(s)
- Darío Sanchez-Cabrero
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Álvaro Garcia-Guede
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Miranda Burdiel
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Olga Pernía
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Julián Colmenarejo-Fernandez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Laura Gutierrez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Oliver Higuera
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Isabel Esteban Rodriguez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Pathology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Rocío Rosas-Alonso
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos Rodriguez-Antolín
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Olga Vera
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Javier De Castro-Carpeño
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Inmaculada Ibanez de Caceres
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
6
|
Tolomeo D, Traversa D, Venuto S, Ebbesen KK, García Rodríguez JL, Tamma G, Ranieri M, Simonetti G, Ghetti M, Paganelli M, Visci G, Liso A, Kok K, Muscarella LA, Fabrizio FP, Frassanito MA, Lamanuzzi A, Saltarella I, Solimando AG, Fatica A, Ianniello Z, Marsano RM, Palazzo A, Azzariti A, Longo V, Tommasi S, Galetta D, Catino A, Zito A, Mazza T, Napoli A, Martinelli G, Kjems J, Kristensen LS, Vacca A, Storlazzi CT. circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer. Genes Chromosomes Cancer 2022; 62:377-391. [PMID: 36562080 DOI: 10.1002/gcc.23121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Debora Traversa
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Karoline K Ebbesen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Grazia Visci
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Maria Antonia Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Vito Longo
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Galetta
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Pathology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Alessandro Napoli
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
8
|
Hao X, Zhang M, Gu M, Wang Z, Zhou S, Li W, Xu S. Long non-coding RNA BZRAP1-AS1 functions in malignancy and prognosis for non-small-cell lung cancer. PeerJ 2022; 10:e13871. [PMID: 36032951 PMCID: PMC9415519 DOI: 10.7717/peerj.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Purpose The function of BZRAP1-AS1 is unknown in lung cancer. We evaluated the clinicopathologic significance of BZRAP1-AS1, and its role in non-small-cell lung cancer (NSCLC) progression. Patient and methods Sixty-three NSCLC patients from Beijing Chest Hospital were included. The expression of BZRAP1-AS1 was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in tumor tissues and adjacent normal tissues. Then, the clinicopathological significance and prognostic value of BZRAP1-AS1 were analyzed by using our cohort and TCGA cohort. Finally, the effect of BZRAP1-AS1 on proliferation and motility of NSCLC cell lines were evaluated by cell growth assay, colony formation assay, xenograft tumorigenesis experiment in nude mice and transwell assays respectively. Results Compared with adjacent normal tissues, BZRAP1-AS1 showed lower expression in NSCLC tumor tissues. As for the relationship between BZRAP1-AS1 and clinical characteristics, our results were consistent with those of TCGA data. BZRAP1-AS1 was lower in T1 than T2-T4 patients, N1-N3 than N0 patients. Low level BZRAP1-AS1 was related to shorter overall survival time (OS) in lung adenocarcinoma (LUAD), and poor first progression time (FP) in LUAD and lung squamous cell carcinoma (LUSC) patients. BZRAP1-AS1 was significantly associated with the prognosis of NSCLC patients. Overexpression of BZRAP1-AS1 inhibited proliferation and migration of H1299 and HCC827 cells. Conclusion BZRAP1-AS1 expression decreases in tumor tissues with the increase of malignancy grades in NSCLC. BZRAP1-AS1 plays an anticancer role by inhibiting cell proliferation, invasion, and metastasis, and has a potential prognostic value in NSCLC. BZRAP1-AS1 may serve as a diagnostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xuefeng Hao
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Minghang Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shijie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weiying Li
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaofa Xu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
9
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
10
|
Hao X, Li W, Li W, Gu M, Wang Z, Nakahashi K, Antonoff MB, Adachi H, Zhou S, Xu S. Re-evaluating the need for mediastinal lymph node dissection and exploring lncRNAs as biomarkers of N2 metastasis in T1 lung adenocarcinoma. Transl Lung Cancer Res 2022; 11:1079-1088. [PMID: 35832449 PMCID: PMC9271436 DOI: 10.21037/tlcr-22-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022]
Abstract
Background Although a well-acknowledged component of curative surgery for lung cancer, investigators have recently questioned the need for mediastinal lymph node dissection (MLND) in early-stage lung cancer cases. As such, the accurate prediction of N2 stage prior to surgery has become increasingly critical. But diagnostic biomarkers predicting N2 metastases are deficient, which are urgently needed. Methods We extracted the data of non-small cell lung cancer (NSCLC) patients whose clinical information and follow-up data are complete and without preoperative induction therapy from the Surveillance, Epidemiology, and End Results (SEER) database. The SEER program registries routinely collect demographic and clinic data on patients. And the prognostic differences were analyzed according to the presence or absence of MLND in their lung resection using the R package. Subsequently, the correlations between pN2 metastasis and clinical characteristics were analyzed. In parallel, the long non-coding RNAs (lncRNAs) associated with pN2 status were screened in The Cancer Genome Atlas (TCGA) database by expression difference analysis between pN0-N1 and pN2 patients using limma. Their diagnostic efficiency for detecting N2 metastases was evaluated using receiver operating characteristic (ROC) curves, and a combined diagnostic model was constructed using logistic regression and ROC curve analyses in lung adenocarcinoma (LUAD). Results There were 16,772 patients in MLND group, and 2,699 cases in no-MLND group. The clinical data from SEER showed that the incidence of N2 metastasis was low in pT1 NSCLC (1,023/16,772, 6.10%), but the prognosis of no-MLND patients was poorer than those who underwent MLND (P<0.001, HR =1.605). Pathological N2 metastasis was correlated with age, histologic type, and tumor size. On the other hand, five lncRNAs (LINC00892, AC099522.2, LINC01481, SCAMP1-AS1, and AC004812.2) were screened and confirmed as potential diagnostic biomarkers for detecting N2 metastasis in pT1 LUAD. The AUC of the combined indicators was 0.857. Conclusions MLND may be oncologically necessary for selected T1 NSCLC patients based on the metastasis incidence and prognosis. A diagnostic model combining LINC00892, AC099522.2, LINC01481, SCAMP1-AS1, and AC004812.2 expression levels may have the potential to be a diagnostic biomarker for detecting N2 metastasis in pT1 LUAD. This study suggests that MLND might be omitted in patients with lower expression level of this diagnostic model.
Collapse
Affiliation(s)
- Xuefeng Hao
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weiying Li
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Li
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Kenta Nakahashi
- Department of Thoracic Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mara B Antonoff
- Thoracic & Cardiovascular Surgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Adachi
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shijie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaofa Xu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
11
|
Qiu M, Chen M, Lan Z, Liu B, Xie J, Li X. Plasmacytoma variant translocation 1 stabilized by EIF4A3 promoted malignant biological behaviors of lung adenocarcinoma by generating circular RNA LMNB2. Bioengineered 2022; 13:10123-10140. [PMID: 35435126 PMCID: PMC9161831 DOI: 10.1080/21655979.2022.2063666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Meizhen Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Zhongping Lan
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Bo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Jinbao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| |
Collapse
|
12
|
Li Y, Song S, Pizzi MP, Han G, Scott AW, Jin J, Xu Y, Wang Y, Huo L, Ma L, Vellano C, Luo X, MacLeod R, Wang L, Wang Z, Ajani JA. LncRNA PVT1 Is a Poor Prognosticator and Can Be Targeted by PVT1 Antisense Oligos in Gastric Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12102995. [PMID: 33076512 PMCID: PMC7602573 DOI: 10.3390/cancers12102995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is inherently resistant or becomes resistant to therapy, leading to a poor prognosis. Mounting evidence suggests that lncRNAs can be used as predictive markers and therapeutic targets in the right context. In this study, we determined the role of lncRNA-PVT1 in GAC along with the value of inhibition of PVT1 using antisense oligos (ASOs). RNA scope in situ hybridization was used to analyze PVT1 expression in tumor tissue microarrays (TMAs) of GAC and paired normal tissues from 792 patients. Functional experiments, including colony formation and invasion assays, were performed to evaluate the effects of PVT1 ASO inhibition of PVT1 in vitro; patient-derived xenograft models were used to evaluate the anti-tumor effects of PVT1 ASOs in vivo. LncRNA-PVT1 was upregulated in GACs compared to the matched adjacent normal tissues in the TMA. LncRNA PVT1 expression was positively correlated with larger tumor size, deeper wall invasion, lymph node metastases, and short survival duration. Inhibition of PVT1 using PVT1 ASOs significantly suppressed tumor cell growth and invasion in vitro and in vivo. PVT1 expression was highly associated with poor prognosis in GAC patients and targeting PVT1 using PVT1 ASOs was effective at curtailing tumor cell growth in vitro and in vivo. Thus, PVT1 is a poor prognosticator as well as therapeutic target. Targeting PVT1 using PVT1 ASOs provides a novel therapeutic strategy for GAC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (L.W.)
| | - Ailing W. Scott
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Christopher Vellano
- Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA; (X.L.); (R.M.)
| | - Robert MacLeod
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA; (X.L.); (R.M.)
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (L.W.)
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (Z.W.); (J.A.A.); Tel.: +1-713-792-3685 (Z.W.)
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
- Correspondence: (Z.W.); (J.A.A.); Tel.: +1-713-792-3685 (Z.W.)
| |
Collapse
|
13
|
Zhang XY, Mao L. Circular RNA Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. Gene 2020; 766:145113. [PMID: 32891771 DOI: 10.1016/j.gene.2020.145113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer remains the most common malignancy in women worldwide. Circular RNAs (circRNAs) are a newly validated type of endogenous non-coding RNAs and accumulating evidence suggests that aberrant circRNAs are involved in disease pathogenesis. However, the function of circRNAs in breast cancer remains largely unknown. This study is aimed to characterize the potential role and mechanism of hsa_circ_0000442 (circ_0000442) in breast cancer. The human breast epithelial cell line (MCF-10A), breast cancer cell lines (MCF-7, T47D, BT474, SK-BR-3, MDA-MB-231, SUM-1315) and the Balb/C Nude mice were used for exploration, and the qRT-PCR, western blot, dual-luciferase reporter assay, glo assay, colony formation assay, and tumor xenograft were carried out for investigation. In this study, the results showed a lower expression of circ_0000442 in breast cancer tumor tissues compared with the adjacent normal tissues. Subsequently, circ_0000442 was found to acted as the sponge of miR-148b-3p in breast cancer cells, thus exerting the tumor-suppressive effects. In the subsequent mechanism study, results showed that miR-148b-3p directly targeted PTEN, a well-known tumor suppressor which negatively regulats PI3K/Akt pathway, thus promoting tumor growth in breast cancer. Overall, this study for the first time identified the tumor-suppressive role of circ_0000442 in breast cancer and found PTEN as a novel direct target of miR-148b-3p. The regulatory role of circ_0000442/miR-148b-3p/PTEN/PI3K/Akt axis was preliminarily confirmed in breast cancer cells and mouse models. These findings suggest an important progress in our standing of breast cancer and lay the foundation for the further function, diagnosis, therapy and prognosis research of circular RNAs in breast cancer.
Collapse
Affiliation(s)
| | - Ling Mao
- Department of Thyroid and Breast Surgery, the Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an 223002, China.
| |
Collapse
|
14
|
Su XH, Zhu YR, Hou YJ, Li K, Dong NH. PVT1 induces NSCLC cell migration and invasion by regulating IL-6 via sponging miR-760. Mol Cell Probes 2020; 54:101652. [PMID: 32866660 DOI: 10.1016/j.mcp.2020.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023]
Abstract
Non-small-cell lung carcinoma (NSCLC) accounts for approximately 80% of lung cancers with a high metastatic potential. Elucidating the mechanism of NSCLC metastasis will provide new promising targets for NSCLC therapy and benefit its prognosis. Plasmacytoma variant translocation 1 (PVT1) has been proven to be overexpressed in NSCLC. Although the oncogenic role of PVT1 in NSCLC has been reported, its mechanism remains unclear. Here, we verified that the knockdown of PVT1 inhibited NSCLC cell migration and invasion, and that its inhibitory role on A549 cells and H1299 cells was antagonized by interleukin-6 (IL-6) treatment. The results revealed that PVT1 regulates IL-6 by sponging miR-760 and identified the binding site of miR-760 in the 3'-UTR of IL-6. In conclusion, a new mechanism was revealed, wherein PVT1 regulates NSCLC cell migration and invasion via miR-760/IL-6, suggesting PVT1/miR-760/IL-6 as promising prognostic biomarkers and therapeutic targets for NSCLC metastasis.
Collapse
Affiliation(s)
- Xiao-Hong Su
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yan-Rong Zhu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yun-Jiao Hou
- Department of Clinical Laboratory, Qingdao Chengyang People's Hospital, Qingdao, Shandong, China
| | - Ke Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Nan-Hai Dong
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
15
|
Ginn L, Shi L, La Montagna M, Garofalo M. LncRNAs in Non-Small-Cell Lung Cancer. Noncoding RNA 2020; 6:E25. [PMID: 32629922 PMCID: PMC7549371 DOI: 10.3390/ncrna6030025] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is associated with a high mortality, with around 1.8 million deaths worldwide in 2018. Non-small-cell lung cancer (NSCLC) accounts for around 85% of cases and, despite improvement in the management of NSCLC, most patients are diagnosed at advanced stage and the five-year survival remains around 15%. This highlights a need to identify novel ways to treat the disease to reduce the burden of NSCLC. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules longer than 200 nucleotides in length which play important roles in gene expression and signaling pathways. Recently, lncRNAs were implicated in cancer, where their expression is dysregulated resulting in aberrant functions. LncRNAs were shown to function as both tumor suppressors and oncogenes in a variety of cancer types. Although there are a few well characterized lncRNAs in NSCLC, many lncRNAs remain un-characterized and their mechanisms of action largely unknown. LncRNAs have success as therapies in neurodegenerative diseases, and having a detailed understanding of their function in NSCLC may guide novel therapeutic approaches and strategies. This review discusses the role of lncRNAs in NSCLC tumorigenesis, highlighting their mechanisms of action and their clinical potential.
Collapse
Affiliation(s)
| | | | | | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester SK10 4TG, UK; (L.G.); (L.S.); (M.L.M.)
| |
Collapse
|