1
|
He M, He Q, Cai X, Chen Z, Lao S, Deng H, Liu X, Zheng Y, Liu X, Liu J, Xie Z, Yao M, Liang W, He J. Role of lymphatic endothelial cells in the tumor microenvironment-a narrative review of recent advances. Transl Lung Cancer Res 2021; 10:2252-2277. [PMID: 34164274 PMCID: PMC8182726 DOI: 10.21037/tlcr-21-40] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background As lymphatic vessel is a major route for solid tumor metastasis, they are considered an essential part of tumor drainage conduits. Apart from forming the walls of lymphatic vessels, lymphatic endothelial cells (LECs) have been found to play multiple other roles in the tumor microenvironment, calling for a more in-depth review. We hope that this review may help researchers gain a detailed understanding of this fast-developing field and shed some light upon future research. Methods To achieve an informative review of recent advance, we carefully searched the Medline database for English literature that are openly published from the January 1995 to December 2020 and covered the topic of LEC or lymphangiogenesis in tumor progression and therapies. Two different authors independently examined the literature abstracts to exclude possible unqualified ones, and 310 papers with full texts were finally retrieved. Results In this paper, we discussed the structural and molecular basis of tumor-associated LECs, together with their roles in tumor metastasis and drug therapy. We then focused on their impacts on tumor cells, tumor stroma, and anti-tumor immunity, and the molecular and cellular mechanisms involved. Special emphasis on lung cancer and possible therapeutic targets based on LECs were also discussed. Conclusions LECs can play a much more complex role than simply forming conduits for tumor cell dissemination. Therapies targeting tumor-associated lymphatics for lung cancer and other tumors are promising, but more research is needed to clarify the mechanisms involved.
Collapse
Affiliation(s)
- Miao He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihua He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zisheng Chen
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shen Lao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Deng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiwen Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongmei Zheng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maojin Yao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The First People Hospital of Zhaoqing, Zhaoqing, China
| | - Jianxing He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Park A, Jeong KS, Lee H, Kim H. Synthesis of 1 H-Indazoles via Silver(I)-Mediated Intramolecular Oxidative C-H Bond Amination. ACS OMEGA 2021; 6:6498-6508. [PMID: 33718741 PMCID: PMC7948442 DOI: 10.1021/acsomega.1c00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
We described a silver(I)-mediated intramolecular oxidative C-H amination that enables the construction of assorted 1H-indazoles that are widely applicable in medicinal chemistry. The developed amination was found to be efficient for the synthesis of a variety of 3-substituted indazoles that are otherwise difficult to be synthesized by other means of C-H aminations. Preliminary mechanistic studies suggested that the current amination proceeds via single electron transfer (SET) mediated by Ag(I) oxidant.
Collapse
Affiliation(s)
- Areum Park
- Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyuk Lee
- Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam University, 99 Daehakro, Yuseong, Daejeon 34134, Republic of Korea
| | - Hyunwoo Kim
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Darwish IA, Khalil NY, AlZeer M. ICH/FDA Guidelines-Compliant Validated Stability-Indicating HPLC-UV Method for the Determination of Axitinib in Bulk and Dosage Forms. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999200802024151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Axitinib (AXT) is a member of the new generation of the kinase inhibitor
indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring
the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active
ingredient.
Objective:
This study was devoted to the development of a simple, sensitive and accurate stabilityindicating
high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV)
for the determination of AXT in its bulk and dosage forms.
Methods:
Waters HPLC system was used. The chromatographic separation of AXT, internal standard
(olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6
mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow
rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated
stress conditions and the degradation products, when any, were completely resolved from the intact
AXT.
Results:
The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of
detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method,
measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range
of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative
conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation
were studied, and the kinetic rate constants were determined. The proposed method was successfully
applied for the determination of AXT in bulk drug and dosage forms.
Conclusions:
A stability-indicating HPLC-UV method was developed and validated for assessing
AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International
Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results
demonstrated that the method would have great value when applied in quality control and stability
studies for AXT.
Collapse
Affiliation(s)
- Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasr Y. Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad AlZeer
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Wu ZS, Ding W, Cai J, Bashir G, Li YQ, Wu S. Communication Of Cancer Cells And Lymphatic Vessels In Cancer: Focus On Bladder Cancer. Onco Targets Ther 2019; 12:8161-8177. [PMID: 31632067 PMCID: PMC6781639 DOI: 10.2147/ott.s219111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is one of the most commonly diagnosed cancers worldwide and causes the highest lifetime treatment costs per patient. Bladder cancer is most likely to metastasize through lymphatic ducts, and once the lymph nodes are involved, the prognosis is poorly and finitely improved by current modalities. The underlying metastatic mechanism for bladder cancer is thus becoming a research focus to date. To identify relevant published data, an online search of the PubMed/Medline archives was performed to locate original articles and review articles regarding lymphangiogenesis and lymphatic metastasis in urinary bladder cancer (UBC), and was limited to articles in English published between 1998 and 2018. A further search of the clinical trials.gov search engine was conducted to identify both trials with results available and those with results not yet available. Herein, we summarized the unique mechanisms and biomarkers involved in the malignant progression of bladder cancer as well as their emerging roles in therapeutics, and that current data suggests that lymphangiogenesis and lymph node invasion are important prognostic factors for UBC. The growing knowledge about their roles in bladder cancers provides the basis for novel therapeutic strategies. In addition, more basic and clinical research needs to be conducted in order to identify further accurate predictive molecules and relevant mechanisms.
Collapse
Affiliation(s)
- Zhang-song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Wa Ding
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Jiajia Cai
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| | - Ghassan Bashir
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Yu-qing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| |
Collapse
|
5
|
Ehrhardt M, Craveiro RB, Velz J, Olschewski M, Casati A, Schönberger S, Pietsch T, Dilloo D. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma. J Cell Mol Med 2018; 22:2153-2161. [PMID: 29377550 PMCID: PMC5867109 DOI: 10.1111/jcmm.13489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi‐kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti‐neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c‐myc‐amplified Non‐WNT/Non‐SHH and SHH‐TP53‐mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c‐kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi‐modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC‐0941 enhances the anti‐neoplastic efficacy of Axitinib against c‐myc‐amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes.
Collapse
Affiliation(s)
- Michael Ehrhardt
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Rogerio B Craveiro
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Julia Velz
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Martin Olschewski
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Anna Casati
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
6
|
Bellesoeur A, Carton E, Alexandre J, Goldwasser F, Huillard O. Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy. Drug Des Devel Ther 2017; 11:2801-2811. [PMID: 29033542 PMCID: PMC5614734 DOI: 10.2147/dddt.s109640] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since 2005, the approved first-line treatment of metastatic renal cell carcinoma consists in tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor receptors (VEGFRs). Axitinib is an oral second-generation TKI and a potent VEGFR inhibitor with a half maximal inhibitory concentration for the VEGF family receptors 10-fold lower than other TKIs. Axitinib activity in renal cell carcinoma (RCC) patients has been studied in various settings and particularly as second-line treatment. In this setting, axitinib with clinically based dose escalation compared to sorafenib has demonstrated an improvement in progression-free survival in a randomized Phase III trial leading to US Food and Drug Administration approval. In the first-line setting, axitinib failed to demonstrate improved efficacy over sorafenib, but the field of RCC treatment is rapidly changing with novel TKIs as cabozantinib or the emergence of check point inhibitors as nivolumab and the place of axitinib in therapy is therefore challenged. In this review, we focus on axitinib pharmacological and clinical properties in RCC patients and discuss its place in the treatment of patients with RCC.
Collapse
Affiliation(s)
| | - Edith Carton
- Department of Medical Oncology, Hopital Cochin AP-HP, Paris, France
| | - Jerome Alexandre
- Department of Medical Oncology, Hopital Cochin AP-HP, Paris, France
| | | | - Olivier Huillard
- Department of Medical Oncology, Hopital Cochin AP-HP, Paris, France
| |
Collapse
|
7
|
Axitinib in metastatic renal cell carcinoma: single center experience. Contemp Oncol (Pozn) 2017; 20:481-485. [PMID: 28239287 PMCID: PMC5320462 DOI: 10.5114/wo.2016.65609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Due to the emergence of new therapeutic opportunities in the second-line treatment of metastatic renal cell carcinoma, the choice of the appropriate medication requires consideration. Making the selection one should take into account the likelihood of response, the probability of toxicity, properties of the drug and the clinical characteristics of the patient. Aim of the work was to confirm antitumor efficacy of axitinib in patients with metastatic clear-cell renal-cell carcinoma in the second line treatment remaining under the care of our institution. The primary objective was to determine antitumor activity, secondary – to evaluate progression free survival, safety of the treatment and to analyse clinical characteristics of treated population. Results Treatment records of 27 patients (9 females, 18 males) treated from October 2014 to the present (July 2016) were reviewed. The median duration of treatment which corresponds to the time to disease progression in observed population was 6 months (range: under 1 month – 16 months). 1 patient (3.7%) had got objective response (PR, partial remission). Clinical benefit rate (PR + SD (stable disease) was 66%. 9 patients (33.33%) experienced treatment toxicity only in the first degree of CTCAE (common toxicity criteria for adverse events), 11 patients (40.74%) presented the second degree toxicity and 5 patients (18.5%) – third degree. The most commonly reported treatment related adverse events were diarrhea (47%), fatigue (26%), hand-foot syndrome (26%), deterioration of blood pressure control (22.2%), abnormal liver function tests (18.5%), mucositis (11.1%). We observed 3 cases of unacceptable toxicity. Conclusions Axitinib confirms its effectiveness also in situation outside clinical trials, however, it is characterized by significant toxicity. Therefore, qualification for treatment should take into account the clinical patient characteristics. Effective diagnosis and treatment of side effects and dose optimization are the key skills of the attending physician.
Collapse
|
8
|
|
9
|
Chang K, Karnad A, Zhao S, Freeman JW. Roles of c-Met and RON kinases in tumor progression and their potential as therapeutic targets. Oncotarget 2016; 6:3507-18. [PMID: 25784650 PMCID: PMC4414132 DOI: 10.18632/oncotarget.3420] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
c-Met and receptor originated from nantes (RON) are structurally related transmembrane phosphotyrosine kinase receptors. c-Met and RON show increased expression or activity in a variety of tumors leading to tumor progression and may play a role in acquired resistance to therapy. Although often co-expressed, the distinct functional roles of c-Met and RON are not fully understood. c-Met and RON form both activated homodimers and heterodimers with themselves and other families of phosphotyrosine kinase receptors. Inhibitors for c-Met and RON including small molecular weigh kinase inhibitors and neutralizing antibodies are in pre-clinical investigation and clinical trials. Several of the tyrosine kinase inhibitors have activity against both c-Met and RON kinases whereas the antibodies generally are target specific. As with many targeted agents used to treat solid tumors, it is likely that c-Met/RON inhibitors will have greater benefit when used in combination with chemotherapy or other targeted agents. A careful analysis of c-Met/RON expression or activity and a better elucidation of how they influence cell signaling will be useful in predicting which tumors respond best to these inhibitors as well as determining which agents can be used with these inhibitors for combined therapy.
Collapse
Affiliation(s)
- Katherine Chang
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, TX, USA
| | - Anand Karnad
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, TX, USA
| | - Shujie Zhao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James W Freeman
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, TX, USA.,Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, TX, USA
| |
Collapse
|
10
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
11
|
Mehta A, Sonpavde G, Escudier B. Tivozanib for the treatment of renal cell carcinoma: results and implications of the TIVO-1 trial. Future Oncol 2014; 10:1819-26. [DOI: 10.2217/fon.14.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Multiple VEGF and mTOR inhibitors have provided improvements in median progression-free survival for metastatic renal cell carcinoma. Tivozanib is a potent and specific VEGFR-1, -2 and -3 tyrosine kinase inhibitor. Promising results led to the TIVO-I Phase III trial (n = 517) comparing tivozanib with sorafenib in patients who were either untreated or had received cytokines. This study met its primary end point by statistically significantly improving progression-free survival, but did impair overall survival, a secondary end point. Crossover from sorafenib to tivozanib may have confounded survival. Because of that detrimental survival, the US FDA rejected approval in May 2013, leading to interruption in its development for renal cell carcinoma.
Collapse
Affiliation(s)
- Amikumar Mehta
- University of Alabama, Birmingham (UAB) Comprehensive Cancer Center, Birmingham, AL, USA
| | - Guru Sonpavde
- University of Alabama, Birmingham (UAB) Comprehensive Cancer Center, Birmingham, AL, USA
| | - Bernard Escudier
- Department of Medical Oncology, Institut Gustave Roussy, 39 Rue Camille Desmoulins, 94805 Villejuif, France
| |
Collapse
|
12
|
Affiliation(s)
- Timothy Tyler
- Desert Regional Medical Center-Comprehensive Cancer Center, Palm Springs, California
| |
Collapse
|
13
|
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 2014; 14:159-72. [PMID: 24561443 DOI: 10.1038/nrc3677] [Citation(s) in RCA: 565] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.
Collapse
Affiliation(s)
- Steven A Stacker
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Steven P Williams
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Tara Karnezis
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Ramin Shayan
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia. [3] Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. [4] O'Brien Institute, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Stephen B Fox
- 1] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [2] Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Marc G Achen
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
14
|
Frantzi M, Metzger J, Banks RE, Husi H, Klein J, Dakna M, Mullen W, Cartledge JJ, Schanstra JP, Brand K, Kuczyk MA, Mischak H, Vlahou A, Theodorescu D, Merseburger AS. Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. J Proteomics 2013; 98:44-58. [PMID: 24374379 DOI: 10.1016/j.jprot.2013.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/14/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is often accompanied by non-specific symptoms. The increase of incidentally discovered small renal masses also presents a diagnostic dilemma. This study investigates whether RCC-specific peptides with diagnostic potential can be detected in urine and whether a combination of such peptides could form a urinary screening tool. MATERIALS AND METHODS For the discovery of RCC-specific biomarkers, we have employed CE-MS to analyze urine samples from patients with RCC (N=40) compared to non-diseased controls (N=68). RESULTS AND DISCUSSION 86 peptides were found to be specifically associated to RCC, of which sequence could be obtained for 40. A classifier based on these peptides was evaluated in an independent set of 76 samples, resulting in 80% sensitivity and 87% specificity. The specificity of the marker panel was further validated in a historical dataset of 1077 samples including age-matched controls (N=218), patients with related cancer types and renal diseases (N=859). In silico protease prediction based on the cleavage sites of differentially excreted peptides, suggested modified activity of certain proteases including cathepsins, ADAMTS and kallikreins some of which were previously found to be associated to RCC. CONCLUSIONS RCC can be detected with high accuracy based on specific urinary peptides. BIOLOGICAL SIGNIFICANCE Clear cell renal cell carcinoma (RCC) has the highest incidence among the renal malignancies, often presenting non-specific or no symptoms at all. Moreover, with no diagnostic marker being available so far, almost 30% of the patients are diagnosed with metastatic disease and 30-40% of the patients initially diagnosed with localized tumor relapse. These facts introduce the clinical need of early diagnosis. This study is focused on the investigation of a marker model based on urinary peptides, as a tool for the detection of RCC in selected patients at risk. Upon evaluation of the marker model in an independent blinded set of 76 samples, 80% sensitivity and 87% specificity were reported. An additional dataset of 1077 samples was subsequently employed for further evaluation of the specificity of the classifier.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques diagnostics GmbH, Hannover, Germany; Biomedical Research Foundation, Academy of Athens, Biotechnology Division, Athens, Greece.
| | | | - Rosamonde E Banks
- St James's University Hospital, Cancer Research UK Clinical Centre, Clinical and Biomedical Proteomics Group, Leeds, United Kingdom
| | - Holger Husi
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Julie Klein
- Mosaiques diagnostics GmbH, Hannover, Germany
| | | | - William Mullen
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | | | - Joost P Schanstra
- Inserm, U858/I2MR, Department of Renal and Cardiac Remodeling, Team #5, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France; Université Toulouse III Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, Toulouse F-31000, France
| | - Korbinian Brand
- Hannover Medical School, Institute of Clinical Chemistry, Hannover, Germany
| | - Markus A Kuczyk
- Hannover Medical School, Department of Urology and Urological Oncology, Hannover, Germany
| | - Harald Mischak
- Mosaiques diagnostics GmbH, Hannover, Germany; University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Biotechnology Division, Athens, Greece
| | - Dan Theodorescu
- University of Colorado, Department of Surgery and Pharmacology, Aurora, CO, USA; University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Axel S Merseburger
- Hannover Medical School, Department of Urology and Urological Oncology, Hannover, Germany
| |
Collapse
|
15
|
Le C, Karnezis T, Achen MG, Stacker S, Sloan E. Lymphovascular and neural regulation of metastasis: shared tumour signalling pathways and novel therapeutic approaches. Best Pract Res Clin Anaesthesiol 2013; 27:409-25. [PMID: 24267548 PMCID: PMC4007214 DOI: 10.1016/j.bpa.2013.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
The progression of cancer is supported by a wide variety of non-neoplastic cell types which make up the tumour stroma, including immune cells, endothelial cells, cancer-associated fibroblasts and nerve fibres. These host cells contribute molecular signals that enhance primary tumour growth and provide physical avenues for metastatic dissemination. This article provides an overview of the role of blood vessels, lymphatic vessels and nerve fibres in the tumour microenvironment and highlights the interconnected molecular signalling pathways that control their development and activation in cancer. Further, this article highlights the known pharmacological agents which target these pathways and discusses the potential therapeutic uses of drugs that target angiogenesis, lymphangiogenesis and stress-response pathways in the different stages of cancer care.
Collapse
Affiliation(s)
- C.P. Le
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - T. Karnezis
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - M. G. Achen
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - S.A. Stacker
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - E.K. Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Cancer Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, UCLA AIDS Institute and Jonsson Comprehensive Cancer Center, University of California Los Angeles, USA
| |
Collapse
|
16
|
Dornbusch J, Zacharis A, Meinhardt M, Erdmann K, Wolff I, Froehner M, Wirth MP, Zastrow S, Fuessel S. Analyses of potential predictive markers and survival data for a response to sunitinib in patients with metastatic renal cell carcinoma. PLoS One 2013; 8:e76386. [PMID: 24086736 PMCID: PMC3785463 DOI: 10.1371/journal.pone.0076386] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/30/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Patients with metastatic clear cell renal cell carcinoma (ccRCC) are frequently treated with tyrosine kinase inhibitors (TKI) such as sunitinib. It inhibits angiogenic pathways by mainly targeting the receptors of VEGF and PDGF. In ccRCC, angiogenesis is characterized by the inactivation of the von Hippel-Lindau gene (VHL) which in turn leads to the induction of HIF1α target genes such as CA9 and VEGF. Furthermore, the angiogenic phenotype of ccRCC is also reflected by endothelial markers (CD31, CD34) or other tumor-promoting factors like Ki67 or survivin. METHODS Tissue microarrays from primary tumor specimens of 42 patients with metastatic ccRCC under sunitinib therapy were immunohistochemically stained for selected markers related to angiogenesis. The prognostic and predictive potential of theses markers was assessed on the basis of the objective response rate which was evaluated according to the RECIST criteria after 3, 6, 9 months and after last report (12-54 months) of sunitinib treatment. Additionally, VHL copy number and mutation analyses were performed on DNA from cryo-preserved tumor tissues of 20 ccRCC patients. RESULTS Immunostaining of HIF-1α, CA9, Ki67, CD31, pVEGFR1, VEGFR1 and -2, pPDGFRα and -β was significantly associated with the sunitinib response after 6 and 9 months as well as last report under therapy. Furthermore, HIF-1α, CA9, CD34, VEGFR1 and -3 and PDGRFα showed significant associations with progression-free survival (PFS) and overall survival (OS). In multivariate Cox proportional hazards regression analyses high CA9 membrane staining and a response after 9 months were independent prognostic factors for longer OS. Frequently observed copy number loss and mutation of VHL gene lead to altered expression of VHL, HIF-1α, CA9, and VEGF. CONCLUSIONS Immunoexpression of HIF-1α, CA9, Ki67, CD31, pVEGFR1, VEGFR1 and -2, pPDGFRα and -β in the primary tumors of metastatic ccRCC patients might support the prediction of a good response to sunitinib treatment.
Collapse
Affiliation(s)
- Juana Dornbusch
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | | | - Matthias Meinhardt
- Institute of Pathology, Dresden University of Technology, Dresden, Germany
| | - Kati Erdmann
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Ingmar Wolff
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Michael Froehner
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Manfred P. Wirth
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Stefan Zastrow
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
17
|
Brauer MJ, Zhuang G, Schmidt M, Yao J, Wu X, Kaminker JS, Jurinka SS, Kolumam G, Chung AS, Jubb A, Modrusan Z, Ozawa T, James CD, Phillips H, Haley B, Tam RNW, Clermont AC, Cheng JH, Yang SX, Swain SM, Chen D, Scherer SJ, Koeppen H, Yeh RF, Yue P, Stephan JP, Hegde P, Ferrara N, Singh M, Bais C. Identification and analysis of in vivo VEGF downstream markers link VEGF pathway activity with efficacy of anti-VEGF therapies. Clin Cancer Res 2013; 19:3681-92. [PMID: 23685835 DOI: 10.1158/1078-0432.ccr-12-3635] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to identify conserved pharmacodynamic and potential predictive biomarkers of response to anti-VEGF therapy using gene expression profiling in preclinical tumor models and in patients. EXPERIMENTAL DESIGN Surrogate markers of VEGF inhibition [VEGF-dependent genes or VEGF-dependent vasculature (VDV)] were identified by profiling gene expression changes induced in response to VEGF blockade in preclinical tumor models and in human biopsies from patients treated with anti-VEGF monoclonal antibodies. The potential value of VDV genes as candidate predictive biomarkers was tested by correlating high or low VDV gene expression levels in pretreatment clinical samples with the subsequent clinical efficacy of bevacizumab (anti-VEGF)-containing therapy. RESULTS We show that VDV genes, including direct and more distal VEGF downstream endothelial targets, enable detection of VEGF signaling inhibition in mouse tumor models and human tumor biopsies. Retrospective analyses of clinical trial data indicate that patients with higher VDV expression in pretreatment tumor samples exhibited improved clinical outcome when treated with bevacizumab-containing therapies. CONCLUSIONS In this work, we identified surrogate markers (VDV genes) for in vivo VEGF signaling in tumors and showed clinical data supporting a correlation between pretreatment VEGF bioactivity and the subsequent efficacy of anti-VEGF therapy. We propose that VDV genes are candidate biomarkers with the potential to aid the selection of novel indications as well as patients likely to respond to anti-VEGF therapy. The data presented here define a diagnostic biomarker hypothesis based on translational research that warrants further evaluation in additional retrospective and prospective trials.
Collapse
|
18
|
Liapi E, Geschwind JFH. Combination of local transcatheter arterial chemoembolization and systemic anti-angiogenic therapy for unresectable hepatocellular carcinoma. Liver Cancer 2012; 1:201-15. [PMID: 24159585 PMCID: PMC3760461 DOI: 10.1159/000343835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pathophysiologic complexity of hepatocellular carcinoma (HCC) and underlying hepatic cirrhosis, make optimal treatment choice a clinical challenge. The radical change in the treatment algorithm of patients with advanced unresectable HCC over the past 7 years, with the introduction of anti-angiogenic agents in patients with only preserved liver function reflect this challenge. Even though data from studies on the combination of transcatheter arterial chemoembolization and anti-angiogenic agents demonstrate a survival advantage in selected patients, this combination is not straightforward. In this review, we'll examine current data of administering anti-angiogenic therapy in combination with transcatheter arterial chemoembolization and critically evaluate the progress and gaps in current knowledge.
Collapse
Affiliation(s)
| | - Jean-Francois H. Geschwind
- Division of Vascular and Interventional Radiology, Johns Hopkins University School of Medicine, Interventional Radiology Center, Baltimore, Maryland, USA
| |
Collapse
|