1
|
Kang YK, Ryu MH, Di Bartolomeo M, Chau I, Yoon H, Kim JG, Lee KW, Oh SC, Takashima A, Kryzhanivska A, Chao Y, Evesque L, Schenker M, McGinn A, Zhao Y, Lee J, Wyrwicz L, Boku N. Rivoceranib, a VEGFR-2 inhibitor, monotherapy in previously treated patients with advanced or metastatic gastric or gastroesophageal junction cancer (ANGEL study): an international, randomized, placebo-controlled, phase 3 trial. Gastric Cancer 2024; 27:375-386. [PMID: 38281295 PMCID: PMC10896803 DOI: 10.1007/s10120-023-01455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Rivoceranib is an oral, selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2. ANGEL (NCT03042611) was a global, randomized, double-blinded, placebo-controlled, phase 3 study evaluating rivoceranib as 3rd-line or ≥4th-line therapy in patients with advanced/metastatic gastric or gastroesophageal junction (GEJ) cancer. METHODS Patients had failed ≥2 lines of chemotherapy and were randomized 2:1 to rivoceranib 700 mg once daily or placebo with best supportive care. PRIMARY ENDPOINT overall survival (OS) in the intention-to-treat population. Secondary endpoints: progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR) by blinded independent central review (BICR). RESULTS In total, 460 patients (rivoceranib n = 308, placebo n = 152) were enrolled. OS was not statistically different for rivoceranib versus placebo (median 5.78 vs. 5.13 months; hazard ratio [HR] 0.93, 95% CI 0.74-1.15; p = 0.4724). PFS by BICR (median 2.83 vs. 1.77 months; HR 0.58, 95% CI 0.47-0.71; p < 0.0001), ORR (6.5% vs. 1.3%; p = 0.0119), and DCR (40.3 vs. 13.2%; p < 0.0001) were improved with rivoceranib versus placebo. In patients receiving ≥4th-line therapy, OS (median 6.34 vs. 4.73 months; p = 0.0192) and PFS by BICR (median 3.52 vs. 1.71 months; p < 0.0001) were improved with rivoceranib versus placebo. The most common grade ≥ 3 treatment-emergent adverse events with rivoceranib were hypertension (17.9%), anemia (10.4%), aspartate aminotransferase increased (9.4%), asthenia (8.5%), and proteinuria (7.5%). CONCLUSIONS This study did not meet its primary OS endpoint. Compared to placebo, rivoceranib improved PFS, ORR, and DCR. Rivoceranib also improved OS in a prespecified patient subgroup receiving ≥4th-line therapy.
Collapse
Affiliation(s)
- Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | | | - Ian Chau
- Royal Marsden Hospital, Sutton, UK
| | - Harry Yoon
- Mayo Clinical Cancer Center, Rochester, MN, USA
| | - Jong Gwang Kim
- Kyungpook National University Chilgok Hospital, Daegu, Gyeonggi-Do, Korea
| | - Keun-Wook Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Songnam, Korea
| | | | | | - Anna Kryzhanivska
- Ivano-Frankivsk Regional Oncological Center, Ivano-Frankivsk, Ukraine
| | - Yee Chao
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Michael Schenker
- Centrul de Oncologie 'Sf. Nectarie', Sectia de Oncologie Medicala, Craiova, Romania
| | | | - Yufan Zhao
- Elevar Therapeutics, Inc, Fort Lee, NJ, USA
| | | | - Lucjan Wyrwicz
- Klinika Onkologii I Radioterapii, Centrum Onkologii, Instytut Im.Marii Sklodowskiej-Curie, Warsaw, Poland
| | | |
Collapse
|
2
|
Li J, Han T. Comprehensive analysis of the oncogenic roles of vascular endothelial growth factors and their receptors in stomach adenocarcinoma. Heliyon 2023; 9:e17687. [PMID: 37449140 PMCID: PMC10336736 DOI: 10.1016/j.heliyon.2023.e17687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Background Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play complicated oncogenic roles in multiple tumors by initiating and promoting tumor angiogenesis and lymphangiogenesis. The main goal of our study was to comprehensively investigate the oncogenic roles of VEGFs and VEGFRs in stomach adenocarcinoma (STAD). Methods The present study applied multiple bioinformatic tools to comprehensively explore the expression levels, prognostic values, genetic alterations and immune infiltrations of VEGFs and VEGFRs in STAD patients. Results We found that VEGFA, VEGFC, placenta growth factor, FLT1, KDR, FLT4, and Neuropilin 1 were overexpressed in STAD, while the expression of VEGFB and VEGFD were decreased. Survival analysis revealed that higher transcription levels of VEGF/VEGFRs were obviously correlated with worse clinical outcome in STAD patients. Additionally, high alteration frequencies of VEGFs and VEGFRs (27%) were observed in STAD patients, and alterations of VEGFs and VEGFRs improved their prognosis. The expression of VEGFs and VEGFRs was remarkably associated with immune cell infiltration and immune checkpoint expression in STAD patients. Conclusion Our study systematically explored the transcriptome profiles and distinct prognostic values of VEGFs and their receptors in STAD and contributed to a better understanding of the oncogenic roles of VEGF/VEGFR members in STAD.
Collapse
Affiliation(s)
| | - Ting Han
- Corresponding author. Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
3
|
Wu X, Zhang H, Jiang G, Peng M, Li C, Lu J, Jiang S, Yang X, Jiang Y. Exosome-transmitted S100A4 induces immunosuppression and non-small cell lung cancer development by activating STAT3. Clin Exp Immunol 2022; 210:309-320. [PMID: 36370151 PMCID: PMC9985167 DOI: 10.1093/cei/uxac102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the primary reason of tumor morbidity and mortality worldwide. We aimed to study the transfer process of S100A4 between cells and whether it affected NSCLC development by affecting STAT3 expression. First, S100A4 expression in NSCLC cells was measured. The exosomes in MRC-5, A549, and H1299 cells were isolated and identified. We constructed si-S100A4 and si-PD-L1 to transfect A549 cells and oe-S100A4 to transfect H1299 cells, and tested the transfection efficiency. Cell function experiments were performed to assess cell proliferation, clone number, apoptosis, cell cycle, migration, and invasion abilities. In addition, ChIP was applied to determine the targeting relationship between S100A4 and STAT3. Next, we explored NSCLC cell-derived exosomes role in NSCLC progress by transmitting S100A4. Finally, we verified the function of exosome-transmitted S100A4 in NSCLC in vivo. High expression of S100A4 was secreted by exosomes. After knocking down S100A4, cell proliferation ability was decreased, clones number was decreased, apoptosis was increased, G1 phase was increased, S phase was repressed, and migration and invasion abilities were also decreased. ChIP validated STAT3 and PD-L1 interaction. After knocking down S100A4, PD-L1 expression was decreased, while ov-STAT3 reversed the effect of S100A4 on PD-L1 expression. Meanwhile, S100A4 inhibited T-cell immune activity by activating STAT3. In addition, knockdown of PD-L1 inhibited cell proliferation, migration, and invasion. NSCLC cell-derived exosomes promoted cancer progression by transmitting S100A4 to activate STAT3 pathway. Finally, in vivo experiments further verified that exosome-transmitted S100A4 promoted NSCLC progression. Exosome-transmitted S100A4 induces immunosuppression and the development of NSCLC by activating STAT3.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Minlian Peng
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Cheng Li
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jiaxin Lu
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Shiyin Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Changsha, China
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
4
|
Wang Y, Wang B, Xiang L, Deng J, Xu B, He P, Pu W, Wang H, Fan Y, Chen H. Case Report: Anlotinib combined with PD-1 inhibitor and sequential GA regimen or FOLFIRINOX Chemotherapy in treatment of KRAS G12V mutated pancreatic ductal adenocarcinoma with liver metastasis: A case and literature review. Front Immunol 2022; 13:1016647. [PMID: 36311715 PMCID: PMC9606775 DOI: 10.3389/fimmu.2022.1016647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
There is a high mortality rate associated with pancreatic cancer, and the incidence has been rising globally in recent decades. When patients are diagnosed, there is little chance that surgery will be beneficial. Systemic chemotherapy is the currently accepted treatment option for patients with metastatic advanced pancreatic cancer. However, a very limited survival improvement is possible with chemotherapy for advanced pancreatic cancer, and chemotherapy resistance plays a significant role in poor prognosis. Despite the fact that targeting growth factor receptor inhibitors such as anti-vascular endothelial growth factor (VEGFR) antibodies significantly improves survival in pancreatic cancer, only a very small number of patients benefit from the treatment. As emerging drugs, immune checkpoint inhibitors (ICIs) have demonstrated significant therapeutic effects in several tumor types, but monotherapy is not effective in pancreatic cancer. In the first-line treatment of solid tumors, combination therapy may result in remarkable outcomes. Here in, we have reported a younger patient with pancreatic ductal adenocarcinoma with liver metastasis (PDACLM) who had a long-term partial response and good tolerance to the combination of anlotinib and programmed cell death protein 1 (PD-1) inhibitor and chemotherapy. Gene analysis suggested only one mutation in the Kirsten rat sarcoma viral oncogene (KRAS) G12V gene. Consequently, there is some hope for patients with pancreatic cancer, especially for KRAS G12V gene mutated patients. Upon reviewing the literature, this patient’s combination therapy is the first to have been reported.
Collapse
Affiliation(s)
- Yunpeng Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Xiang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Junge Deng
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Puyi He
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Weigao Pu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyun Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Fan
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yong Fan, ; Hao Chen,
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Department of Cancer Center, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yong Fan, ; Hao Chen,
| |
Collapse
|
5
|
Yu X, He S, Shen J, Huang Q, Yang P, Huang L, Pu D, Wang L, Li L, Liu J, Liu Z, Zhu L. Tumor vessel normalization and immunotherapy in gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221110176. [PMID: 35872968 PMCID: PMC9297465 DOI: 10.1177/17588359221110176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor, and patients with GC have a low survival rate due to limited effective treatment methods. Angiogenesis and immune evasion are two key processes in GC progression, and they act synergistically to promote tumor progression. Tumor vascular normalization has been shown to improve the efficacy of cancer immunotherapy, which in turn may be improved through enhanced immune stimulation. Therefore, it may be interesting to identify synergies between immunomodulatory agents and anti-angiogenic therapies in GC. This strategy aims to normalize the tumor microenvironment through the action of the anti-vascular endothelial growth factor while stimulating the immune response through immunotherapy and prolonging the survival of GC patients.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Shan He
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jian Shen
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiushi Huang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Peng Yang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Lin Huang
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Pu
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zelong Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Wuhou District, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
6
|
The Inhibitory Effect and Mechanism of Ferula akitschkensis Volatile Oil on Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5092742. [PMID: 35392643 PMCID: PMC8983199 DOI: 10.1155/2022/5092742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Ferula akitschkensis volatile oil (FAVO) has a good inhibitory activity on gastric cancer cell proliferation, but the mechanism of action is not yet clear. In this study, we tested the antigastric cancer efficacy and mechanism of FAVO using both in vivo and in vitro models. The results showed that FAVO effectively inhibited the proliferation, migration, and invasion of human gastric cancer SGC-7901 cells, the formation of small tubules of human umbilical vein endothelial cells as well as zebrafish intersegmental vessel and intestinal vein angiogenesis. In vivo experiments showed that FAVO significantly delayed the growth of SGC-7901 tumor-bearing nude mice and induced higher serum IL-2 and IFN-γ and reduced serum IL-6. Western blot results showed that FAVO reduced the expression of HIF-2α, VEGF, VEGFR2, P-VEGFR2, Akt, and P-Akt in SGC-7901 cells with CoCl2 induced hypoxia. We further clarified the main chemical components of FAVO through GC-MS analysis. In summary, FAVO may inhibit tumor growth and angiogenesis via inhibiting the HIF-2α/VEGF signaling pathway.
Collapse
|
7
|
The Effect of miR-520b on Macrophage Polarization and T Cell Immunity by Targeting PTEN in Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5170496. [PMID: 34659411 PMCID: PMC8514911 DOI: 10.1155/2021/5170496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Background Breast cancer is the most common cancer in women. miR-520b had binding sites with PTEN through the bioinformatics prediction. But few studies have been conducted on miR-520b and PTEN in breast cancer. We aimed to explore the effect of miR-520b and PTEN on breast cancer and the mechanisms involved. Methods Clinical samples of breast cancer were collected. Bioinformatics analysis was performed to screen the differentially expressed miRNAs. CD4 T cells and CD8 T cells were cocultured with MCF-7 cells in the Transwell system. Moreover, MCF-7 cells and M0 macrophage cocultured cell lines were constructed. qRT-PCR, IF, western blot, flow cytometry, and ELISA were performed to detect related factors expression. Starbase and dual-luciferase reporter assay verified the binding of miR-520b to PTEN. The tumor formation model was established to study miR-520b and PTEN effects in vivo. Results The differentially expressed miR-520b was screened via miRNAs sequencing and cell verification. miR-520b expression was high, PTEN was low in tumor tissues, T cells and NK cells were inhibited, and macrophages were transformed into M2 type, promoting immune escape. In addition, miR-520b bound to PTEN. Then, splenic CD4 T cells and CD8 T cells were successfully sorted. During CD4 T cell differentiation to Th1 and Treg, Th1 was inhibited, and Treg was activated. We found the polarization of macrophages was related to breast cancer. The proportion of CD206 cells increased and CD68 cells decreased in the miR-520b mimics group compared with the mimic NC group. Compared with the inhibitor NC group, the proportion of CD206 cells decreased, and CD68 cells increased in the miR-520b inhibitor group. In vivo experiments showed that miR-520b inhibitor inhibited tumor growth and promoted PTEN expression. The proportion of CD3, CD4, CD8, NK1.1, CD4+IFNγ, and CD68 cells increased, while FOXP3 and CD206 cells decreased in the miR-520b inhibitor group compared with the inhibitor NC group. However, the proportion of CD3, CD4, CD8, NK1.1, CD4+IFNγ, and CD68 cells decreased, while FOXP3 and CD206 cells increased after the addition of siPTEN. Conclusions miR-520b inhibited PTEN and aggravated breast tumors. miR-520b inhibitor enhanced CD4 and CD8 cell populations in the tumor immune microenvironment and inhibited tumor growth.
Collapse
|
8
|
Ohtaki Y, Kaira K, Yajima T, Erkhem-Ochir B, Kawashima O, Kamiyoshihara M, Igai H, Onozato R, Ibe T, Kosaka T, Nakazawa S, Nagashima T, Oyama T, Shirabe K. Comprehensive expressional analysis of chemosensitivity-related markers in large cell neuroendocrine carcinoma of the lung. Thorac Cancer 2021; 12:2666-2679. [PMID: 34453496 PMCID: PMC8520808 DOI: 10.1111/1759-7714.14102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Various drug‐sensitivity markers have been reported to be associated with tumor progression and chemotherapy resistance. Detailed expression profiles of sensitivity markers for cytotoxic chemotherapy in pulmonary large cell neuroendocrine carcinoma (LCNEC) remain unclear. Herein, we aimed to clarify the correlation between the expression of drug‐sensitivity markers and clinicopathological features, prognostic impact, and status of tumor immunity in patients with LCNEC. Methods We retrospectively analyzed the correlation between clinicopathological features and the expression of drug‐sensitivity‐related markers, including vascular endothelial growth factor 2 (VEGFR2), thymidylate synthase (TS), tubulin beta 3 class III (TUBB3), topoisomerase I (Topo‐I), and Topo‐II in 92 surgically resected LCNEC samples. Furthermore, we examined the prognostic significance of expression of these and their correlation with the immune cell status. Results Overall, high expression of TS, TUBB3, VEGFR2, Topo‐I, and Topo‐II was detected in 50 (54%), 31 (34%), 23 (25%), 65 (71%), and 36 (39%) samples, respectively. Univariate and multivariate analyses revealed that advanced pathological T and N factors, positive lymphatic permeation, and Topo‐II expression were independent unfavorable prognosticators for recurrence‐free survival, and advanced pathological T and N factors, Topo‐II positive expression, and TS positive expression were independent unfavorable prognosticators for overall survival. In terms of correlation with immune cell status, higher expression of VEGFR2 was closely linked to negative PD‐L1 expression. Conclusions These findings suggest that elevated Topo‐II and TS expression may contribute to poor outcomes through protumoral biology in patients with LCNEC, and elevated VEGFR2 expression might negatively impact tumor immune reactions in LCNEC.
Collapse
Affiliation(s)
- Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Toshiki Yajima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Bilguun Erkhem-Ochir
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Kawashima
- Department of General Thoracic Surgery, National Hospital Organization Shibukawa Medical Center, Shibukawa, Japan
| | | | - Hitoshi Igai
- Department of General Thoracic Surgery, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Ryoichi Onozato
- Department of General Thoracic Surgery, Gunma Prefectural Cancer Center, Ota, Japan
| | - Takashi Ibe
- Department of General Thoracic Surgery, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Takayuki Kosaka
- Department of General Thoracic Surgery, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshiteru Nagashima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of General Thoracic Surgery, Gunma Prefectural Cancer Center, Ota, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
9
|
Ni Z, Xing D, Zhang T, Ding N, Xiang D, Zhao Z, Qu J, Hu C, Shen X, Xue X, Zhou J. Tumor-infiltrating B cell is associated with the control of progression of gastric cancer. Immunol Res 2020; 69:43-52. [PMID: 33236222 DOI: 10.1007/s12026-020-09167-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
This study aimed to further explore the clinicopathological correlation of B cell infiltration in gastric cancer (GC) and its impact on prognostic. By immunohistochemical method, CD20+ B cells, CD3+ T cells, CD66b+ tumor-associated neutrophils, CD163+ tumor-associated macrophages, and CD57+ natural killer cells were analyzed in consecutive sections of 584 GC tissues and 69 normal adjacent tissues. Kaplan-Meier and Cox regression analyses determined the relationship between clinical relevance or prognosis and B cell infiltration. The correlation between total B cell infiltration and various T cell subtype infiltration in GC tissues from 407 patients in the TCGA data was also analyzed. Kaplan-Meier and Cox regression analyses determined the effects of total B cell infiltration and various B cell subtype infiltration on the prognosis of patients with GC. The infiltration level of CD20+ B cells was positively correlated with that of T cells (risk ratio [RR] = 0.0930), especially CD4+ T cells and CD8+ T cells (P < 0.05). A high level of CD20+ B cell infiltration was significantly associated with low lymph node involvement and low TNM stage (P < 0.05). High levels of CD20+ B cell infiltration were significantly associated with improvements in overall survival and disease-free survival. Univariate Cox regression and multivariate Cox regression analysis showed that CD20+ B cell infiltration was an independent protective factor of prognosis. Higher levels of class-switched memory B cell and plasma cell also reflected better overall survival, and class-switched memory B cell and plasma cell were independent protective factors for prognosis. The findings indicate that B cell infiltration in GC, especially switched memory B cells and plasma cells, has a significant effect on tumor progression and prognosis.
Collapse
Affiliation(s)
- Zhonglin Ni
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Dong Xing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China
| | - Teming Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Ning Ding
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China
| | - Dan Xiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou, 325027, Zhejiang Province, China.
| | - Jinmiao Qu
- Department of Oncology, The First Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Changyuan Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China.
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
10
|
Ntellas P, Mavroeidis L, Gkoura S, Gazouli I, Amylidi AL, Papadaki A, Zarkavelis G, Mauri D, Karpathiou G, Kolettas E, Batistatou A, Pentheroudakis G. Old Player-New Tricks: Non Angiogenic Effects of the VEGF/VEGFR Pathway in Cancer. Cancers (Basel) 2020; 12:E3145. [PMID: 33121034 PMCID: PMC7692709 DOI: 10.3390/cancers12113145] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis has long been considered to facilitate and sustain cancer growth, making the introduction of anti-angiogenic agents that disrupt the vascular endothelial growth factor/receptor (VEGF/VEGFR) pathway an important milestone at the beginning of the 21st century. Originally research on VEGF signaling focused on its survival and mitogenic effects towards endothelial cells, with moderate so far success of anti-angiogenic therapy. However, VEGF can have multiple effects on additional cell types including immune and tumor cells, by directly influencing and promoting tumor cell survival, proliferation and invasion and contributing to an immunosuppressive microenvironment. In this review, we summarize the effects of the VEGF/VEGFR pathway on non-endothelial cells and the resulting implications of anti-angiogenic agents that include direct inhibition of tumor cell growth and immunostimulatory functions. Finally, we present how previously unappreciated studies on VEGF biology, that have demonstrated immunomodulatory properties and tumor regression by disrupting the VEGF/VEGFR pathway, now provide the scientific basis for new combinational treatments of immunotherapy with anti-angiogenic agents.
Collapse
Affiliation(s)
- Panagiotis Ntellas
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Leonidas Mavroeidis
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Stefania Gkoura
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Ioanna Gazouli
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Anna-Lea Amylidi
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Alexandra Papadaki
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - George Zarkavelis
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Georgia Karpathiou
- Department of Pathology, University Hospital of St-Etienne, 42055 Saint Etienne, France;
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, 45115 Ioannina, Greece
| | - Anna Batistatou
- Department of Pathology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - George Pentheroudakis
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece; (P.N.); (L.M.); (S.G.); (I.G.); (A.-L.A.); (A.P.); (G.Z.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| |
Collapse
|