1
|
Wang X, Mao Y, Xu H, Chen J, chen X. Identification of m 5C-related molecular subtypes and prediction models in the prognosis and tumor microenvironment infiltration of soft tissue sarcoma. Heliyon 2023; 9:e19680. [PMID: 37809908 PMCID: PMC10558950 DOI: 10.1016/j.heliyon.2023.e19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Background The epigenetic regulator in cancer progression and immune response has been demonstrated recently. However, the potential implications of 5-methylcytosine (m5C) in soft tissue sarcoma (STS) are unclear. Methods The RNA sequence profile of 911 normal and 259 primary STS tissues were obtained from GTEx and TCGA databases, respectively. We systematically analyzed the m5C modification patterns of STS samples based on 11 m5C regulators, and comprehensively correlated these modification patterns with clinical characteristics, prognosis, and tumor microenvironment (TME) cell-infiltrating. Furthermore, an m5C-related signature was generated using Cox proportional hazard model and validated by the GSE17118 cohort. Results Two distinct m5C modification patterns (cluster1/2) were discovered. The cluster1 had favorable overall survival, higher immune score, higher expression of most immune checkpoints, and active immune cell infiltration. The GSVA analysis of the P53 pathway, Wnt signaling pathway, G2M checkpoint, mTORC1 signaling, Wnt/β catenin signaling, and PI3K/AKT/mTOR signaling were significantly enriched in the cluster2. Moreover, 1220 genes were differentially expressed between two clusters, and a m5C prognostic signature was constructed with five m5C-related genes. The signature represented an independent prognostic factor and showed the favorable performance in the GSE17118 cohort. Patients in the low-risk group showed higher immunoscore and higher expression of most immune checkpoints. Further GSVA analysis indicated that the levels of P53 pathway, Wnt signaling pathway, and TGF-β signaling pathway were different between low- and high-risk groups. Moreover, a nomogram incorporating m5C signature and clinical variables was established and showed well performance. Conclusion This work showed that the m5C modification plays a significant role in the progression of STS and the formation of TME diversity. Evaluating the m5C modification pattern of tumor will enhance our cognition of TME infiltration characterization to guide more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Orthopedics, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Yicheng Mao
- Wenzhou Medical University, Wenzhou, 325000, Wenzhou, China
| | - Hanlu Xu
- Wenzhou Medical University, Wenzhou, 325000, Wenzhou, China
| | - Jiyang Chen
- Wenzhou Medical University, Wenzhou, 325000, Wenzhou, China
| | - Xiao chen
- Department of Orthopedics, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| |
Collapse
|
2
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Elsayed WSH, Harb OA, Alabiad MA, Faraj Saad RH, Anbaig A, Alorini M, Hemeda R, Negm M, Gertallah LM, Abdelhady WA, Ali RM. Protein Expression of NEK2, JMJD4, and REST in Clear Cell Renal Cell Carcinoma (ccRCC): Clinical, Pathological, and Prognostic Findings. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:180-192. [PMID: 37600577 PMCID: PMC10439757 DOI: 10.30699/ijp.2023.1974154.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023]
Abstract
Background & Objective Cells of renal cell carcinoma (RCC) are resistant to the most currently used chemotherapeutic agents and targeted therapies; hence, we evaluated the expression of NEK2, JMJD4, and REST in cases of clear cell renal cell carcinoma (ccRCC) and benign adjacent tissues of kidney to detect associations between their expression and clinicopathological features, prognostic data, tumor recurrence, and survival rates. Methods We collected 200 samples including tumoral and adjacent non-neoplastic tissues related to 100 ccRCC patients. All samples were evaluated for the expression of NEK2, JMJD4, and REST, and the patients were followed up for about 5 years. Tumor recurrence and survival data were documented and analyzed. Results NEK2 and JMJD4 expression showed increase in ccRCC tissues (P=0.002 and 0.006), while REST was downregulated (P<0.001). The elevated expression of NEK2 was positively related ro the tumor size (P=0.015), higher grades (P=0.002), higher stages (P=0.013), distant spread (P=0.004), tumor recurrence, shorter progression-free survival (PFS) rate, and overall survival (OS) rate (P<0.001). Likewise, the high expression of JMJD4 showed positive correlation with the tumor size (P=0.047), higher grades (P=0.003), higher stages (P=0.043), distant spread (P=0.001), tumor recurrence, shorter PFS rate, and OS rate (P<0.001). Conversely, low expression of REST demonstrated positive relationship with the tumor size, higher grades, higher stages, distant spread, tumor recurrence, and shorter PFS and OS rates (P<0.001). Conclusion Overexpression of NEK2 and JMJD4 and downregulation of REST may be noted in malignant renal tissues compared to benign renal tissues and may be correlated with unfavorable pathological findings, poor clinical parameters, and poor patient outcomes.
Collapse
Affiliation(s)
- Walid S H Elsayed
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola A Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rema H Faraj Saad
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Amal Anbaig
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Rehab Hemeda
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Negm
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Loay M Gertallah
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Waleed A Abdelhady
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Ramadan M Ali
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| |
Collapse
|
4
|
Li Z, Huang Z, Luo Y, Yang H, Yang M. DUSP9 alleviates hepatic ischemia/reperfusion injury by restraining both mitogen-activated protein kinase and IKK in an apoptosis signal-regulating kinase 1-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1811-1821. [PMID: 36789693 PMCID: PMC10157530 DOI: 10.3724/abbs.2022183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury occurs frequently in various liver operations and diseases, but its effective treatment remains inadequate because the key switch that leads to hepatic explosive inflammation has not been well disclosed. Dual specificity phosphatase 9 (DUSP9) is widely involved in the innate immune response of solid organs and is sometimes regulated by ubiquitin. In the present study, we find that DUSP9 is reduced in mouse hepatic I/R injury. DUSP9 enrichment attenuates hepatic inflammation both in vivo and in vitro as revealed by western blot analysis and qRT-PCR. In contrast, DUSP9 depletion leads to more severe I/R injury. Mechanistically, DUSP9 inhibits the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) by directly binding to ASK1, thereby decreasing tumor necrosis factor receptor-associated factor 6 (TRAF6), K63 ubiquitin and the phosphorylation of p38/JNK1 instead of ERK1. The present study documents a novel role of DUSP9 in hepatic I/R injury and implies the potential of targeting the DUSP9/ASK1 axis towards mitogen-activated protein kinase and TRAF6/inhibitor of κB kinase pathways.
Collapse
Affiliation(s)
- Zhongtang Li
- College of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor CenterChongqing University Cancer HospitalChongqing400030China
| | - Yunhai Luo
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing400016
| | - Hang Yang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing400016
| | - Mei Yang
- College of Basic MedicineChongqing Medical UniversityChongqing400016China
| |
Collapse
|
5
|
Gabano E, Gariboldi MB, Caron G, Ermondi G, Marras E, Vallaro M, Ravera M. Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(IV) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Trans 2022; 51:6014-6026. [PMID: 35352739 DOI: 10.1039/d2dt00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Giulia Caron
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Maura Vallaro
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
6
|
Wang F, Wang W, Wu X, Tang C, Du F, Lu Z, Zhang Z, Xu H, Cao X, Li PA. Downregulation of TRIM33 Promotes Survival and Epithelial-Mesenchymal Transition in Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221114505. [PMID: 35929141 PMCID: PMC9358585 DOI: 10.1177/15330338221114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among all malignancies worldwide, gastric cancer is the fifth most common cancer with the third highest mortality rate. One of the main reasons for the low survival rate is the recurrence and metastasis that occurs in many patients after surgery. Numerous studies have shown that abnormal TRIM33 expression is associated with the progression of malignant tumors. TRIM33 can function either as a tumor suppressor or tumor promoter in different cancers. Our data showed that TRIM33 was highly expressed in stomach cancer, and in human gastric cancer tissues, low expression of TRIM33 was associated with poor prognosis in patients with gastric cancer. To clarify the function of TRIM33 in survival and epithelial–mesenchymal transition in gastric cancer cells, we investigated the effect of TRIM33 knockdown in several gastric cancer cell lines. Downregulation of TRIM33 in BGC-823 and SGC-7901 cells enhanced the proliferation, colony formation, and migratory ability of these gastric cancer cells. It also promoted epithelial–mesenchymal transition; transfection of cells with siRNA targeting TRIM33 led to the upregulation of vimentin and N-Cadherin expression, and downregulation of E-Cadherin expression. Meanwhile, the transforming growth factor beta pathway was activated: levels of transforming growth factor beta were elevated and the expressions of p-Smad2, Smad2, Smad3, and Smad4 were activated. To confirm the role of TRIM33 in vivo, a xenograft model was established in nude mice. Immunohistochemical analysis identified that the protein levels of TRIM33, p-Smad2, Smad2, Smad3, Smad4, vimentin, and N-Cadherin were increased, and E-Cadherin levels were decreased, in xenograft tumors from the si-TRIM33 group. Taken together, these results suggest that TRIM33 may be a potential marker for the diagnosis and prognosis of gastric cancer. Furthermore, it may also serve as a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjun Wang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Xiaoting Wu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Cui Tang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Fang Du
- School of Information Engineering, 56693Ningxia University, Ningxia, China
| | - Zhiguo Lu
- Department of Pediatric Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhuoyang Zhang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Hui Xu
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
7
|
Wang C, Huang Y, Ma X, Wang B, Zhang X. Overexpression of NEK2 is correlated with poor prognosis in human clear cell renal cell carcinoma. Int J Immunopathol Pharmacol 2021; 35:20587384211065893. [PMID: 34910592 PMCID: PMC8689635 DOI: 10.1177/20587384211065893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives: Never in mitosis gene A-related kinase 2 (NEK2) has been implicated in tumorigenesis in various tissues, but its function in clear cell renal cell carcinoma (ccRCC) tumorigenesis is unclear. We evaluated the correlation between NEK2 expression and ccRCC. Methods: Immunohistochemistry analysis of NEK2 protein was done on high-density multi-organ Human Cancer tissue microarray derived from the patient samples from clear cell renal cell carcinoma. We used multiple clinical cohorts to analyze the NEK2 immunohistochemical staining expression across human cancers. The cancer genome atlas (TCGA) data analysis of NEK2 was done through UALCAN web servers. Association of NEK2 and Kaplan–Meier survival analysis was done on both of our clinical database and available TCGA datasets. Results: Using the UALCAN cancer transcriptional data analysis website, we found that NEK2 is overexpressed in ccRCC, and its expression was associated with overall survival. According to the analyses of our own clinical database and immunohistochemical staining, protein levels of NEK2 were elevated in renal carcinoma compared to adjacent normal tissues. Kaplan–Meier survival analysis of both UALCAN and our database showed that high expression of NEK2 was associated with a poor prognosis. Multivariate and univariate analyses showed that NEK2 expression was closely related to a poor prognosis. The findings suggest that NEK2 is associated with ccRCC. Conclusion: These studies show that NEK2 is over-expressed in clear cell renal cell carcinoma and plays an essential role in cancer cell survival, as such NEK2 could serve as a novel potential target for therapeutic intervention in ccRCC.
Collapse
Affiliation(s)
- Chenfeng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Huang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baojun Wang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Khoubai FZ, Grosset CF. DUSP9, a Dual-Specificity Phosphatase with a Key Role in Cell Biology and Human Diseases. Int J Mol Sci 2021; 22:ijms222111538. [PMID: 34768967 PMCID: PMC8583968 DOI: 10.3390/ijms222111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are essential for proper cell functioning as they regulate many molecular effectors. Careful regulation of MAPKs is therefore required to avoid MAPK pathway dysfunctions and pathologies. The mammalian genome encodes about 200 phosphatases, many of which dephosphorylate the MAPKs and bring them back to an inactive state. In this review, we focus on the normal and pathological functions of dual-specificity phosphatase 9 (DUSP9)/MAP kinase phosphatases-4 (MKP-4). This cytoplasmic phosphatase, which belongs to the threonine/tyrosine dual-specific phosphatase family and was first described in 1997, is known to dephosphorylate ERK1/2, p38, JNK and ASK1, and thereby to control various MAPK pathway cascades. As a consequence, DUSP9 plays a major role in human pathologies and more specifically in cardiac dysfunction, liver metabolic syndromes, diabetes, obesity and cancer including drug response and cell stemness. Here, we recapitulate the mechanism of action of DUSP9 in the cell, its levels of regulation and its roles in the most frequent human diseases, and discuss its potential as a therapeutic target.
Collapse
|
9
|
Chen Z, Zhang Y, Wu X, Zhang J, Xu W, Shen C, Zheng B. Gαi1 Promoted Proliferation, Migration and Invasion via Activating the Akt-mTOR/Erk-MAPK Signaling Pathway in Renal Cell Carcinoma. Onco Targets Ther 2021; 14:2941-2952. [PMID: 33976552 PMCID: PMC8106533 DOI: 10.2147/ott.s298102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) accounts for about 2-3% of all adult malignancies. G protein alpha inhibitory subunit 1 (Gαi1) plays a key role in mediating PI3K-Akt signaling upon activation of receptor tyrosine kinases (RTKs). However, little is known about its expression, regulation and biological function in RCC. Methods Gαi1 expression in RCC tissues and cells was detected by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC). The effect of Gαi1 silence on cell proliferation and apoptosis of 786-O and ACHN cells was detected by CCK-8 assay and flow cytometry. Wound-healing assay and Transwell assays were used to detect the cell invasion in RCC cells. The expression of CDK4, cyclin D1, MMP-2, MMP-9, Bax, Bcl-2, p/t-Akt, p/t-S6 and p/t-Erk was detected by Western blot and qRT-PCR. Furthermore, a nude mouse subcutaneous xenograft model was used to further evaluate the potential effects of Gail in vivo. Results In the present study, our data showed that Gαi1 expression was dramatically increased in RCC tissues compared with normal renal tissues. In addition, knocking down the expression of Gαi1 subsequently inhibited proliferation, migration and invasion of RCC cells in vivo and vitro. Furthermore, the expression of CDK4, cyclin D1, MMP-2 and MMP-9 was significantly reduced upon Gαi1 inhibition. Gαi1 positively regulates the activation of the mTOR and Erk pathways. Conclusion In conclusion, this study reveals Gαi1 promoted proliferation via activating the Akt-mTOR and Erk-MAPK signaling pathways in RCC, and Gαi1 may be a therapeutic and prognostic target for RCC.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiang Wu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Ji Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Wei Xu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Cheng Shen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|