1
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
2
|
Jalil AT, Abdulhadi MA, Al Jawadri AMH, Talib HA, Al-Azzawi AKJ, Zabibah RS, Ali A. Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies. J Gastrointest Cancer 2023; 54:1046-1057. [PMID: 37247115 DOI: 10.1007/s12029-023-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Colorectal cancers are composed of heterogeneous cell populations in the concepts of genetic and functional degrees that among them cancer stem cells are identified with their self-renewal and stemness capability mediating primary tumorigenesis, metastasize, therapeutic resistance, and tumor recurrence. Therefore, understanding the key mechanisms of stemness in colorectal cancer stem cells (CRCSCs) provides opportunities to discover new treatments or improve existing therapeutic regimens. METHODS We review the biological significance of stemness and the results of potential CRCSC-based targeted immunotherapies. Then, we pointed out the barriers to targeting CRCSCs in vivo and highlight new strategies based on synthetic and biogenic nanocarriers for the development of future anti-CRCSC trials. RESULTS The CSCs' surface markers, antigens, neoantigens, and signaling pathways supportive CRCSCs or immune cells that are interacted with CRCSCs could be targeted by immune monotherapy or in formulation with developed nanocarriers to overcome the resistant mechanisms in immune evader CRCSCs. CONCLUSION Identification molecular and cellular cues supporting stemness in CRCSCs and their targeting by nanoimmunotherpy can improve the efficacy of existed therapies or explore novel therapeutic options in future.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Ranjbar FE, Farzad-Mohajeri S, Samani S, Saremi J, Khademi R, Dehghan MM, Azami M. Kaempferol-loaded bioactive glass-based scaffold for bone tissue engineering: in vitro and in vivo evaluation. Sci Rep 2023; 13:12375. [PMID: 37524784 PMCID: PMC10390521 DOI: 10.1038/s41598-023-39505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Due to the increasing prevalence of bone disorders among people especially in average age, the future of treatments for osseous abnormalities has been illuminated by scaffold-based bone tissue engineering. In this study, in vitro and in vivo properties of 58S bioactive glass-based scaffolds for bone tissue engineering (bare (B.SC), Zein-coated (C.SC), and Zein-coated containing Kaempferol (KC.SC)) were evaluated. This is a follow-up study on our previously published paper, where we synthesized 58S bioactive glass-based scaffolds coated with Kaempferol-loaded Zein biopolymer, and characterized from mostly engineering points of view to find the optimum composition. For this aim, in vitro assessments were done to evaluate the osteogenic capacity and biological features of the scaffolds. In the in vivo section, all types of scaffolds with/without bone marrow-derived stem cells (BMSC) were implanted into rat calvaria bone defects, and potential of bone healing was assessed using imaging, staining, and histomorphometric analyses. It was shown that, Zein-coating covered surface cracks leading to better mechanical properties without negative effect on bioactivity and cell attachment. Also, BMSC differentiation proved that the presence of Kaempferol caused higher calcium deposition, increased alkaline phosphatase activity, bone-specific gene upregulation in vitro. Further, in vivo study confirmed positive effect of BMSC-loaded KC.SC on significant new bone formation resulting in complete bone regeneration. Combining physical properties of coated scaffolds with the osteogenic effect of Kaempferol and BMSCs could represent a new strategy for bone regeneration and provide a more effective approach to repairing critical-sized bone defects.
Collapse
Affiliation(s)
- Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Dr. Qarib Street, Azadi Street, Tehran, 1419963111, Iran
| | - Saeed Samani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Rahele Khademi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Dr. Qarib Street, Azadi Street, Tehran, 1419963111, Iran.
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran.
| |
Collapse
|
4
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Abatay-Sel F, Erol A, Suleymanoglu M, Demirayak G, Kekik-Cinar C, Kuruca DS, Savran-Oguz F. The in vitro treatment of mesenchymal stem cells for colorectal cancer cells. Med Oncol 2023; 40:103. [PMID: 36811793 DOI: 10.1007/s12032-023-01972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Colorectal cancer is the most common tumor of the gastrointestinal system. The conventional treatment options for colorectal cancer are troublesome for both patients and clinicians. Recently, mesenchymal stem cells (MSCs) have been the novel focus for cell therapy due to their migration to tumor sites. In this study, the apoptotic effect of MSCs on colorectal cancer cell lines has been aimed. HCT-116 and HT-29 were selected as the colorectal cancer cell lines. Human umbilical cord blood and Wharton's jelly were used as mesenchymal stem cell sources. To discriminate against the apoptotic effect of MSC on cancer, we also used peripheral blood mononuclear cells (PBMC) as a healthy control group. Cord blood-MSC and PBMC were obtained by ficoll-paque density gradient, and Wharton's jelly-MSC by explant method. Transwell co-culture systems were used as cancer cells or PBMC/MSCs at ratios of 1/5 and 1/10, with incubation times of 24 h and 72 h. The Annexin V/PI-FITC-based apoptosis assay was performed by flow cytometry. Caspase-3 and HTRA2/Omi proteins were measured by ELISA. For both ratios in both cancer cells, it was found that the apoptotic effect of Wharton's jelly-MSC was significantly higher in 72-h incubations (p < 0.006), whereas the effect of cord blood mesenchymal stem cell in 24-h incubations were higher (p < 0.007). In this study, we showed that human cord blood and tissue-derived MSCs treatment led to colorectal cancers to apoptosis. We anticipate that further in vivo studies may shed light on the apoptotic effect of MSC.
Collapse
Affiliation(s)
- Figen Abatay-Sel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. .,Institute of Graduate Studies in Health Science, Istanbul University, Istanbul, Turkey.
| | - Ayse Erol
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mediha Suleymanoglu
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gokhan Demirayak
- Department of Gynecologic Oncology, Bakırköy Sadi Konuk Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Cigdem Kekik-Cinar
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Durdane Serap Kuruca
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatma Savran-Oguz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
7
|
崔 舒, 汤 帅, 丁 晓, 丁 刚. [Research Progress of Mesenchymal Stem Cells and Their Exosomes on Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:351-357. [PMID: 35599010 PMCID: PMC9127752 DOI: 10.3779/j.issn.1009-3419.2022.101.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
In China, malignant tumor is the main cause of death in both urban and rural areas. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential, self-renewal ability and good immunomodulatory properties. Exosomes, as important paracrine substances of MSCs, mediate information exchange and transmission between cells in tumor microenvironment and influence the occurrence and development of tumors. Recently, conflicting findings have been reported on the effects of MSCs and their exosomes on tumors. On the one hand, MSCs and their exosomes are tumorigenic and can target specific sites to inhibit tumor growth; On the other hand, there is also evidence that MSCs could affect tumor growth and migration as part of the tumor microenvironment. In this paper, we will review the relationship between MSCs and exosomes and tumorgenesis and development, as well as how MSCs and exosomes play different roles in tumorgenesis and development, in order to provide beneficial help for tumor diagnosis, prognosis and precise treatment.
.
Collapse
Affiliation(s)
- 舒悦 崔
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 帅 汤
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 晓玲 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 刚 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
8
|
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G, Wu J. The Roles of Mesenchymal Stem Cells in Gastrointestinal Cancers. Front Immunol 2022; 13:844001. [PMID: 35281017 PMCID: PMC8907448 DOI: 10.3389/fimmu.2022.844001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were reported to have strong immunomodulatory ability, and inhibit the proliferation of T cells and their immune response through cell-to-cell interactions and the generation of cytokines. With high differentiation potential and self-renewal ability, MSCs are considered to function in alleviating inflammatory responses, promoting tissue regeneration and inhibiting tissue fibrosis formation. As the most common malignancies, gastrointestinal (GI) cancers have high incidence and mortality. The accurate diagnosis, exact prognosis and treatment of GI cancers have always been a hot topic. Therefore, the potential applications of MSCs in terms of GI cancers are receiving more and more attention. Recently, there is increasing evidence that MSCs may serve as a key point in the growth, metastasis, inhibition, treatment and prognosis of GI cancers. In this review, we summarized the roles of MSCs in GI cancers, mainly focusing on esophageal cancer (EC), gastric cancer (GC), liver cancer (LC), colorectal cancer (CRC) and pancreatic cancer. Besides, we proposed MSCs as potential targets and treatment strategies for the effective treatment of GI cancers, which may provide better guidance for the clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglu Hua
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Hao
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaojie Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
9
|
Zou W, Zhang Y, Bai G, Zhuang J, Wei L, Wang Z, Sun M, Wang J. siRNA-induced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. J Cell Mol Med 2022; 26:1969-1978. [PMID: 35229451 PMCID: PMC8980945 DOI: 10.1111/jcmm.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
CD44 has shown prognostic values and promising therapeutic potential in multiple human cancers; however, the effects of CD44 silencing on biological behaviors of cancer stem cells (CSCs) have not been fully understood in colorectal cancer. To examine the contribution of siRNA‐induced knockdown of CD44 to the biological features of colorectal CSCs, colorectal CSCs HCT116‐CSCs were generated, and CD44 was knocked down in HCT116‐CSCs using siRNA. The proliferation, migration and invasion of HCT116‐CSCs were measured, and apoptosis and cell‐cycle analyses were performed. The sensitivity of HCT116‐CSCs to oxaliplatin was tested, and xenograft tumor growth assay was performed to examine the role of CD44 in HCT116‐CSCs tumorigenesis in vivo. In addition, the expression of epithelial–mesenchymal transition (EMT) markers E‐cadherin, N‐cadherin and vimentin was quantified. siRNA‐induced knockdown of CD44 was found to inhibit the proliferation, migration and invasion, induce apoptosis, promote cell‐cycle arrest at the G1/G0 phase and increase the sensitivity of HCT116‐CSCs to oxaliplatin in HCT116‐CSCs, and knockdown of CD44 suppressed in vivo tumorigenesis and intrapulmonary metastasis of HCT116‐CSCs. Moreover, silencing CD44 resulted in EMT inhibition. Our findings demonstrate that siRNA‐induced CD44 knockdown suppresses the proliferation, invasion and in vivo tumorigenesis and metastasis of colorectal CSCs by inhibiting EMT.
Collapse
Affiliation(s)
- Weiyan Zou
- Department of Histology and Embryology, Bengbu Medical College, Bengbu City, China
| | - Yi Zhang
- The Second Department of Surgery, Xiamen Hospital Affiliated to Beijing University of Chinese Medicine, Xiamen City, China
| | - Guangfu Bai
- Department of Emergency, Wuxi Huishan District People's Hospital, Wuxi City, China
| | - Jialu Zhuang
- The Second School of Clinical Medicine, Bengbu Medical College, Bengbu City, China
| | - Lin Wei
- The Second School of Clinical Medicine, Bengbu Medical College, Bengbu City, China
| | - Zishu Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Meiqun Sun
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Junbin Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| |
Collapse
|
10
|
Rosner M, Hengstschläger M. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:26-34. [PMID: 35641164 PMCID: PMC8895487 DOI: 10.1093/stcltm/szab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/12/2021] [Indexed: 12/03/2022] Open
Abstract
It is the hope of clinicians and patients alike that stem cell-based therapeutic products will increasingly become applicable remedies for many diseases and injuries. Whereas some multipotent stem cells are already routinely used in regenerative medicine, the efficacious and safe clinical translation of pluripotent stem cells is still hampered by their inherent immunogenicity and tumorigenicity. In addition, stem cells harbor the paracrine potential to affect the behavior of cells in their microenvironment. On the one hand, this property can mediate advantageous supportive effects on the overall therapeutic concept. However, in the last years, it became evident that both, multipotent and pluripotent stem cells, are capable of inducing adjacent cells to become motile. Not only in the context of tumor development but generally, deregulated mobilization and uncontrolled navigation of patient’s cells can have deleterious consequences for the therapeutic outcome. A more comprehensive understanding of this ubiquitous stem cell feature could allow its proper clinical handling and could thereby constitute an important building block for the further development of safe therapies.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Corresponding author: Markus Hengstschläger, PhD, Professor, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria. Tel: +43 1 40160 56500; Fax: +43 1 40160 956501;
| |
Collapse
|
11
|
The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells Int 2021; 2021:9136583. [PMID: 34349805 PMCID: PMC8328693 DOI: 10.1155/2021/9136583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs have a variety of biological functions such as immune regulation, tissue damage repair, and therapeutic effects on tumors such as CRC. This review outlines the overview of MSCs and CRC and summarizes the role of MSC application in CRC.
Collapse
|