1
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Wu F, Sun G, Nai Y, Shi X, Ma Y, Cao H. NUP43 promotes PD-L1/nPD-L1/PD-L1 feedback loop via TM4SF1/JAK/STAT3 pathway in colorectal cancer progression and metastatsis. Cell Death Discov 2024; 10:241. [PMID: 38762481 PMCID: PMC11102480 DOI: 10.1038/s41420-024-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Programmed cell death-ligand 1 (PD-L1) has a significant role in tumor progression and metastasis, facilitating tumor cell evasion from immune surveillance. PD-L1 can be detected in the tumor cell nucleus and exert an oncogenic effect by nuclear translocation. Colorectal cancer (CRC) progression and liver metastasis (CCLM) are among the most lethal diseases worldwide, but the mechanism of PD-L1 nuclear translocation in CRC and CCLM remains to be fully understood. In this study, using CRISPR-Cas9-based genome-wide screening combined with RNA-seq, we found that the oncogenic factor NUP43 impacted the process of PD-L1 nuclear translocation by regulating the expression level of the PD-L1 chaperone protein IPO5. Subsequent investigation revealed that this process could stimulate the expression of tumor-promoting factor TM4SF1 and further activate the JAK/STAT3 signaling pathway, which ultimately enhanced the transcription of PD-L1, thus establishing a PD-L1-nPD-L1-PD-L1 feedback loop that ultimately promoted CRC progression and CCLM. In conclusion, our study reveals a novel role for nPD-L1 in CRC, identifies the PD-L1-nPD-L1-PD-L1 feedback loop in CRC, and provides a therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yongjun Nai
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
He P, Liu Z, Qi J, Shan J, Sheng J. Long noncoding RNA LINC00885 upregulates NCK1 to promote cell viability and migration of triple-negative breast cancer cells through sponging miR-654-3p. Cancer Biomark 2024; 39:63-78. [PMID: 37694355 DOI: 10.3233/cbm-230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND LINC00885 is a novel oncogenic long noncoding RNA (LncRNA) which is upregulated in various types of cancer, but its function in triple-negative breast cancer (TNBC) remains unknown. OBJECTIVE This study aimed to determine the role of LINC00885 on TNBC development. METHODS Clinical interrelation and survival analysis were determined using online database. The CCK-8 and Transwell assays were used to detect the proliferation and migration behaviors in TNBC cell lines. The interaction among genes was detected by RNA pull down assay. RESULTS LncRNA LINC00885 was highly expressed in TNBC compared to normal breast like. Low levels of LINC00885 was related to good prognosis in TNBC patients compared to TNBC patients with high LINC00885. LINC00885-downregulation inhibited, whereas LINC00885-overexpression promoted the proliferation and migration capability of TNBC cell lines. In TNBC cell lines, noncatalytic region of tyrosine kinase 1 (NCK1) expression was positively associated with LINC00885 expression, and shRNA-mediated the depletion of NCK1 significantly abolished LINC00885 upregulation-mediated pro-tumor effects. Combined with online databases, miR-654-3p was screened as the direct target gene of LINC00885, which could directly bind to 3'-untranslated regions (3'-UTR) of NCK1, resulting in the decreased expression of NCK1 in TNBC cell lines. LINC00885 overexpression-mediated the upregulation of NCK1 was abrogated by miR-654-3p mimics. MiR-654-3p mimics significantly rescued the tumor promotive role caused by LINC00885-overexpression. However, exogenous NCK1 notably eliminated the anti-tumor effects caused by miR-654-3p mimics in LINC00885-overexpressed cells. CONCLUSIONS LINC00885 is expressed at a high level in TNBC. LINC00885 promoted proliferation and migration by regulating the miR-654-3p/NCK1 axis in TNBC cell lines. Possibly, LINC00885 can be served as a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Peina He
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Zhi Liu
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Jinxu Qi
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Junrao Shan
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Jianyun Sheng
- Department of Gynecotokology, The First People's Hospital of Pingdingshan, Pingdingshan, Henan, China
| |
Collapse
|
5
|
Kong FS, Lu Z, Zhou Y, Lu Y, Ren CY, Jia R, Zeng B, Huang P, Wang J, Ma Y, Chen JH. Transcriptome analysis identification of A-to-I RNA editing in granulosa cells associated with PCOS. Front Endocrinol (Lausanne) 2023; 14:1170957. [PMID: 37547318 PMCID: PMC10401594 DOI: 10.3389/fendo.2023.1170957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex, multifactor disorder in women of reproductive age worldwide. Although RNA editing may contribute to a variety of diseases, its role in PCOS remains unclear. Methods A discovery RNA-Seq dataset was obtained from the NCBI Gene Expression Omnibus database of granulosa cells from women with PCOS and women without PCOS (controls). A validation RNA-Seq dataset downloaded from the European Nucleotide Archive Databank was used to validate differential editing. Transcriptome-wide investigation was conducted to analyze adenosine-to-inosine (A-to-I) RNA editing in PCOS and control samples. Results A total of 17,395 high-confidence A-to-I RNA editing sites were identified in 3,644 genes in all GC samples. As for differential RNA editing, there were 545 differential RNA editing (DRE) sites in 259 genes with Nucleoporin 43 (NUP43), Retinoblastoma Binding Protein 4 (RBBP4), and leckstrin homology-like domain family A member 1 (PHLDA) showing the most significant three 3'-untranslated region (3'UTR) editing. Furthermore, we identified 20 DRE sites that demonstrated a significant correlation between editing levels and gene expression levels. Notably, MIR193b-365a Host Gene (MIR193BHG) and Hook Microtubule Tethering Protein 3 (HOOK3) exhibited significant differential expression between PCOS and controls. Functional enrichment analysis showed that these 259 differentially edited genes were mainly related to apoptosis and necroptosis pathways. RNA binding protein (RBP) analysis revealed that RNA Binding Motif Protein 45 (RBM45) was predicted as the most frequent RBP binding with RNA editing sites. Additionally, we observed a correlation between editing levels of differential editing sites and the expression level of the RNA editing enzyme Adenosine Deaminase RNA Specific B1 (ADARB1). Moreover, the existence of 55 common differentially edited genes and nine differential editing sites were confirmed in the validation dataset. Conclusion Our current study highlighted the potential role of RNA editing in the pathophysiology of PCOS as an epigenetic process. These findings could provide valuable insights into the development of more targeted and effective treatment options for PCOS.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijing Lu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuan Zhou
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yinghua Lu
- Department of Reproductive Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruofan Jia
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Beilei Zeng
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Panwang Huang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Taheri M, Askari A, Behzad Moghadam K, Hussen BM, Ghafouri-Fard S, Kiani A. A review on the role of NCK1 Antisense RNA 1 (NCK1-AS1) in diverse disorders. Pathol Res Pract 2023; 245:154451. [PMID: 37028107 DOI: 10.1016/j.prp.2023.154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
NCK1 Antisense RNA 1 (NCK1-AS1), alternatively named as NCK1-DT, is a long non-coding RNA (lncRNA) with important roles in the carcinogenesis. Multiple studies verified its oncogenic role in different types of cancer, including gastric cancer, non-small cell lung cancer, glioma, prostate cancer and cervical cancer. NCK1-AS1 functions as a sponge for several microRNAs, including miR-137, miR-22-3p, miR-526b-5p, miR-512-5p, miR-138-2-3p and miR-6857. In this review we present an outline of NCK1-AS1 function in malignant conditions as well as atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
He XY, Wang XQ, Xiao QL, Liu D, Xu QR, Liu S. Long non-coding RNA NCK1-AS1 functions as a ceRNA to regulate cell viability and invasion in esophageal squamous cell carcinoma via microRNA-133b/ENPEP axis. Cell Cycle 2023; 22:596-609. [PMID: 36412985 PMCID: PMC9928473 DOI: 10.1080/15384101.2022.2138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 01/04/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
This study is designed to explore the role of long non-coding RNAs (lncRNAs) NCK1-AS1 in proliferative and invasive activities of esophageal squamous cell carcinoma (ESCC) cells by binding to microRNA-133b (miR-133b) to regulate ENPEP. Differentially expressed lncRNAs, miRs, genes and their targeting relationships were screened on ESCC-related gene expression datasets GSE17351 and GSE6188. The targeting relationships among NCK1-AS1, miR-133b, and ENPEP were verified using functional assays. Loss- and gain- of function assays were carried out to examine the roles of NCK1-AS1, miR-133b, and ENPEP in ESCC cell proliferative, invasive, migrative and apoptotic abilities as well as tumorigenesis in vivo. Elevated NCK1-AS1 and ENPEP but reduced miR-133b expression were found in ESCC. NCK1-AS1 knockdown or miR-133b overexpression inhibited the malignant properties of ESCC cells as well as tumorigenesis in vivo. NCK1-AS1 regulated the ENPEP expression by competitively binding to miR-133b. ENPEP overexpression reversed inhibition of NCK1-AS1 knockdown on the function of ESCC cells. This study provides evidence that silencing NCK1-AS1 inhibits expression of ENPEP by sponging miR-133b, thereby suppressing ESCC.
Collapse
Affiliation(s)
- Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiu-Qi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Lu Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Duan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
8
|
Wang Y, Pan J, Sun Z. LncRNA NCK1-AS1-mediated regulatory functions in human diseases. Clin Transl Oncol 2023; 25:323-332. [PMID: 36131072 DOI: 10.1007/s12094-022-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Disease development requires the activation of complex multi-factor processes involving numerous long noncoding RNAs (lncRNAs), which describe non-protein-coding RNAs longer than 200 nucleotides. Emerging evidence indicates that lncRNAs act as essential regulators that perform pivotal roles in the pathogenesis and progression of human diseases. The mechanisms underlying lncRNA involvement in diverse diseases have been extensively explored, and lncRNAs are considered powerful biomarkers for clinical practice. The lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) antisense 1 (NCK1-AS1), also known as NCK1 divergent transcript (NCK1-DT), is encoded on human chromosome 3q22.3 and produces a 27,274-base-long transcript. NCK1-AS1 has increasingly been characterized as a causative agent for multiple diseases. The abnormal expression and involvement of NCK1-AS1 in various biological processes have been associated with several diseases. Further exploration of the mechanisms through which NCK1-AS1 contributes to disease development and progression will provide a foundation for potential clinical applications of NCK1-AS1 in the diagnosis and treatment of various diseases. This review summarizes the current understanding of the various functions and mechanisms through which NCK1-AS1 contributes to various diseases and the clinical application prospects for NCK1-AS1.
Collapse
Affiliation(s)
- Yingfan Wang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Wu QW, Cao RF, Xia JF, Ni JC, Zheng CH, Su YS. Extra Trees Method for Predicting LncRNA-Disease Association Based On Multi-Layer Graph Embedding Aggregation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3171-3178. [PMID: 34529571 DOI: 10.1109/tcbb.2021.3113122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lots of experimental studies have revealed the significant associations between lncRNAs and diseases. Identifying accurate associations will provide a new perspective for disease therapy. Calculation-based methods have been developed to solve these problems, but these methods have some limitations. In this paper, we proposed an accurate method, named MLGCNET, to discover potential lncRNA-disease associations. Firstly, we reconstructed similarity networks for both lncRNAs and diseases using top k similar information, and constructed a lncRNA-disease heterogeneous network (LDN). Then, we applied Multi-Layer Graph Convolutional Network on LDN to obtain latent feature representations of nodes. Finally, the Extra Trees was used to calculate the probability of association between disease and lncRNA. The results of extensive 5-fold cross-validation experiments show that MLGCNET has superior prediction performance compared to the state-of-the-art methods. Case studies confirm the performance of our model on specific diseases. All the experiment results prove the effectiveness and practicality of MLGCNET in predicting potential lncRNA-disease associations.
Collapse
|
10
|
Yang M, Lu Z, Yu B, Zhao J, Li L, Zhu K, Ma M, Long F, Wu R, Hu G, Huang L, Chou J, Gong N, Yang K, Li X, Zhang Y, Lin C. COL5A1 Promotes the Progression of Gastric Cancer by Acting as a ceRNA of miR-137-3p to Upregulate FSTL1 Expression. Cancers (Basel) 2022; 14:3244. [PMID: 35805015 PMCID: PMC9264898 DOI: 10.3390/cancers14133244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) and their target genes have been shown to play an important role in gastric cancer but have not been fully clarified. Therefore, our goal was to identify the key miRNA-mRNA regulatory network in gastric cancer by utilizing a variety of bioinformatics analyses and experiments. A total of 242 miRNAs and 1080 genes were screened from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Then, survival-related differentially expressed miRNAs and their differentially expressed target genes were screened. Twenty hub genes were identified from their protein-protein interaction network. After weighted gene co-expression network analysis was conducted, we selected miR-137-3p and its target gene, COL5A1, for further research. We found that miR-137-3p was significantly downregulated and that overexpression of miR-137-3p suppressed the proliferation, invasion, and migration of gastric cancer cells. Furthermore, we found that its target gene, COL5A1, could regulate the expression of another hub gene, FSTL1, by sponging miR-137-3p, which was confirmed by dual-luciferase reporter assays. Knockdown of COL5A1 inhibited the proliferation, invasion, and migration of gastric cancer cells, which could be rescued by the miR-137-3p inhibitor or overexpression of FSTL1. Ultimately, bioinformatics analyses showed that the expression of FSTL1 was highly correlated with immune infiltration.
Collapse
Affiliation(s)
- Ming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Bowen Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Jiajia Zhao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Kaiyu Zhu
- The Five-Year Program in Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Kaiyan Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| |
Collapse
|
11
|
Wan L, Gu D, Jin X. LncRNA NCK1-AS1 Promotes Malignant Cellular Phenotypes of Laryngeal Squamous Cell Carcinoma via miR-137/NCK1 Axis. Mol Biotechnol 2022; 64:888-901. [PMID: 35218517 DOI: 10.1007/s12033-022-00469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/12/2022] [Indexed: 01/20/2023]
Abstract
Increasing evidence demonstrates that many long noncoding RNAs (lncRNAs) are implicated with the development of laryngeal squamous cell carcinoma (LSCC). As shown by bioinformatics analysis, lncRNA non-catalytic region of tyrosine kinase adaptor protein 1-antisense 1 (NCK1-AS1) is upregulated in tissues of head and neck squamous cell carcinoma. The study aimed to explore the role and mechanism of NCK1-AS1 in LSCC. NCK1-AS1 expression in LSCC cells was evaluated by reverse transcription qPCR. The viability, proliferation, invasion, migration, and apoptosis of LSCC cells with indicated transfection were evaluated by CCK-8 assays, Ethynyl deoxyuridine incorporation assays, Transwell assays, wound healing assays, and TUNEL assays, respectively. Subcellular fractionation assays were performed to evaluate the cellular distribution of NCK1-AS1 and NCK1. NCK1 protein level in LSCC cells with indicated transfection was quantified by western blotting. The binding relation between miR-137 and NCK1-AS1 (or NCK1) were determined using RNA immunoprecipitation assays and luciferase reporter assays. NCK1-AS1 was highly expressed in LSCC cell lines. NCK1-AS1 depletion suppressed LSCC cell viability, proliferation, invasion, and migration while enhancing cell apoptosis. NCK1, an adjacent gene of NCK1-AS1, is also highly expressed in LSCC cells and was positively regulated by NCK1-AS1. Moreover, NCK1-AS1 interact with miR-137 to upregulate NCK1 expression. NCK1 was the downstream target of miR-137 and was negatively correlated to miR-137. In addition, overexpressed NCK1 reversed the suppressive impact of NCK1-AS1 depletion on malignant behaviors of LSCC cells. NCK1-AS1 contributes to LSCC cellular behaviors by upregulating NCK1 via interaction with miR-137.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 6, Beijing West Road, Huaian, 223300, Jiangsu, China
| | - Dongsheng Gu
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 6, Beijing West Road, Huaian, 223300, Jiangsu, China
| | - Xin Jin
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 6, Beijing West Road, Huaian, 223300, Jiangsu, China.
| |
Collapse
|
12
|
Cheng Z, Hong J, Tang N, Liu F, Gu S, Feng Z. Long non-coding RNA p53 upregulated regulator of p53 levels (PURPL) promotes the development of gastric cancer. Bioengineered 2022; 13:1359-1376. [PMID: 35012438 PMCID: PMC8805877 DOI: 10.1080/21655979.2021.2017588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC), one of the most prevalent malignancies across the world, has an increasing incidence rate. Long non-coding RNA (lncRNA) PURPL (also referred to as LINC01021) has been demonstrated to influence malignant GC behaviors and partake in other cancers. Notwithstanding, reports pertaining to the underlying mechanism of PURPL in GC haven’t been rarely seen. Presently, in-vivo and ex-vivo experiments were implemented to examine the PURPL-miR-137-ZBTB7A-PI3K-AKT-NF-κB regulatory axis in GC. Our statistics revealed that PURPL presented a high expression in GC tissues and cell lines. PURPL overexpression remarkably exacerbated colony formation, migration, and invasion and repressed apoptosis in GC cells (AGS and MNK-45). In-vivo experiments also corroborated that cell growth was boosted by PURPL up-regulation. Mechanistic investigations verified that PURPL interacted with miR-137 and lowered its profile in GC cell lines. miR-137 overexpression or ZBTB7A knockdown upended the oncogenic function mediated by PURPL. PURPL initiated the PI3K/AKT/NF-κB pathway. PI3K and NF-κB inhibition impaired the promoting impact on GC cells elicited by PURPL overexpression and contributed to PURPL down-regulation. These findings disclosed that PURPL serves as an oncogene in the context of GC via miR-137-ZBTB7A-PI3K-AKT-NF-κB axis modulation.
Collapse
Affiliation(s)
- Zhonghua Cheng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Hong
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Tang
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fenghua Liu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuo Gu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhen Feng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|