1
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
2
|
Duan Q, Wang M, Cui Z, Ma J. Saikosaponin D suppresses esophageal squamous cell carcinoma via the PI3K-AKT signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03676-6. [PMID: 39638887 DOI: 10.1007/s00210-024-03676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.
Collapse
Affiliation(s)
- Qiong Duan
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Mingxiao Wang
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Zhenting Cui
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Jianxin Ma
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| |
Collapse
|
3
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Kakemura B, Igaki T. Blockade of Crk eliminates Yki/YAP-activated tumors via JNK-mediated apoptosis in Drosophila. Commun Biol 2024; 7:1196. [PMID: 39341909 PMCID: PMC11438906 DOI: 10.1038/s42003-024-06897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Selective elimination of cancer cells without causing deleterious effects on normal cells is an ideal anti-cancer strategy. Here, using Drosophila cancer model, we performed an in vivo RNAi screen for anti-cancer targets that selectively eliminate tumors without affecting normal tissue growth. In Drosophila imaginal epithelium, clones of cells expressing oncogenic Ras with simultaneous mutations in the cell polarity gene scribble (RasV12/scrib-/-) develop into malignant tumors. We found that knockdown of Crk, the Drosophila ortholog of human CRK (CT10 regulatory kinase) and CRKL (Crk-like) adapter proteins, significantly suppresses growth of RasV12/scrib-/- tumors by inducing c-Jun N-terminal kinase (JNK)-mediated apoptosis, while it does not affect growth of normal epithelium. Mechanistically, Crk inhibition blocks Yorkie (Yki)/YAP activity by impairing F-actin accumulation, an upstream event of Yki/YAP activation in tumors. Inhibition of Yki/YAP in tumors causes intracellular JNK signaling to be used for apoptosis induction. Given that molecules and signaling pathways identified in Drosophila are highly conserved and activated in human cancers, our findings would provide a novel, to the best of our knowledge, anti-cancer strategy against YAP-activated cancers.
Collapse
Affiliation(s)
- Bungo Kakemura
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, 46-29, Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, 46-29, Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Xiao X, Gao C. Saikosaponins Targeting Programmed Cell Death as Anticancer Agents: Mechanisms and Future Perspectives. Drug Des Devel Ther 2024; 18:3697-3714. [PMID: 39185081 PMCID: PMC11345020 DOI: 10.2147/dddt.s470455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Saikosaponins (SS), which are major bioactive compounds in Radix Bupleuri, have long been used clinically for multicomponent, multitarget, and multipathway therapeutic strategies. Programmed cell death (PCD) induction is among the multiple mechanisms of SS and mediates the anticancer efficacy of this drug family. Although SS show promise for anticancer therapy, the available data to explain how SS mediate their key anticancer effects through PCD (apoptosis, autophagy, ferroptosis, and pyroptosis) remain limited and piecemeal. This review offers an extensive analysis of the key pathways and mechanisms involved in PCD and explores the importance of SS in cancer. We believe that high-quality clinical trials and a deeper understanding of the pharmacological targets involved in the signalling cascades that govern tumour initiation and progression are needed to facilitate the development of innovative SS-based treatments. Elucidating the specific anticancer pathways activated by SS and further clarifying how comprehensive therapies lead to cross-link among the different types of cell death will inspire the clinical translation of SS as cancer treatments.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| |
Collapse
|
6
|
Jia R, Meng D, Geng W. Advances in the anti-tumor mechanisms of saikosaponin D. Pharmacol Rep 2024; 76:780-792. [PMID: 38965200 DOI: 10.1007/s43440-024-00569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 07/06/2024]
Abstract
Saikosaponin D, a saponin compound, is extracted from Bupleurum and is a principal active component of the plant. It boasts a variety of pharmacologic effects including anti-inflammatory, antioxidant, immunomodulatory, metabolic, and anti-tumor properties, drawing significant attention in anti-tumor research in recent years. Research indicates that saikosaponin D inhibits the proliferation of numerous tumor cells, curbing the progression of cancers such as liver, pancreatic, lung, glioma, ovarian, thyroid, stomach, and breast cancer. Its anti-tumor mechanisms largely involve inhibiting tumor cell proliferation, promoting tumor cell apoptosis, thwarting tumor-cell invasion, and modulating tumor cell autophagy. Moreover, saikosaponin D enhances the sensitivity to anti-tumor drugs and augments body immunity. Given its multi-faceted anti-tumor roles, saikosaponin D offers promising potential in anti-tumor therapy. This paper reviews recent studies on its anti-tumor effects, aiming to furnish new theoretical insights for clinical cancer treatments.
Collapse
Affiliation(s)
- Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
7
|
Meng J, Yang B, Shu C, Jiang S. Saikosaponin-d mediates FOXG1 to reverse docetaxel resistance in prostate cancer through oxidative phosphorylation. Mutat Res 2024; 829:111875. [PMID: 39098234 DOI: 10.1016/j.mrfmmm.2024.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Prostate cancer (PCa), a prevalent malignancy worldwide, is frequently identified in advanced stages due to the absence of distinctive early symptoms, thereby culminating in the development of chemotherapy-induced drug resistance. Exploring novel resistance mechanisms and identifying new therapeutic agents can facilitate the advancement of more efficacious strategies for PCa treatment. METHODS Bioinformatics analysis was employed to investigate the expression of FOXG1 in PCa tissues. Subsequently, qRT-PCR was utilized to validate FOXG1 mRNA expression levels in corresponding PCa cell lines. FOXG1 knockdown was performed, and cell proliferation was assessed using CCK-8 assays, while cell migration and invasion capabilities were evaluated through wound healing and Transwell assays. Western blot and Seahorse analyzer were used to measure oxidative phosphorylation (OXPHOS) levels. Additionally, to explore potential approaches to alleviate PCa drug resistance, this study assessed the impact of biologically active saikosaponin-d (SSd) on PCa malignant progression and resistance by regulating FOXG1 expression. RESULTS FOXG1 exhibited high expression in PCa tissues and cell lines. Knockdown of FOXG1 inhibited the proliferation, migration, and invasion of PCa cells, while FOXG1 overexpression had the opposite effect and promoted OXPHOS levels. The addition of an OXPHOS inhibitor prevented this outcome. Finally, SSd was shown to suppress FOXG1 expression and reverse docetaxel resistance in PCa cells through the OXPHOS pathway. CONCLUSION This work demonstrated that SSd mediated FOXG1 to reverse malignant progression and docetaxel resistance in PCa through OXPHOS.
Collapse
Affiliation(s)
- Jun Meng
- Department of Urology, Wusong Central Hospital, Shanghai 200940, China
| | - Bo Yang
- Department of Urology, Wusong Central Hospital, Shanghai 200940, China
| | - Chang Shu
- Department of Urology, Wusong Central Hospital, Shanghai 200940, China
| | - Shuai Jiang
- Department of Urology, Wusong Central Hospital, Shanghai 200940, China.
| |
Collapse
|
8
|
Lee YS, Mun JG, Park SY, Hong DY, Kim HY, Kim SJ, Lee SB, Jang JH, Han YH, Kee JY. Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients 2024; 16:1844. [PMID: 38931199 PMCID: PMC11206761 DOI: 10.3390/nu16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.
Collapse
Affiliation(s)
- Yoon-Seung Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Shin-Young Park
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dah Yun Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ho-Yoon Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Su-Jin Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sun-Bin Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Ho Jang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Yo-Han Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
9
|
Zhao Y, Yang L, Que S, An L, Teeti AA, Xiao S. Systemic mechanism of Panax noteginseng saponins in antiaging based on network pharmacology combined with experimental validation. IBRAIN 2024; 10:519-535. [PMID: 39691419 PMCID: PMC11649391 DOI: 10.1002/ibra.12165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 12/19/2024]
Abstract
This study aims to investigate the systemic mechanism of Panax notoginseng saponins (PNS) in antiaging using network pharmacology combined with experimental validation. String database and Cytoscape3.7.2 were used to perform the protein-protein interaction (PPI) and construct genes network. The key target genes were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, the aging-related genes were verified by reverse-transcription polymerase chain reaction in SAM-P/8 mice, and performed molecular docking with the main components of PNS. Moreover, it produced cluster between Hub genes and differential genes. A total of 169 crossover genes were obtained, and the results of GO and KEGG indicated that the antiaging effect of PNS was mediated by apoptosis, cancer, and neurodegeneration and that five of the eight Hub genes had good binding activity with the main components of PNS. In addition, animal experiments reported that MAP2, MAPKK4, RAB6A, and Sortilin-1 have different levels of expression in the brain tissues of aging mice, and bind well docking with the main active components of PNS. However, there was no crossover between the 169 PNS intersecting genes and the four differential genes, while they yielded a link from PPI in which MAP2K4 was only linked to AKT1 and CASP3; MAP2 was only linked to AKT1 and CASP3; RAB6A was only linked to AKT1; but Sortlin-1 did not link to the Hub genes. In summary, the antiaging effect of PNS is associated with the eight Hub genes and four differential genes. All of them consist of a cluster or group that is possibly related to the antiaging effect of PNS.
Collapse
Affiliation(s)
- Yang‐Yang Zhao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li‐Xia Yang
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shuang‐Yu Que
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Lei‐Xing An
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Abeer A. Teeti
- Department of Chemistry, School of ScienceHebron UniversityHebronPalestine
| | - Shun‐Wu Xiao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
10
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
11
|
Xu X, Cui L, Zhang L, Yang L, Zhuo Y, Li C. Saikosaponin d modulates the polarization of tumor-associated macrophages by deactivating the PI3K/AKT/mTOR pathway in murine models of pancreatic cancer. Int Immunopharmacol 2023; 122:110579. [PMID: 37433245 DOI: 10.1016/j.intimp.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) poses a major obstacle to traditional and immunomodulatory cancer therapies and is closely associated with macrophage polarization. Saikosaponin d (SSd), a major active component of triterpene saponins derived from Bupleurum falcatum, has anti-inflammatory and antitumor activities. However, whether SSd can regulate immune cells during the development of the TME in PDAC remains unknown. In the present study, we aimed to analyze the role of SSd in regulating immune cells in the PDAC TME, especially the polarization of macrophages, and examine the related mechanisms. An orthotopic PDAC cancer model was used to investigate the antitumor activities and the regulation of immune cells in vivo. In vitro, bone marrow mononuclear (BM-MNC) cells and RAW 264.7 cells were used to induce the M2 macrophage phenotype and examine the effects and molecular mechanism of SSd on M2 macrophage polarization. The results revealed that SSd could directly inhibit the apoptosis and invasion of pancreatic cancer cells, modulate the immunosuppressive microenvironment and reactivate the local immune response, especially by decreasing the shift toward M2 macrophage polarization by downregulating phosphorylated STAT6 levels and the PI3K/AKT/mTOR signaling pathway. Furthermore, 740-Y-P (PI3K activator) was used to verify that SSd inhibited M2 polarization in RAW264.7 cells via the PI3K/AKT/mTOR signaling pathway. In conclusion, this study provided experimental evidence of the antitumor effect of SSd, especially in the regulation of M2 macrophage polarization, and demonstrated that SSd may be a promising therapeutic agent in PDAC.
Collapse
Affiliation(s)
- Xinsheng Xu
- Hepatopancreatobiliary Surgery Department, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
12
|
Zhu Y, Lai Y. Pharmacological properties and derivatives of saikosaponins-a review of recent studies. J Pharm Pharmacol 2023:7194607. [PMID: 37307427 DOI: 10.1093/jpp/rgad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Saikosaponins (SSs) constitute a class of medicinal monomers characterised by a triterpene tricyclic structure. Despite their potential therapeutic effects for various pathological conditions, the underlying mechanisms of their actions have not been systematically analysed. Here, we mainly review the important anti-inflammatory, anticancer, and antiviral mechanisms underlying SS actions. METHODS Information from multiple scientific databases, such as PubMed, the Web of Science, and Google Scholar, was collected between 2018 and 2023. The search term used was saikosaponin. KEY FINDINGS Numerous studies have shown that Saikosaponin A exerts anti-inflammatory effects by modulating cytokine and reactive oxygen species (ROS) production and lipid metabolism. Moreover, saikosaponin D exerts antitumor effects by inhibiting cell proliferation and inducing apoptosis and autophagy, and the antiviral mechanisms of SSs, especially against SARS-CoV-2, have been partially revealed. Interestingly, an increasing body of experimental evidence suggests that SSs show the potential for use as anti-addiction, anxiolytic, and antidepressant treatments, and therefore, the related molecular mechanisms warrant further study. CONCLUSIONS An increasing amount of data have indicated diverse SS pharmacological properties, indicating crucial clues for future studies and the production of novel saikosaponin-based anti-inflammatory, efficacious anticancer, and anti-novel-coronavirus agents with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Yingchao Zhu
- Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Wan H, Zhou L, Wu B, Han W, Sui C, Wei J. Integrated metabolomics and transcriptomics analysis of roots of Bupleurum chinense and B. scorzonerifolium, two sources of medicinal Chaihu. Sci Rep 2022; 12:22335. [PMID: 36572795 PMCID: PMC9792521 DOI: 10.1038/s41598-022-27019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Radix Bupleuri (Chaihu in Chinese) is a traditional Chinese medicine commonly used to treat colds and fevers. The root metabolome and transcriptome of two cultivars of B. chinense (BCYC and BCZC) and one of B. scorzonerifolium (BSHC) were determined and analyzed. Compared with BSHC, 135 and 194 differential metabolites were identified in BCYC and BCZC, respectively, which were mainly fatty acyls, organooxygen metabolites. A total of 163 differential metabolites were obtained between BCYC and BCZC, including phenolic acids and lipids. Compared with BSHC, 6557 and 5621 differential expression genes (DEGs) were found in BCYC and BSHC, respectively, which were annotated into biosynthesis of unsaturated fatty acid and fatty acid metabolism. A total of 4,880 DEGs existed between the two cultivars of B. chinense. The abundance of flavonoids in B. scorzonerifolium was higher than that of B. chinense, with the latter having higher saikosaponin A and saikosaponin D than the former. Pinobanksin was the most major flavonoid which differ between the two cultivars of B. chinense. The expression of chalcone synthase gene was dramatically differential, which had a positive correlation with the biosynthesis of pinobanksin. The present study laid a foundation for further research on biosynthesis of flavonoids and terpenoids of Bupleurum L.
Collapse
Affiliation(s)
- Hefang Wan
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Lei Zhou
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Bin Wu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Wenjing Han
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Chun Sui
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Jianhe Wei
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| |
Collapse
|
14
|
Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J Xenobiot 2022; 12:378-405. [PMID: 36547471 PMCID: PMC9782205 DOI: 10.3390/jox12040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin D (SSD), an active compound derived from the traditional plant Radix bupleuri, showcases potential in disease management owing to its antioxidant, antipyretic, and anti-inflammatory properties. The toxicological effects of SSD mainly include hepatotoxicity, neurotoxicity, hemolysis, and cardiotoxicity. SSD exhibits antitumor effects on multiple targets and has been witnessed in diverse cancer types by articulating various cell signaling pathways. As a result, carcinogenic processes such as proliferation, invasion, metastasis, and angiogenesis are inhibited, whereas apoptosis, autophagy, and differentiation are induced in several cancer cells. Since it reduces side effects and strengthens anti-cancerous benefits, SSD has been shown to have an additive or synergistic impact with chemo-preventive medicines. Regardless of its efficacy and benefits, the considerations of SSD in cancer prevention are absolutely under-researched due to its penurious bioavailability. Diverse studies have overcome the impediments of inadequate bioavailability using nanotechnology-based methods such as nanoparticle encapsulation, liposomes, and several other formulations. In this review, we emphasize the association of SSD in cancer therapeutics and the discussion of the mechanisms of action with the significance of experimental evidence.
Collapse
|
15
|
Liang J, Sun J, Liu A, Chen L, Ma X, Liu X, Zhang C. Saikosaponin D improves chemosensitivity of glioblastoma by reducing the its stemness maintenance. Biochem Biophys Rep 2022; 32:101342. [PMID: 36186734 PMCID: PMC9516410 DOI: 10.1016/j.bbrep.2022.101342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Chemotherapy is one of the important adjuvant methods for the treatment of glioblastoma (GBM), and chemotherapy resistance is a clinical problem that neurooncologists need to solve urgently. It is reported that Saikosaponin D (SSD), an active component of Bupleurum chinense, had various of antitumor activities and could also enhance the chemosensitivity of liver cancer and other tumors. However, it is not clear whether it has an effect on the chemosensitivity of glioma and its specific mechanism. Methods The CCK8 assay, Wound healing assay and Matrigel invasion assay were used to detect the effect of SSD on the phenotype of GBM cells. We detected the effect of SSD on the chemosensitivity of GSM by Flow cytometry, LDH content and MTT assay. Then, we used cell plate cloning, semi-quantitative PCR and western blotting experiments to detect the effect of SSD on the stem potential of GBM cells. Finally, the effect of SSD on the chemosensitivity of GBM and its potential mechanism were verified by nude mouse experiments in vivo. Results firstly, we found that SSD could partially inhibit the malignant phenotype of LN-229 cells, including inhibiting migration, invasion and apoptosis, and increasing the apoptosis rate and lactate dehydrogenase (LDH) release of LN-229 cells under the treatment of temozolomide (TMZ), that is to say, increasing the chemotherapy effect of TMZ on the cells. In addition, we unexpectedly found that SSD could partially inhibit the colony forming ability of LN-229 cells, which directly related to the stemness maintenance potential of cancer stem cells. Subsequently, our results showed that SSD could inhibit the gene and protein expression of stemness factors (OCT4, SOX2, c-Myc and Klf4) in LN-229 cells. Finally, we verified that SSD could improve the chemotherapy effect of TMZ by inhibiting the stem potential of glioblastoma in vivo nude mice. Conclusion this research can provide a certain theoretical basis for the application of SSD in the chemotherapy resistance of GBM and its mechanism of action, and provide a new hope for the clinical treatment of glioblastoma. SSD could inhibit the malignant phenotype of LN-229 cells, increase the chemotherapy effect of TMZ on the cells. SSD could inhibit the colony forming ability of LN-229 cells, and also inhibit their gene and protein expression of stemness factors. We verified that SSD could improve the chemotherapy effect of TMZ by inhibiting the stem potential of glioblastoma.
Collapse
|
16
|
Wu X, Zhao K, Fang X, Lu F, Cheng P, Song X, Zhang W, Yao C, Zhu J, Chen H. Saikosaponin D Inhibited IL-1β Induced ATDC 5 Chondrocytes Apoptosis In Vitro and Delayed Articular Cartilage Degeneration in OA Model Mice In Vivo. Front Pharmacol 2022; 13:845959. [PMID: 35370642 PMCID: PMC8975252 DOI: 10.3389/fphar.2022.845959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in the elderly, characterized by cartilage degradation and proliferation of subchondral bone. The pathogenesis of OA involves a variety of inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. From the molecular mechanism, the nuclear factor-erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1) pathway and the expression of ROS regulated the production of the above inflammatory mediators. Saikosaponin D (SSD), which is an active ingredient isolated from Bupleurum, has various biological functions. In this study, IL-1β was used as a pro-inflammatory factor to create an in vitro OA model. According to the results of high-density culture, qPCR, ROS measurement, Western blot, and immunofluorescence, SSD activated the Nrf2/HO-1/ROS axis, inhibited the production of inflammatory mediators, and protected against ECM destruction. The DMM mouse model was used as a model of OA in mice. From the results of safranin O/fast green staining, hematoxylin–eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, and OARSI scores, SSD protected against the mice knee articular cartilage degeneration and reduced the number of osteoclasts in the subchondral bone. Experimental results found that SSD suppressed IL-1β–induced differentiated ATDC 5 chondrocytes apoptosis via the Nrf2/HO-1/ROS axis in vitro. SSD delayed the progression of OA in DMMs model mice in vivo. Therefore, SSD has the potential to become a drug for clinical treatment of OA.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Kangxian Zhao
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Xiaoxin Fang
- Zhejiang University School of Medicine, Hangzhou, China
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Feng Lu
- Zhejiang University School of Medicine, Hangzhou, China
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Pu Cheng
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Song
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Weikang Zhang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Can Yao
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jiling Zhu
- Wenzhou Medical University, Wenzhou, China
| | - Haixiao Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
- *Correspondence: Haixiao Chen,
| |
Collapse
|
17
|
Wu X, Zhao K, Fang X, Lu F, Zhang W, Song X, Chen L, Sun J, Chen H. Inhibition of Lipopolysaccharide-Induced Inflammatory Bone Loss by Saikosaponin D is Associated with Regulation of the RANKL/RANK Pathway. Drug Des Devel Ther 2021; 15:4741-4757. [PMID: 34848946 PMCID: PMC8627275 DOI: 10.2147/dddt.s334421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Osteolytic diseases such as osteoporosis are featured with accelerated osteoclast differentiation and strong bone resorption. Considering the complications and other limitations of current drug treatments, it is necessary to develop a safer and more reliable drug to deal with osteoclast-related diseases. Saikosaponin D (SSD) is the active extract of Bupleurum, which has anti-inflammation, anti-tumor and liver protection functions. However, the role of SSD in regulating the differentiation and function of osteoclasts is not clear. Purpose To explore whether SSD could prevent osteoclast differentiation and bone resorption induced by M-CSF and RANKL, and further evaluate the potential therapeutic properties of SSD in LPS-induced inflammatory bone loss mouse models. Methods BMMs were cultured in complete medium stimulated by RANKL with different concentrations of SSD. TRAP staining, bone resorption determination, qRT-PCR, immunofluorescence and Western blotting were performed. A mouse model of LPS-induced calvarial bone loss was established and treated with different doses of SSD. The excised calvaria bones were used for TRAP staining, micro-CT scan and histological analysis. Results SSD inhibited the formation and bone resorption of osteoclasts induced by RANKL in vitro. SSD suppressed LPS-induced inflammatory bone loss in vivo. Conclusion SSD inhibited osteoclastogenesis and LPS-induced osteolysis in mice both which served as a new potential agent for the treatment of osteoclast-related conditions.
Collapse
Affiliation(s)
- Xinhui Wu
- Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China
| | - Kangxian Zhao
- Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China
| | - Xiaoxin Fang
- Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, People's Republic of China
| | - Feng Lu
- Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, People's Republic of China
| | - Weikang Zhang
- Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China
| | - Xiaoting Song
- Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China
| | - Lihua Chen
- Enze Medical Research Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China
| | - Jiacheng Sun
- Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China
| | - Haixiao Chen
- Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People's Republic of China.,Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, People's Republic of China
| |
Collapse
|
18
|
Zhou P, Shi W, He XY, Du QY, Wang F, Guo J. Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. PHARMACEUTICAL BIOLOGY 2021; 59:1480-1489. [PMID: 34714209 PMCID: PMC8567945 DOI: 10.1080/13880209.2021.1992448] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Bupleuri Radix, the dried root of Bupleurum chinense DC and Bupleurum scorzonerifolium Willd (Apiaceae), is an important medicinal herb widely used to treat cancers for hundreds of years in Asian countries. As the most antitumour component but also the main toxic component in Bupleuri Radix, saikosaponin D (SSD) has attracted extensive attention. However, no summary studies have been reported on the antitumour effects, toxicity and pharmacokinetics of this potential natural anticancer substance. OBJECTIVE To analyse and summarise the existing findings regarding to the antitumour effects, toxicity and pharmacokinetics of SSD. MATERIALS AND METHODS We collected relevant information published before April 2021 by conducting a search of literature available in various online databases including PubMed, Science Direct, CNKI, Wanfang database and the Chinese Biological Medicine Database. Bupleurum, Bupleuri Radix, saikosaponin, saikosaponin D, tumour, toxicity, and pharmacokinetics were used as the keywords. RESULTS The antitumour effects of SSD were multi-targeted and can be realised through various mechanisms, including inhibition of proliferation, invasion, metastasis and angiogenesis, as well as induction of cell apoptosis, autophagy, and differentiation. The toxicological effects of SSD mainly included hepatotoxicity, neurotoxicity, haemolysis and cardiotoxicity. Pharmacokinetic studies demonstrated that SSD had the potential to alter the pharmacokinetics of some drugs for its influence on CYPs and P-gp, and the oral bioavailability and actual pharmacodynamic substances in vivo of SSD are still controversial. CONCLUSIONS SSD is a potentially effective and relatively safe natural antitumour substance, but more research is needed, especially in vivo antitumour effects and pharmacokinetics of the compound.
Collapse
Affiliation(s)
- Piao Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Yan He
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan-Yu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- CONTACT Fei Wang Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Jing Guo Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| |
Collapse
|
19
|
Saikosaponin D Inhibits the Proliferation and Promotes the Apoptosis of Rat Hepatic Stellate Cells by Inducing Autophagosome Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5451758. [PMID: 34457023 PMCID: PMC8390134 DOI: 10.1155/2021/5451758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Objective This study aimed to investigate the effects of saikosaponin D (SSd) on the proliferation and apoptosis of the HSC-T6 hepatic stellate cell line and determine the key pathway that mediates SSd's function. Methods Cell viability was detected using the CCK-8 kit. The EdU kit and flow cytometry were used to examine cell proliferation. The Annexin V-FITC/PI double staining kit and flow cytometry were used to examine cell apoptosis. Western blot analysis was performed to analyze the expression levels of LC3, Ki67, cleaved caspase 3, Bax, and Bcl2. Autophagosome formation was detected by LC3-GFP adenovirus transfection. Results SSd inhibits the proliferation and promotes the apoptosis of acetaldehyde-activated HSC-T6 cells. SSd treatment increased the expression of cleaved caspase 3 and Bax but reduced that of Ki67 and Bcl2. The same concentration of SSd barely influenced the growth of normal rat liver BRL-3A cells. SSd upregulated LC3-II expression and induced autophagosome formation. Autophagy agonist rapamycin had the same effect as SSd and autophagy inhibitor 3-methyladenine could neutralize the effect of SSd in acetaldehyde-activated HSC-T6 cells. Conclusions SSd could inhibit the proliferation and promote the apoptosis of HSC-T6 cells by inducing autophagosome formation.
Collapse
|
20
|
Sun S, Zhu L, Lai M, Cheng R, Ge Y. Tanshinone I inhibited growth of human chronic myeloid leukemia cells via JNK/ERK mediated apoptotic pathways. ACTA ACUST UNITED AC 2021; 54:e10685. [PMID: 34037092 PMCID: PMC8148979 DOI: 10.1590/1414-431x2020e10685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
Tanshinone I (Tan I) is one of the main bioactive ingredients derived from Salvia miltiorrhiza Bunge, which has exhibited antitumor activities toward various human cancer cells. However, its effects and underlying mechanisms on human chronic myeloid leukemia (CML) cells still require further investigation. This study determined the effects and mechanisms of anti-proliferative and apoptosis induction activity induced by Tan I against K562 cells. The cytotoxic effect of Tan I at varying concentrations on K562 cells was evaluated via MTT assay. Cell apoptosis was further investigated through DAPI staining and flow cytometry analysis. The expression levels of apoptosis-related proteins and activities of JNK/ATF2 and ERK signaling pathways were analyzed by western blot. Quantitative PCR was performed to further determine mRNA expression levels of JNK1/2 and ERK1/2 after Tan I treatment. The results indicated that Tan I significantly inhibited K562 cell growth and induced apoptosis in a concentration- and time-dependent manner. It induced significant cellular morphological changes and increased apoptosis rates in CML cells. Tan I promoted the cleavages of caspase-related proteins, as well as increased the expression levels of PUMA. Furthermore, Tan I significantly activated JNK and inhibited ATF-2 and ERK signaling pathways. The mRNA expression levels of JNK1/2 and ERK1/2 were up-regulated by Tan I, further confirming its regulatory effects on JNK/ERK signaling pathways. Overall, our results indicated that Tan I suppressed cell viability via JNK- and ERK-mediated apoptotic pathways in K562 cells, suggesting that it might be a promising candidate as a novel anti-leukemia drug.
Collapse
Affiliation(s)
- Siya Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyan Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengru Lai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rubin Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Xu P, Ma X, Xiao X, Shi W, Xue N, Liu X, Zuo G, Hu S, Du X, Zheng J. Saikosaponin-d improved the stemness of mouse neural stem cells and increased their thermotolerance potential. Int J Dev Neurosci 2021; 81:324-332. [PMID: 33740828 DOI: 10.1002/jdn.10103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate the effect of saikosaponin-d (Ssd) on proliferation, differentiation, and stemness of neural stem cells (NSCs), and to observe whether Ssd has a protective effect on NSCs at medium-high and high temperature. MATERIALS AND METHODS NSCs were extracted from 15-day fetal mice. After subculture, Ssd treatment was performed. Cell cycle and apoptosis rate were detected by flow cytometry. Western Blot and immunofluorescence assay were used to detect the expression and spatial distribution of Nestin, NSE, GFAP, Oct4, and SOX2. Cell growth morphology was observed under a microscope; the concentration of extracellular lactate dehydrogenase (LDH) was determined by ELISA. RESULTS Compared with the control group, the proportion of NSCs in the G0/G1 phase increased in the Ssd treatment group; on the contrary, the proportion in the G2/M phase significantly decreased. Microscopically, our results also suggested the sphere-formation rate increased significantly. Besides, the percentage of dead cells in the Ssd group at 38.5, 40°C were reduced, and the level of LDH release was dropped. CONCLUSION Ssd improved the stemness of NSCs, inhibited their differentiation into neural cells, and reduced cell damage under high temperature. Therefore, we speculate that Ssd can improve the thermotolerance of NSCs and protect the nervous system of children with fever.
Collapse
Affiliation(s)
- Panpan Xu
- Department of Pediatrics, Tianjin Medical University, Tianjin, China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiaolin Xiao
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Wanchao Shi
- Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Na Xue
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Guoxing Zuo
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Sheng Hu
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xinping Du
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| |
Collapse
|
22
|
JNK signaling as a target for anticancer therapy. Pharmacol Rep 2021; 73:405-434. [PMID: 33710509 DOI: 10.1007/s43440-021-00238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
The JNKs are members of mitogen-activated protein kinases (MAPK) which regulate many physiological processes including inflammatory responses, macrophages, cell proliferation, differentiation, survival, and death. It is increasingly clear that the continuous activation of JNKs has a role in cancer development and progression. Therefore, JNKs represent attractive oncogenic targets for cancer therapy using small molecule kinase inhibitors. Studies showed that the two major JNK proteins JNK1 and JNK2 have opposite functions in different types of cancers, which need more specification in the design of JNK inhibitors. Some of ATP- competitive and ATP non-competitive inhibitors have been developed and widely used in vitro, but this type of inhibitors lack selectivity and inhibits phosphorylation of all JNK substrates and may lead to cellular toxicity. In this review, we summarized and discussed the strategies of JNK binding inhibitors and the role of JNK signaling in the pathogenesis of different solid and hematological malignancies.
Collapse
|