1
|
Hu Y, Yang R, Ni S, Song Z. Bibliometric analysis of targeted immunotherapy for osteosarcoma-current knowledge, hotspots and future perspectives. Front Immunol 2025; 15:1485053. [PMID: 39995821 PMCID: PMC11847827 DOI: 10.3389/fimmu.2024.1485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025] Open
Abstract
Objective The objective of this study is to conduct a bibliometric analysis on examining the current condition, areas of interest, and rising trends of immunotherapy for osteosarcoma (ITFOS), as well as its importance in associated research domains. Methods An extensive collection of academic papers on the use of ITFOS was obtained from the Web of Science between January 1, 2000 and October 20, 2023. Then, using a variety of tools like HisCite, VOSviewer, CiteSpace, and the bibliometrix package, a bibliometric study was carried out. This study included the collection of information on country, institution, author, journal, and keywords. Results A comprehensive analysis was undertaken on a total of 616 publications obtained from 247 journals, encompassing the contributions of 3725 authors affiliated with 831 institutes spanning across 43 countries/regions. Notably, China exhibited the highest quantity of published 277 (44.99%) articles on ITFOS. The most productive institution was Zhejiang University, with 26 (4.22%) publications. The author with the highest publication output was Tsukahara, Tomohide from Japan with 15 (2.44%) publications. The article with the most citation was "DOI: 10.1200/JCO.2014.58.0225". Frontiers in Immunology demonstrated the highest level of productivity, having published a total of 31 (5.03%) articles. The most frequently used were "osteosarcoma," "immunotherapy," and "cancer,". Meanwhile, "sequencing", "prognostic signature" and "immune microenvironment" have been identified as the research frontiers for the forthcoming years. Conclusion This paper provides a thorough evaluation of current research trends and advancements in ITFOS. It includes relevant research findings and emphasizes collaborative efforts among authors, institutions, and countries.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
2
|
Yin P, Tang M, Zhao G. M2 macrophage exosome-derived Apoc1 promotes ferroptosis resistance in osteosarcoma by inhibiting ACSF2 deubiquitination. Mol Carcinog 2024; 63:2103-2118. [PMID: 39041949 DOI: 10.1002/mc.23796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone. The aim of this study was to investigate the regulatory mechanisms of M2 macrophage exosomes (M2-Exos) in ferroptosis in OS. A mouse model was established to investigate the in vivo role of M2-Exos. We investigated their effects on ferroptosis in OS using erastin, a ferroptosis activator, and deferoxamine mesylate, an iron chelator. In vitro, we investigated whether the Apoc1/Acyl-CoA Synthetase Family Member 2 (ACSF2) axis mediates these effects, using shApoc1 and shACSF2. The mechanisms whereby Apoc1 regulates ACSF2 were examined using cyclohexanone, a protein synthesis inhibitor, and MG132, a proteasomal inhibitor. M2-Exos reversed the inhibitory effects of erastin on OS cells, thus enhancing their viability, migration, invasion, proliferation, and reducing ferroptosis. Apoc1 was highly expressed in M2-Exos, and interfering with this expression reversed the effects of M2-Exos on OS cells. ACSF2 mediated the effects of M2-Exos-derived Apoc1. Apoc1 interacted with ACSF2, which, in turn, interacted with USP40. Apoc1 overexpression increased ACSF2 ubiquitination, promoting its degradation, whereas USP40 overexpression inhibited ACSF2 ubiquitination and promoted its expression. Apoc1 overexpression inhibited ACSF2 binding to USP40. M2-Exos-derived Apoc1 promoted ferroptosis resistance by inhibiting USP40 binding to ACSF2 and promoting ACSF2 ubiquitination and degradation, thus enhancing OS development.
Collapse
Affiliation(s)
- Ping Yin
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Tang
- Department of Blood Supply, Changsha Blood Center, Changsha, Hunan, China
| | - Guosheng Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Wen Y, Zhang X, Zhang J, Lu Z. Deciphering the role of lipid metabolism and acetylation in osteosarcoma: A comprehensive molecular analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4776-4790. [PMID: 39162397 DOI: 10.1002/tox.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 08/21/2024]
Abstract
Osteosarcoma, known for its rapid progression and high metastatic potential, poses significant challenges in adolescent oncology. This study delves into the roles of lipid metabolism and acetylation genes in the disease's pathogenesis. Utilizing gene set variation analysis, we examined 14 lipid metabolism-related pathways in osteosarcoma patients, identifying significant variances in three pathways between metastatic and primary cases. Additionally, differences in four acetylation genes between these groups were observed. A comprehensive analysis pinpointed 62 lipid metabolism-related genes, with 39 exhibiting significant correlations with acetylation genes, termed lipid metabolism acetylation (LMA) genes. Employing machine learning techniques like Lasso+RSF and GBM, we developed a predictive model for overall survival based on LMA genes. This model, with an average c-index of 0.771, focuses on three key genes: CYP2C8, PAFAH2, and ACOX3, whose prognostic value was confirmed through survival and receiver operating characteristic curve analyses. Quantitative RT-PCR results indicated higher expression levels of ACOX3 and PAFAH2 in OS cells (143B, HOS, MG63) than in osteoblasts (hFOB1.19), while CYP2C8 was lower in OS cells. Furthermore, drug sensitivity analysis through the pRRophetic algorithm suggested potential targeted therapies, revealing drugs with differential sensitivity based on LMA scores and varied treatment responses related to the expression of core genes. This study not only highlights the crucial role of lipid metabolism and acetylation in osteosarcoma but also offers a foundation for personalized treatment strategies, marking a notable advancement in combating this severe form of adolescent cancer.
Collapse
Affiliation(s)
- Yong Wen
- Department of Orthopedics, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xijiang Zhang
- Department of Intensive Care Unit, Taizhou Municipal Hospital, Taizhou, China
| | - Jin Zhang
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Zhisheng Lu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Fu H, Wu Y, Chen J, Hu X, Wang X, Xu G. Exosomes and osteosarcoma drug resistance. Front Oncol 2023; 13:1133726. [PMID: 37007086 PMCID: PMC10064327 DOI: 10.3389/fonc.2023.1133726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone characterized by the formation of bone tissue or immature bone by tumor cells. Because of its multi-drug resistance, even with the improvement of chemotherapy and the use of targeted drugs, the survival rate of osteosarcoma (OS) is still less than 60%, and it is easy to metastasize, which is a difficulty for many clinicians and researchers. In recent years, with the continuous research on exosomes, it has been found that exosomes play a role in the diagnosis, treatment and chemotherapy resistance of osteosarcoma due to their unique properties. Exosomes can reduce the intracellular accumulation of chemotherapeutic drugs by mediating drug efflux, thus inducing chemotherapeutic resistance in OS cells. Exosomal goods (including miRNA and functional proteins) carried by exosomes also show great potential in affecting the drug resistance of OS. In addition, miRNA carried by exosomes and exosomes exist widely in tumor cells and can reflect the characteristics of parent cells, so it can also be used as a biomarker of OS. At the same time, the development of nanomedicine has given a new hope for the treatment of OS. Exosomes are regarded as good natural nano-carriers by researchers because of their excellent targeted transport capacity and low toxicity, which will play an important role in the field of OS therapy in the future. This paper reviews the internal relationship between exosomes and OS chemotherapy resistance, discusses the broad prospects of exosomes in the field of diagnosis and treatment of OS, and puts forward some suggestions for the study of the mechanism of OS chemotherapy resistance.
Collapse
Affiliation(s)
- Huichao Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianbai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xing Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongping Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Gongping Xu,
| |
Collapse
|
5
|
Guan J, He J, Liao S, Wu Z, Lin X, Liu B, Qin X, Tan J, Huang C, Yuan Z, Mo H. LncRNA UCA1 accelerates osteosarcoma progression via miR-145 and Wnt/β-catenin pathway. Am J Transl Res 2022; 14:6029-6042. [PMID: 36247254 PMCID: PMC9556465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/11/2021] [Indexed: 06/16/2023]
Abstract
Long non-coding (lnc) urothelial cancer associated 1 (UCA1) has been confirmed to participate in osteosarcoma (OS), but its specific mechanism is still under investigation. The study was designed to reveal the interaction between UCA1 and its downstream effector molecules, so as to determine whether there is any interaction of regulating physiological processes in tumor cells. Here, we studied the signaling cascade involving UCA1, miR-145, and HMGA1. The expression of UCA1 and miR-145 levels was interfered to assess their effects on physiological processes of tumor cells. The relationship between UCA1 and miR-145 as well as between HMGA1 and miR-145 was identified by the dual-luciferase reporter (DLR) assay, and the in vivo effect of UCA1 was estimated in nude mouse xenografts. As a result, a negative association was found between UCA1 and miR-145 in OS cells. Both UCA1 knockout and miR-145 over-expression inhibited malignant progression and induced apoptosis in MG-63 and U2OS cells. UCA1 knockout led to an increase in miR-145 and decreases in HMGA1, p-β-catenin and cyclin D1. In addition, UCA1 upregulation promoted tumor growth in vitro and changed miR-145 and HMGA1 levels in vivo. Moreover, the DLR assay and RNA immunoprecipitation (RIP) showed that UCA1 was likely to regulate HMGA1 levels by sponging miR-145. Overall, the inhibition of UCA1 increases miR-145 levels and decreases HMGA1 levels, thereby exerting an anti-tumor role in OS.
Collapse
Affiliation(s)
- Jian Guan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Juliang He
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Shian Liao
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Zhenjie Wu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Xiang Lin
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Bin Liu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Xiong Qin
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Jiachang Tan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Chuangming Huang
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| | - Hao Mo
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital Nanning, Guangxi Province, China
| |
Collapse
|
6
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
7
|
Santos A, Domingues C, Jarak I, Veiga F, Figueiras A. Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. Eur J Pharm Biopharm 2021; 170:91-111. [PMID: 34896571 DOI: 10.1016/j.ejpb.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
The most common primary malignant tumor of bone in children is osteosarcoma (OS). Nowadays, the prognosis and the introduction of chemotherapy in OS have improved survival rates of patients. Nevertheless, the results are still unsatisfactory, especially, in patients with recurrent disease or metastatic. OS chemotherapy has two main challenges related to treatment toxicity and multiple drug resistance. In this way, nanotechnology has developed nanosystems capable of releasing the drug directly at the OS cells and decreasing the drug's toxicity. Exosomes (Exo), a cell-derived nano-sized and a phospholipid vehicle, have been recognized as important drug delivery systems in several cancers. They are involved in a variety of biological processes and are an important mediator of long-distance intercellular communication. Exo can reduce inflammation and show low toxicity in healthy cells. Furthermore, the incorporation of specific proteins or peptides on the Exo surface improves their targeting capability in several clinical applications. Due to their unique structure and relevant characteristics, Exo is a promising nanocarrier for OS treatment. This review intends to describe the properties that turn Exo into an efficient, as well as safe nanovesicle for drug delivery and treatment of OS.
Collapse
Affiliation(s)
- Ana Santos
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal.
| |
Collapse
|
8
|
Makielski KM, Donnelly AJ, Khammanivong A, Scott MC, Ortiz AR, Galvan DC, Tomiyasu H, Amaya C, Ward KA, Montoya A, Garbe JR, Mills LJ, Cutter GR, Fenger JM, Kisseberth WC, O'Brien TD, Weigel BJ, Spector LG, Bryan BA, Subramanian S, Modiano JF. Development of an exosomal gene signature to detect residual disease in dogs with osteosarcoma using a novel xenograft platform and machine learning. J Transl Med 2021; 101:1585-1596. [PMID: 34489559 DOI: 10.1038/s41374-021-00655-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective osteosarcoma therapies is the lack of disease-specific biomarkers to predict risk, prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles emerging as powerful diagnostic tools. However, their clinical application is precluded by challenges in identifying disease-associated cargo from the vastly larger background of normal exosome cargo. We developed a method using canine osteosarcoma in mouse xenografts to distinguish tumor-derived from host-response exosomal messenger RNAs (mRNAs). The model allows for the identification of canine osteosarcoma-specific gene signatures by RNA sequencing and a species-differentiating bioinformatics pipeline. An osteosarcoma-associated signature consisting of five gene transcripts (SKA2, NEU1, PAF1, PSMG2, and NOB1) was validated in dogs with spontaneous osteosarcoma by real-time quantitative reverse transcription PCR (qRT-PCR), while a machine learning model assigned dogs into healthy or disease groups. Serum/plasma exosomes were isolated from 53 dogs in distinct clinical groups ("healthy", "osteosarcoma", "other bone tumor", or "non-neoplastic disease"). Pre-treatment samples from osteosarcoma cases were used as the training set, and a validation set from post-treatment samples was used for testing, classifying as "osteosarcoma detected" or "osteosarcoma-NOT detected". Dogs in a validation set whose post-treatment samples were classified as "osteosarcoma-NOT detected" had longer remissions, up to 15 months after treatment. In conclusion, we identified a gene signature predictive of molecular remissions with potential applications in the early detection and minimal residual disease settings. These results provide proof of concept for our discovery platform and its utilization in future studies to inform cancer risk, diagnosis, prognosis, and therapeutic response.
Collapse
Affiliation(s)
- Kelly M Makielski
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Alicia J Donnelly
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Ali Khammanivong
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Milcah C Scott
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota, Microbiology, Immunology, and Cancer Biology Graduate Program, Minneapolis, MN, USA
| | - Andrea R Ortiz
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dana C Galvan
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Hirotaka Tomiyasu
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kristin A Ward
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Alexa Montoya
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Biology, University of Texas, El Paso, TX, USA
| | - John R Garbe
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ethos Discovery, San Diego, CA, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Timothy D O'Brien
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Weigel
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Brad A Bryan
- Texas Tech Health Sciences Center, El Paso, TX, USA
| | - Subbaya Subramanian
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
9
|
Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu S, Chen L. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY) 2021; 13:19760-19775. [PMID: 34388111 PMCID: PMC8386545 DOI: 10.18632/aging.203388] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Abstract
Background: Enhanced infiltration of M2-polarized tumor-associated macrophages (TAMs) is linked to osteosarcoma (OS) metastasis and growth. Here, we aim to explore a novel miR-221-3p shuttled by M2-TAM exosomes in the growth and metastasis of OS cells. Methods: THP-1 monocytes-derived M2-TAMs were induced by PMA/interleukin (IL)-4/IL-13 and then co-cultured with OS 143B and Saos2 cells. Overexpression or downregulation models of miR-221-3p were conducted to probe the impacts of exosome-derived M2-TAMs in OS cells. OS cell proliferative ability, colony formation, invasion, migration and apoptotic level were measured by the cell counting kit-8 (CCK-8) assay, colony formation, Transwell assay, and flow cytometry. Moreover, the SOCS3/JAK2/STAT3 axis in OS cells was testified by western blot, and a dual-luciferase reporter assay was conducted to confirm the link between miR-221-3p and SOCS3. Results: OS cells enhanced M2 polarization of TAMs, which significantly promoted OS cells’ viability, colony formation, migration, invasion, and reduced apoptosis. Moreover, the exosomes enriched by miR-221-3p from M2-polarized TAMs (M2-TAMs) also aggravated the malignant behaviors of OS cells. However, down-regulation of miR-221-3p brought about contrary results. Further, in-vivo tests uncovered that overexpressing miR-221-3p enhanced OS cells’ growth. Mechanistically, SOCS3 was a downstream target of miR-221-3p, and up-regulation of miR-221-3p choked SOCS3 and activated JAK2/STAT3. However, the pharmacological intervention of the JAK2/STAT3 pathway obviously inhibited the malignant behaviors of OS cells, which were significantly reversed by miR-221-3p up-regulation. Conclusion: The exosomal miR-221-3p derived from M2-TAMs aggravates OS progression via modulating the SOCS3/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics Trauma, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Qiuping Long
- Department of Orthopedics Trauma, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Wei Zhang
- Department of Orthopedics Trauma, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Dehui Zeng
- Department of Orthopedics Trauma, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Bingbing Hu
- Department of Orthopedics Trauma, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Shengyao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Li Chen
- Department of Orthopedics Trauma, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| |
Collapse
|