1
|
Chi C, Tang X, Liu W, Zhou Y, Jiang R, Chen Y, Li M. Exosomal lncRNA USP30-AS1 activates the Wnt/β-catenin signaling pathway to promote cervical cancer progression via stabilization of β-catenin by USP30. Biotechnol J 2024; 19:e2300653. [PMID: 39014929 DOI: 10.1002/biot.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Cervical cancer (CC) remains a major cause of cancer-related mortality among women globally. Long noncoding RNAs (lncRNAs) play crucial regulatory roles in various cancers, including CC. This study investigates the function of a novel lncRNA, USP30 antisense RNA 1 (USP30-AS1), in CC tumorigenesis. We analyzed USP30-AS1 expression using RT-qPCR and conducted in vitro loss-of-function assays, as well as in vivo assays, to evaluate the effects of USP30-AS1 silencing on CC cell growth and migration. Additional mechanistic experiments, including RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP) assays, were performed to elucidate the regulatory mechanisms influenced by USP30-AS1. We discovered that USP30-AS1 is overexpressed in CC tissues and cells. Silencing USP30-AS1 significantly reduced cell proliferation, migration, invasion, and tumor growth. Moreover, USP30-AS1 was found to modulate the expression of ubiquitin-specific peptidase 30 (USP30) by sponging microRNA-2467-3p (miR-2467-3p) and recruiting the FUS RNA binding protein (FUS), thereby stabilizing β-catenin and activating the Wnt/β-catenin signaling pathway. These findings suggest that USP30-AS1 enhances CC cell growth and migration through the miR-2467-3p/FUS/USP30 axis, highlighting its potential as a biomarker for CC.
Collapse
Affiliation(s)
- Chi Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiuwu Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rong Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Feng Q, Shen Z, Wang F, Shi C. Mediation of circ_0007142 on miR-128-3p/S100A14 pathway to stimulate the progression of cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03250-0. [PMID: 38951152 DOI: 10.1007/s00210-024-03250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 07/03/2024]
Abstract
A previous study has confirmed the upregulation of circ_0007142 expression in CC. Here, we aimed to investigate the effect and mechanism of circ_0007142 in CC progression. The expression of circ_0007142, microRNA-128-3p (miR-128-3p), S100 calcium-binding protein A14 (S100A14), and epithelial mesenchymal transition (EMT)-related markers was measured by qRT-PCR and Western blot. Cell proliferative, migratory, and invasion abilities were evaluated using cell counting Kit-8, cell colony formation, 5-ethynyl-2'-deoxyuridine, and transwell assays, respectively. The interaction among circ_0007142, miR-128-3p and S100A14 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo experiment was implemented to investigate the effect of circ_0007142 on tumor growth. CC tissues and cells displayed high expression of circ_0007142 and S100A14, and low expression of miR-128-3p in comparison to the controls. Knockdown of circ_0007142 resulted in the inhibition of cell proliferation, migration invasion, and EMT in vitro. In support, circ_0007142 deficiency hindered tumor growth and EMT in vivo. In rescue experiments, downregulation of miR-128-3p relieved circ_0007142 absence-mediated anticancer impacts. MiR-128-3p overexpression-induced inhibitory effects on cell growth and metastasis were attenuated by S100A14 overexpression. Importantly, circ_0007142 regulated S100A14 expression by sponging miR-128-3p. Circ_0007142 knockdown suppressed CC cell malignant behaviors by miR-128-3p/S100A14 pathway, providing a possible circRNA-targeted therapy for CC.
Collapse
Affiliation(s)
- Qinqin Feng
- Department of Obstetrics, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, China
| | - Zhangzhou Shen
- Medical School, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi, 435003, China
| | - Fen Wang
- Department of Obstetrics, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, China
| | - Cheng Shi
- Department of Obstetrics, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, China.
| |
Collapse
|
3
|
Cheng L, Li Z, Zheng Q, Yao Q. Correlation study of serum lipid levels and lipid metabolism-related genes in cervical cancer. Front Oncol 2024; 14:1384778. [PMID: 38779100 PMCID: PMC11109420 DOI: 10.3389/fonc.2024.1384778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Lipid metabolism plays an important role in cancer. The aim of this study was to investigate the relationship between lipid metabolism and the development of cervical cancer, and to explore the prognostic significance of lipid metabolism-related genes in patients with cervical cancer. Methods Initially, we retrospectively collected data from 1589 cervical cancer patients treated at the Affiliated Hospital of Qingdao University, with 1589 healthy individuals from the physical examination center serving as the control group. The correlation between their serum lipid levels and cervical cancer was analyzed. Subsequently, leveraging public databases, we conducted comprehensive studies on lipid metabolism-related genes. Additionally, we analyzed RNA expression profiling and clinical information sourced from TCGA and GTEx databases. Finally, we established a prognostic model integrating 9 genes associated with lipid metabolism and generated a nomogram model using R. GO and KEGG were performed to explore the functions and pathways of lipid metabolism-related genes. Results Our findings revealed that patients with cervical cancer exhibited dyslipidemia, characterized by elevated levels of TC, TG, and LDL-C, alongside reduced HDL-C levels compared to controls (P<0.05). Interestingly, compared with early-stage patients, advanced patients had lower HDL-C level and higher LDL-C level. Regression analysis further highlighted high TC, TG, and LDL-C as significant risk factors for cervical cancer. Then a total of 188 lipid metabolism-related genes were identified and a prognostic signature based on 9 genes was established and validated. The results of the GO and KEGG functional analysis indicated that the lipid metabolism-related genes are primarily concentrated on pathways associated with fatty acid metabolism. Conclusion Our study underscores the varying degrees of dyslipidemia observed in patients with cervical cancer, emphasizing the relevance of serum lipids in disease development. Our prognostic riskScore model predicted the overall survival time of patients based on 9 genes associated with lipid metabolism. These 9 genes may be tumor biomarkers and new targets for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhuo Li
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qingmei Zheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Yao Q, He X, Wang J, Liu J, Zhang Q, Zhang J, Bo Y, Lu L. DLEU2/EZH2/GFI1 Axis Regulates the Proliferation and Apoptosis of Human Bone Marrow Mesenchymal Stem Cells. Crit Rev Eukaryot Gene Expr 2024; 34:61-71. [PMID: 38305289 DOI: 10.1615/critreveukaryotgeneexpr.2023050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) has become a vital regulator in the pathogenesis of osteoporosis (OP). This study aimed to investigate the role of lncRNA DLEU2 in the development of proliferation and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). High-throughput sequencing in bone tissues from 3 pairs of healthy donors and OP patients was used to search for differential lncRNAs. The expression of DLEU2 was also verified in bone tissues. The hBMSCs were transfected with DLEU2 ASO. Cell viability was detected suing MTT. Cell proliferation was determined using colony formation and EdU assays. Cell cycle and apoptosis was detected using flow cytometry. RIP, RNA pulldown, and Co-IP assays were carried out to verify the interaction between protein and protein/RNA. The binding sites between GFI1 and the promoter of DLEU2 was verified using ChIP and luciferase assays. DLEU2 expression was down-regulated in OP patients. Knockdown of DLEU2 expression significantly inhibited proliferation and promoted apoptosis of hBMSCs. Moreover, DLEU2 could interact with EZH2 to induce the activation of GFI1. Additionally, GFI1 transcriptionally activated DLEU2. Taken together, DLEU2/EZH2/GFI1 axis suppressed proliferation and enhanced hBMSC apoptosis. This may provide novel strategy for OP.
Collapse
Affiliation(s)
- Qing Yao
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Research Centre for Bone and Stem Cells, Nanjing Medical University, Nanjing 210000, China
| | - Jing Wang
- Department of Anatomy, Histology and Embryology, Research Centre for Bone and Stem Cells, Nanjing Medical University, Nanjing 210000, China
| | - Juan Liu
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Qing Zhang
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Jie Zhang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yawen Bo
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Lin Lu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| |
Collapse
|
5
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Qu X, Cao YX, Xing YX, Liu Q, Li HJ, Yang WH, Wang BQ, Han SY, Wang YS. Deleted in lymphocytic leukemia 2 (DLEU2): a possible biomarker that holds promise for future diagnosis and treatment of cancer. Clin Transl Oncol 2023; 25:2772-2782. [PMID: 37095423 PMCID: PMC10462543 DOI: 10.1007/s12094-023-03149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/04/2023] [Indexed: 04/26/2023]
Abstract
The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xue Qu
- Shandong First Medical University, No. 6699, Qingdao Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Yu-Xia Cao
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Yuan-Xin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Qi Liu
- Shandong University, No. 44, Wenhua West Road, Jinan, 250100, Shandong, China
| | - Huan-Jie Li
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Wei-Hua Yang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Ban-Qin Wang
- Department of Blood Transfusion, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Shu-Yi Han
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Jinan, 250013, Shandong, China.
| | - Yun-Shan Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Jinan, 250013, Shandong, China
| |
Collapse
|
7
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023; 15:622. [PMID: 36992331 PMCID: PMC10059597 DOI: 10.3390/v15030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
8
|
Du X, Li Y, Lian B, Yin X. microRNA-128-3p inhibits proliferation and accelerates apoptosis of gastric cancer cells via inhibition of TUFT1. World J Surg Oncol 2023; 21:47. [PMID: 36797791 PMCID: PMC9936645 DOI: 10.1186/s12957-023-02906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/26/2022] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is a malignant tumor rooting in the gastric mucosal epithelium, ranking the first among various malignant tumors. Therefore, the influence of microRNA-128-3p (miR-128-3p) by regulation of Tuftelin1 (TUFT1) on GC cells was investigated. METHODS The expression levels of miR-128-3p and TUFT1 in GC tissues and cells were detected. The correlation between miR-128-3p expression and overall survival of GC patients was analyzed. Human GC cells MGC803 were transfected with miR-128-3p or TUFT1-related oligonucleotides to figure their roles in viability, apoptosis, invasion, as well as epithelial-mesenchymal transition (EMT). The relationship between miR-128-3p and TUFT1 was validated. RESULTS miR-128-3p expression was low and TUFT1 expression was high in GC tissues. miR-128-3p expression was positively correlated with the overall survival of patients with GC. miR-128-3p targeted TUFT1. Up-regulated miR-128-3p or suppressed TUFT1 repressed viability, invasion, and EMT, and accelerated apoptosis of GC cells. Overexpressed TUFT1 reduced miR-128-3p-mediated growth inhibition of GC cells. CONCLUSION The study stresses that miR-128-3p can inhibit TUFT1 expression, thereby repressing GC cell activities.
Collapse
Affiliation(s)
- Xiong Du
- grid.507892.10000 0004 8519 1271Department of Pathology, Yanan University Affiliated Hospital, Yan’an, 716000 Shaanxi China
| | - Yanxin Li
- grid.507892.10000 0004 8519 1271Department of Pathology, Yanan University Affiliated Hospital, Yan’an, 716000 Shaanxi China
| | - Bin Lian
- Guangzhou Huayin Medical Laboratory Center. Ltd., Guangdong 510000 Guangzhou, China
| | - Xiangli Yin
- Department of Pathology, Xi'an International Medical Center Hospital, No.777, Xitai Road, High-Tech Zone, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
9
|
Long noncoding RNA DLEU2 regulates the progression of Wilm's tumor via miR-539-3p/HOXB2 axis. J Pediatr Urol 2023; 19:25-32. [PMID: 36209036 DOI: 10.1016/j.jpurol.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wilm's tumor is the most common renal cancer in the pediatric age group. Long noncoding RNAs (lncRNAs) are a kind of RNA transcripts longer than ∼200 nucleotides, which have been revealed to be involved in the progression of Wilm's tumor. OBJECTIVE The purpose of this study was to investigate the function and molecular mechanism of deleted in lymphocytic leukemia 2 (DLEU2) lncRNA in Wilm's tumor progression. STUDY DESIGN Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of DLEU2, miR-539-3p and HOXB2 mRNA in Wilm's tumor tissues and cells. Cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, transwell assay, and flow cytometry were applied to explore the function of DLEU2 in Wilm's tumor cell malignant phenotypes and the regulatory mechanism among DLEU2, miR-539-3p and HOXB2 in Wilm's tumor cells. Western blot examined the protein levels of Bax, Bcl-2 and HOXB2. The relationship between miR-539-3p and DLEU2 or HOXB2 was verified by dual-luciferase reporter assay. Xenograft models of Wilm's tumor were established to study the role of DLEU2 in vivo. RESULTS DLEU2 and HOXB2 were significantly highly expressed in primary Wilm's tumor tissues and in vitro cell lines. Silencing of DLEU2 reduced the proliferation, migration and invasion of Wilm's tumor cells, and promoted cell apoptosis. MiR-539-3p was confirmed to be a target of DLEU2. DLEU2 silencing inhibited the malignant behaviors of Wilm's tumor cells by releasing miR-539-3p. In addition, HOXB2 was a target of miR-539-3p. Overexpression of HOXB2 partially restored the inhibitory effects of miR-539-3p on Wilm's tumor cell malignant behaviors. Animal experiments also confirmed the anti-tumor effects of DLEU2 silencing in vivo. CONCLUSION DLEU2 up-regulates the expression of HOXB2 by targetedly repressing miR-539-3p, thereby at least partially promoting the development of Wilm's tumor, these findings provided novel therapeutic targets for Wilm's tumor.
Collapse
|
10
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
11
|
Al-Awsi GRL, Jasim SA, Fakri Mustafa Y, Alhachami FR, Ziyadullaev S, Kandeel M, Abulkassim R, Sivaraman R, M Hameed N, Mireya Romero Parra R, Karampoor S, Mirzaei R. The role of miRNA-128 in the development and progression of gastrointestinal and urogenital cancer. Future Oncol 2022; 18:4209-4231. [PMID: 36519554 DOI: 10.2217/fon-2022-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Department of Medical Laboratory Techniques, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Firas Rahi Alhachami
- Department of Radiology, College of Health & Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shukhrat Ziyadullaev
- No. 1 Department of Internal Diseases, Vice-rector for Scientific Affairs & Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516, Egypt
| | | | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Medical Biotechnology, Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Pan X, Wang Q, Yu Y, Wu W, Chen L, Wang W, Li Z. Antisense lncRNA NNT-AS1 promoted esophageal squamous cell carcinoma progression by regulating its sense gene NNT expression. Cell Death Discov 2022; 8:424. [PMID: 36270987 PMCID: PMC9586939 DOI: 10.1038/s41420-022-01216-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Antisense lncRNAs were endogenous productions from the antisense strand of coding genes and were transcribed in the reverse direction of the sense gene. The purpose of this study was to evaluate the roles and functions of antisense lncRNAs in esophageal squamous cell carcinoma (ESCC). Differentially expressed antisense lncRNAs were initially screened based on transcriptome data of 119 paired ESCC samples in GSE53624 and were further validated in 6 paired ESCC samples from our institution. Log-rank test was adopted to identify ESCC prognosis-associated lncRNAs. Finally, functional assays were performed to reveal the functions of our identified antisense lncRNAs. In total, 174 antisense lncRNAs were differentially expressed in both GSE53624 and JSPH databases. Five of them were significantly associated with ESCC prognosis (NNT-AS1, NKILA, CCDC18-AS1, SLCO4A1-AS1, and AC110619.1). Of note, NNT-AS1 showed the most significant association with ESCC prognosis. The upregulation of NNT-AS1 was further confirmed in ESCC cells. Knockdown of NNT-AS1 inhibited ESCC cell proliferation, migration, promoted ESCC cells apoptosis, and induced cell cycle arrest in the G2/M stage. NNT-AS1 expression significantly correlated with its sense gene NNT. As expected, NNT-AS1 knockdown suppressed NNT expression. Inhibition of NNT repressed ESCC cell proliferation and migration, and accelerated ESCC cell apoptosis. Overexpression of NNT could rescue the suppressed proliferation and migration of ESCC cells induced by the silencing of NNT-AS1. In terms of mechanism, NNT-AS1 served as a competing endogenous RNA to sponge the miR-382-5p, which could inhibit NNT expression. Pathway enrichment analysis and western blot assay indicated that NNT-AS1 and NNT could regulate the cell cycle pathway. In conclusion, antisense lncRNA NNT-AS1 facilitated ECSS progression by targeting its sense gene NNT through sponging miR-382-5p. This study provided us with a deeper insight into the roles of antisense lncRNAs in ESCC and identified novel potential therapeutic targets.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Fu L, Shi Z, Chen B. Deleted in lymphocytic leukemia 2 induces retinoic acid receptor beta promoter methylation and mitogen activated kinase-like protein activation to enhance viability and mobility of colorectal cancer cells. Bioengineered 2022; 13:12847-12862. [PMID: 35611845 PMCID: PMC9275910 DOI: 10.1080/21655979.2022.2076482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) is frequently linked to the pathogenesis of colorectal cancer (CRC). This work explored the function of lncRNA deleted in lymphocytic leukemia 2 (DLEU2) in CRC and the epigenetic mechanism. Candidate oncogenes in CRC were predicted using a GSE146587 dataset. DLEU2 was highly expressed in CRC according to the bioinformatic analysis and its high expression was detected in CRC cells compared to the normal colon epithelial cells (FHC). Downregulation of DLEU2 in CRC SW480 and HT29 cells suppressed viability, migration, invasiveness, and resistance to apoptosis of cells. The mRNA microarray analysis was performed to explore the key molecules mediated by DLEU2. Retinoic acid receptor beta (RARB) expression was elevated in cells after DLEU2 downregulation. The promoter methylation of RARB was enhanced in CRC cells compared to normal FHC cells. DLEU2 induced promoter methylation of RARB to downregulate its expression. Further silencing of RARB restored proliferation and invasiveness of cells blocked by sh-DLEU2. Upregulation of DLEU2 activated the mitogen activated kinase-like protein (MAPK) signaling pathway to trigger CRC progression. In conclusion, this study demonstrates that DLEU2 enhances viability and mobility of CRC cells by inducing RARB promoter methylation and activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Liang Fu
- Department of Anorectal Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Zhitao Shi
- Department of General Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi. P.R. China
| | - Bingxue Chen
- Department of General Surgery, Changzhou No. 2 Peoples' Hospital, Changzhou, P.R. China
| |
Collapse
|
14
|
Hu Y, Li R, Chen H, Chen L, Zhou X, Liu L, Ju M, Chen K, Huang D. Comprehensive analysis of lncRNA-mRNAs co-expression network identifies potential lncRNA biomarkers in cutaneous squamous cell carcinoma. BMC Genomics 2022; 23:274. [PMID: 35392800 PMCID: PMC8988344 DOI: 10.1186/s12864-022-08481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cutaneous squamous cell carcinoma (cSCC) is the second most common type of skin cancer, the prognosis for patients with metastatic cSCC remains relatively poor. Thus, there is an urgent need to identify new diagnostic, prognostic, and therapeutic targets and pathways in cSCC. Results It detected a total of 37,507 lncRNA probes and 32,825 mRNA probes and found 3593 differentially expressed lncRNAs and 3236 differentially expressed mRNAs. It has been found that mRNAs ACY3, NR1D1, MZB1 has co-expression relationship with six lncRNAs, GXYLT1P3, LINC00348, LOC101928131, A-33-p3340852, A-21-p0003442 and LOC644838. Conclusions The aim of this study is to identify cSCC-specific lncRNAs and indicated that six unstudied lncRNAs may serve an important role in endoplasmic reticulum stress apoptosis, autophagy and the progression of cSCC by modulating ACY3, NR1D1 and MZB1. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08481-0.
Collapse
Affiliation(s)
- Yu Hu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Rong Li
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Hongyin Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Lihao Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Xuyue Zhou
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Linxi Liu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Mei Ju
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China.
| | - Dan Huang
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China.,Department of Physiotherapy, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, 12 Jiangwangmiao St, 210042, Nanjing, China
| |
Collapse
|
15
|
Changes in Exosomal miRNA Composition in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int J Mol Sci 2021; 22:ijms222312841. [PMID: 34884646 PMCID: PMC8657878 DOI: 10.3390/ijms222312841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
As much as space travel and exploration have been a goal since humankind looked up to the stars, the challenges coming with it are manifold and difficult to overcome. Therefore, researching the changes the human organism undergoes following exposure to weightlessness, on a cellular or a physiological level, is imperative to reach the goal of exploring space and new planets. Building on the results of our CellBox-1 experiment, where thyroid cancer cells were flown to the International Space Station, we are now taking advantage of the newest technological opportunities to gain more insight into the changes in cell–cell communication of these cells. Analyzing the exosomal microRNA composition after several days of microgravity might elucidate some of the proteomic changes we have reported earlier. An array scan of a total of 754 miRNA targets revealed more than 100 differentially expressed miRNAs in our samples, many of which have been implicated in thyroid disease in other studies.
Collapse
|
16
|
Feng W, Guo R, Zhang D, Zhang R. Circ-ABCB10 knockdown inhibits the malignant progression of cervical cancer through microRNA-128-3p/ZEB1 axis. Biol Proced Online 2021; 23:17. [PMID: 34493213 PMCID: PMC8422762 DOI: 10.1186/s12575-021-00154-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS We focused on the detailed functions of circ-ABCB10 in cervical cancer (CC) development and its mechanisms. BACKGROUND The increasing findings have proposed the central roles of circular RNAs (circRNAs) in the tumorigenesis of various human cancers. Circ-ABCB10 displays promising oncogenic effect in several tumors. METHODS Circ-ABCB10 and miR-128-3p production levels in CC tissues and cells were tested through RT-qPCR. The association of circ-ABCB10 expression with clinicopathologic parameters of CC patients was statistically analyzed. Cell proliferation, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) were evaluated by MTT, transwell invasion assays, flow cytometry analyses, and western blot examination of EMT markers. The binding activity between miR-128-3p and circ-ABCB10 or zinc finger E-box binding homeobox 1 (ZEB1) was explored through pull-down assay or luciferase reporter assay. The influence of circ-ABCB10 on CC tumorigenesis was evaluated by in vivo xenograft experiments. RESULTS The elevated circ-ABCB10 expression was determined in CC tissues and cells. Moreover, higher production level of circ-ABCB10 was close related to lymph-node metastasis, Federation of Gynecology and Obstetrics (FIGO) stage, and tumor size in CC patients. Loss of circ-ABCB10 weakened cell proliferative and invasive abilities, inhibited EMT, and induced apoptosis in CC. Loss of circ-ABCB10 inhibited ZEB1 expression by serving as a sponge of miR-128-3p in CC cells. Circ-ABCB10 sponged miR-128-3p to enhance cell proliferation, invasion, EMT and inhibit apoptosis in CC cells. Xenograft tumor assays confirmed that circ-ABCB10 knockdown inhibited CC tumor growth. CONCLUSION Our study suggests that circ-ABCB10 depletion inhibits proliferation, invasion and EMT and promotes apoptosis of cervical cancer cells through miR-128-3p/ZEB1 axis and represses CC tumor growth.
Collapse
Affiliation(s)
- Wei Feng
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, NO.1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, NO.1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Dongya Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, NO.1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruitao Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, NO.1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| |
Collapse
|
17
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
18
|
Yi H, Luo D, Xiao Y, Jiang D. Knockdown of long non‑coding RNA DLEU2 suppresses idiopathic pulmonary fibrosis by regulating the microRNA‑369‑3p/TRIM2 axis. Int J Mol Med 2021; 47:80. [PMID: 33760118 PMCID: PMC7979258 DOI: 10.3892/ijmm.2021.4913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia with an increasing incidence. In the present study, Genome Expression Omnibus (GEO) datasets (GSE10667, GSE24206 and GSE32537) were applied to identify lncRNA DLEU2 in IPF. Through prediction using starBase, TargetScan, miRTarBase and miRDB, tripartite motif containing 2 (TRIM2) and prostaglandin F2 receptor inhibitor (PTGFRN) were found to be upregulated in IPF. DLEU2 expression, the mRNA expression of TRIM2 and PTGFRN, and miR‑369‑3p expression in A549 cells and lung tissues were detected by RT‑qPCR. The protein expression of TRIM2 and PTGFRN in lung tissues and A549 cells was detected by western blot analysis. The proliferation and migration of A549 cells was respectively detected by CCK‑8 assay and wound healing assay. The expression of collagen I, α‑smooth muscle actin (SMA) and E‑cadherin was detected by immunofluorescence assay in A549 cells, and collagen I expression was detected by immunohistochemistry assay in lung tissues. The expression of collagen I, α‑SMA and E‑cadherin was also detected by western blot analysis in A549 cells and lung tissues. Dual‑luciferase reporter assay was used to confirm the association between DLEU2 and miR‑369‑3p, and miR‑369‑3p and TRIM2. As a result, DLEU2 expression was found to be upregulated in IPF and in transforming growth factor (TGF)‑β1‑stimulated A549 cells. The silencing of DLEU2 inhibited the TGF‑β1‑induced proliferation, migration and epithelial‑mesenchymal transition (EMT) of A549 cells and bleomycin (BLM)‑induced pulmonary fibrosis in mice. TRIM2 expression was increased and miR‑369‑3p expression was decreased in the lung tissues of mice with BLM‑induced fibrosis and in TGF‑β1‑stimulated A549 cells. DLEU2 directly targeted miR‑369‑3p. The effect of the silencing of DLEU2 on TGF‑β1‑stimulated A549 cells was suppressed by the silencing of miR‑369‑3p. TRIM2 was the target protein of miR‑369‑3p. On the whole, the present study demonstrates that the silencing of DLEU2 suppressed IPF by upregulating miR‑369‑3p expression and downregulating TRIM2 expression.
Collapse
Affiliation(s)
- Hengzhong Yi
- Sixth Medical Department, Hunan Chest Hospital, Changsha, Hunan 410013, P.R. China
| | - Danlin Luo
- Sixth Medical Department, Hunan Chest Hospital, Changsha, Hunan 410013, P.R. China
| | - Yangbao Xiao
- Endoscopy Center, Hunan Chest Hospital, Changsha, Hunan 410013, P.R. China
| | - Di Jiang
- Department of Ultrasound, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
19
|
LncRNA DLEU2 promotes cervical cancer cell proliferation by regulating cell cycle and NOTCH pathway. Exp Cell Res 2021; 402:112551. [PMID: 33675808 DOI: 10.1016/j.yexcr.2021.112551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to play a crucial role in the onset and progression of cervical cancer (CC). Here, the results of RNA microarray and RNA-sequencing dataset analysis showed that lncRNA DLEU2 was significantly upregulated in CC tissues. Clinicopathologic analysis indicated that lncRNA DLEU2 was closely related to tumor topography. Functional experiments and bioinformatics analysis revealed that lncRNA DLEU2 promoted CC cell proliferation and accelerated the cell cycle. Mechanistically, lncRNA DLEU2 promoted the progression of the cell cycle and inhibited the activity of the Notch signaling pathway by inhibiting p53 expression. Additionally, lncRNA DLEU2 probably interacted with ZFP36 Ring Finger Protein (ZFP36) to inhibit the expression of p53. In conclusion, this study revealed the function of lncRNA DLEU2 in CC tumorigenesis, suggesting new therapeutic targets in CC.
Collapse
|