1
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
2
|
Kjer-Hansen P, Phan TG, Weatheritt RJ. Protein isoform-centric therapeutics: expanding targets and increasing specificity. Nat Rev Drug Discov 2024; 23:759-779. [PMID: 39232238 DOI: 10.1038/s41573-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia.
| | - Tri Giang Phan
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Rogers JE, Gan Q, Waters RE, Horak AA, Ajani JA. Targeted and combination immunotherapies using biologics for gastric cancer: the state-of-the-art. Expert Opin Biol Ther 2024; 24:1005-1015. [PMID: 39315517 DOI: 10.1080/14712598.2024.2401622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Gastric adenocarcinoma (GAC) remains a prevalent cancer worldwide and its incidence is increasing in South America. The heterogenous nature of GAC makes advances in management challenging. AREAS COVERED Despite challenges, recent therapeutic targets are individualizing treatment. For localized disease with microsatellite-instability-high/deficient mismatch repair, immunotherapy is now an adopted practice. In the advanced unresectable setting, those harboring human epidermal growth factor receptor-2 (HER2) expression continue to be a separate entity. EXPERT OPINION Future targets are developing. Among these include claudin 18.2 (CLDN18.2), fibroblast growth factor receptor 2b (FGFR2b), and trophoblast cell surface antigen-2 (TROP-2). FDA approval of zolbetuximab's, an anti-CLDN 18.2 monoclonal antibody, is expected soon. Additionally, bemarituzumab, ananti-FGFR2b monoclonal antibody, has shown improvements in combination with chemotherapy in those with HER2 negative GAC with FGFR2 overexpression. This combination is now being investigated in a phase 3 trial. Lastly, TROP-2 has emerged as an exciting solid tumor target and study is expected in GAC. All three of these therapeutic targets have seen an abundance of drug development in recent years, and we anticipate newer targeted agents driving therapeutic decisions in GAC in the coming years.
Collapse
Affiliation(s)
- Jane E Rogers
- Pharmacy Clinical Programs, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qiong Gan
- Department of Pathology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rebecca E Waters
- Department of Pathology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ashley A Horak
- Department of Gastrointestinal Medical Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Lordick F, Rha SY, Muro K, Yong WP, Lordick Obermannová R. Systemic Therapy of Gastric Cancer-State of the Art and Future Perspectives. Cancers (Basel) 2024; 16:3337. [PMID: 39409957 PMCID: PMC11475804 DOI: 10.3390/cancers16193337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The prognosis of patients diagnosed with locally advanced and metastatic gastric and esophago-gastric junction cancer is critical. The optimal choice of systemic therapy is essential to optimize survival outcomes. Methods: A comprehensive literature review via PubMed and analysis of major oncology congresses (European Society for Medical Oncology and American Society of Clinical Oncology websites) were conducted to ascertain the current status and latest developments in the systemic treatment of patients with localized or advanced gastric and esophago-gastric junction adenocarcinoma. Results: While neoadjuvant and perioperative chemotherapy for localized tumor stages is the preferred approach in the Western Hemisphere, adjuvant chemotherapy remains the preferred course of action in East Asia. The administration of chemotherapy, typically in the form of combinations comprising platinum and fluoropyrimidine compounds in combination with docetaxel, represents a standard of care. Investigations are underway into the potential of immunotherapy and other biologically targeted agents in the perioperative setting. To select the most appropriate therapy for advanced gastric cancer, including adenocarcinoma of the esophago-gastric junction, it is essential to determine biomarkers such as HER2 expression, PD-L1 combined positive score (CPS) (combined positive score), Claudin 18.2, and microsatellite instability (MSI). In the present clinical context, the standard first-line therapy is a combination of fluoropyrimidine and a platinum derivative. The selection of chemotherapy in combination with antibodies is contingent upon the specific biomarker under consideration. Conclusions: This article reviews the current state of the art based on recent clinical trial results and provides an outlook on the future of systemic therapy.
Collapse
Affiliation(s)
- Florian Lordick
- Department of Medicine (Oncology, Gastroenterology, Hepatology, Pulmonology), University of Leipzig Medical Center, Cancer Center Central Germany, 04103 Leipzig, Germany
| | - Sun Young Rha
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119074, Singapore
| | - Radka Lordick Obermannová
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| |
Collapse
|
5
|
Tojjari A, Nagdas S, Saeed A, Saeed A. Deciphering the FGFR2 Code: Innovative Targets in Gastric Cancer Therapy. Curr Oncol 2024; 31:4305-4317. [PMID: 39195304 DOI: 10.3390/curroncol31080321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Gastric cancer (GC) represents a major global health challenge as a highly prevalent disease with high mortality whose global incidence and mortality are predicted to worsen over the coming years. To date, our standard of care for advanced gastric cancer of combination chemotherapy and immunotherapy has a 1-year overall survival rate of 55%. Significant efforts have gone into identifying targetable alterations in gastric cancer, ultimately yielding the Fibroblast Growth Factor Receptors (FGFRs) family, specifically FGFR2 as a promising target. FGFR2 is overexpressed in GC, particularly diffuse-type GC, and is associated with poor prognostic outcomes. In recent years, there has been an increasing number of small molecule inhibitors and monoclonal antibodies targeting FGFR2 that have entered into clinical trials. Specifically for GC, these agents are currently being trialed in various phases as monotherapies or with standard-of-care treatments to make a clinically meaningful impact on what appears to be an important biological axis of GC. In this review, we outline the underlying biology of FGFR2, its putative role in GC, and the various FGFR2-targeted agents currently in clinical trials for gastric cancer patients as well as postulate some challenges in adopting these therapeutics for clinically meaningful benefit.
Collapse
Affiliation(s)
- Alireza Tojjari
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15261, USA
| | | | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
6
|
Hanssens C, Mouna O, Meyers M, Hendlisz A. State-of-the-art and trends in fibroblast growth factor receptor-directed therapies in gastro-intestinal malignancies. Curr Opin Oncol 2024; 36:320-325. [PMID: 38726837 DOI: 10.1097/cco.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review is timely and relevant due to the increasing recognition of the significance of the fibroblast growth factor receptor (FGFR) family in cancer biology. Understanding the role of FGFRs and their dysregulation in various cancers is crucial for developing targeted therapies and improving patient outcomes. RECENT FINDINGS The review highlights the importance of the FGFR family in cellular processes such as growth, proliferation, and survival. It discusses how abnormalities in FGFR2, including overexpression, gene amplification, and other genetic alterations, contribute to cancer progression, particularly in gastro-intestinal cancers. The paper also emphasizes the promising results of FGFR-targeted therapies, especially tyrosine kinase inhibitors, in certain cancers such as cholangiocarcinoma and oesophagogastric cancers. SUMMARY The findings underscore the potential of FGFR-targeted therapies in treating cancers with FGFR dysregulation. However, the review also addresses the challenges associated with these therapies, including toxicities and mechanisms of resistance. Understanding these complexities is essential for optimizing the efficacy of FGFR-targeted treatments and improving patient outcomes in clinical practice and research efforts.
Collapse
Affiliation(s)
- Charlotte Hanssens
- Department of Medical Oncology, Institut Jules Bordet - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | |
Collapse
|
7
|
Hatakeyama K, Muramatsu K, Nagashima T, Ichida H, Kawanishi Y, Fukumura R, Ohshima K, Shimoda Y, Ohnami S, Ohnami S, Maruyama K, Naruoka A, Kenmotsu H, Urakami K, Akiyama Y, Sugino T, Yamaguchi K. Tumor cell enrichment by tissue suspension improves sensitivity to copy number variation in diffuse gastric cancer with low tumor content. Sci Rep 2024; 14:13699. [PMID: 38871991 DOI: 10.1038/s41598-024-64541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The detection of copy number variations (CNVs) and somatic mutations in cancer is important for the selection of specific drugs for patients with cancer. In cancers with sporadic tumor cells, low tumor content prevents the accurate detection of somatic alterations using targeted sequencing. To efficiently identify CNVs, we performed tumor cell enrichment using tissue suspensions of formalin-fixed paraffin-embedded (FFPE) tissue sections with low tumor cell content. Tumor-enriched and residual fractions were separated from FFPE tissue suspensions of intestinal and diffuse-type gastric cancers containing sporadic tumor cells, and targeted sequencing was performed on 225 cancer-related genes. Sequencing of a targeted panel of cancer-related genes using tumor-enriched fractions increased the number of detectable CNVs and the copy number of amplified genes. Furthermore, CNV analysis using the normal cell-enriched residual fraction as a reference for CNV scoring allowed targeted sequencing to detect CNV characteristics of diffuse-type gastric cancer with low tumor content. Our approach improves the CNV detection rate in targeted sequencing with tumor enrichment and the accuracy of CNV detection in archival samples without paired blood.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Koji Muramatsu
- Division of Pathology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc., Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Hiroyuki Ichida
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuichi Kawanishi
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ryutaro Fukumura
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
8
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
9
|
Li W, Xu T, Jin H, Li M, Jia Q. Emerging role of cancer-associated fibroblasts in esophageal squamous cell carcinoma. Pathol Res Pract 2024; 253:155002. [PMID: 38056131 DOI: 10.1016/j.prp.2023.155002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Esophageal carcinoma is the sixth leading cause of cancer death globally and the majority of global cases are esophageal squamous cell carcinoma (ESCC). Difficulty in diagnosis exists as more than 70% of ESCC patients are diagnosed at the intermediate or advanced stage. Cancer-associated fibroblasts (CAFs) have been considered one of the crucial components in the process of tumor growth, promoting communications between cancer cells and the tumor microenvironment (TME). CAFs grow alongside malignancies dynamically and interact with ESCC cells to promote their progression, proliferation, invasion, tumor escape, chemo- and radio-resistance, etc. It is believed that CAFs qualify as a promising direction for treatment. Analyzing CAFs' subtypes and functions will elucidate the involvement of CAFs in ESCC and aid in therapeutics. This review summarizes current information on CAFs in ESCC and focuses on the latest interaction between CAFs and ESCC cancer cell discoveries. The origin of CAFs and their communication with ESCC cells and TME are also demonstrated. On the foundation of a thorough analysis, we highlight the clinical prospects and CAFs-related therapies in ESCC in the future.
Collapse
Affiliation(s)
- Wenqing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
10
|
Inamoto R, Takahashi N, Yamada Y. Claudin18.2 in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5742. [PMID: 38136288 PMCID: PMC10741608 DOI: 10.3390/cancers15245742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, the fifth most common cancer and the fourth leading cause of cancer-related mortality is gastric cancer (GC). Recent clinical trials on solid tumors enrolled patients who possess druggable genetic alterations, protein expression, and immune characteristics. In gastric or gastroesophageal junction (GEJ) cancers, trastuzumab combined with first-line chemotherapy in human epidermal growth factor receptor 2 (HER2)-positive patients and ramucirumab combined with second-line paclitaxel remarkably prolonged overall survival (OS) compared with chemotherapy alone, according to phase 3 trial results. Recently, immune checkpoint inhibitor (ICI) monotherapy was approved as third- or later-line treatment. Chemotherapy plus ICIs as first-line treatment exhibited improved survival compared with chemotherapy alone in HER2-negative patients according to Checkmate 649 trial results. Conversely, systemic chemotherapy prognosis remains poor. although some patients may achieve durable response to treatment and prolonged survival in advanced GC. Recently, a first-in-class, chimeric immunoglobulin G1 monoclonal antibody (zolbetuximab) that targets and binds to claudin 18 isoform 2 (CLDN18.2) has emerged as a new target therapy in GC treatment. Global phase Ⅲ trials revealed that the addition of zolbetuximab to first-line chemotherapy prolonged OS in CLDN18.2-positive and HER2-negative GC patients. This review summarizes recent clinical trials of CLDN18.2-targeted therapy.
Collapse
Affiliation(s)
- Rin Inamoto
- Department of Gastroenterology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan;
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan;
| | - Yasuhide Yamada
- Department of Oncology, Comprehensive Cancer Center, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan;
| |
Collapse
|
11
|
Al-Bzour NN, Al-Bzour AN, Ababneh OE, Al-Jezawi MM, Saeed A, Saeed A. Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment. Int J Mol Sci 2023; 24:16505. [PMID: 38003695 PMCID: PMC10671196 DOI: 10.3390/ijms242216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Gastrointestinal cancers are highly aggressive malignancies with significant mortality rates. Recent research emphasizes the critical role of the tumor microenvironment (TME) in these cancers, which includes cancer-associated fibroblasts (CAFs), a key component of the TME that have diverse origins, including fibroblasts, mesenchymal stem cells, and endothelial cells. Several markers, such as α-SMA and FAP, have been identified to label CAFs, and some specific markers may serve as potential therapeutic targets. In this review article, we summarize the literature on the multifaceted role of CAFs in tumor progression, including their effects on angiogenesis, immune suppression, invasion, and metastasis. In addition, we highlight the use of single-cell transcriptomics to understand CAF heterogeneity and their interactions within the TME. Moreover, we discuss the dynamic interplay between CAFs and the immune system, which contributes to immunosuppression in the TME, and the potential for CAF-targeted therapies and combination approaches with immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Noor N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Ayah N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Moayad M. Al-Jezawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
12
|
Ratti M, Orlandi E, Hahne JC, Vecchia S, Citterio C, Anselmi E, Toscani I, Ghidini M. Targeting FGFR Pathways in Gastrointestinal Cancers: New Frontiers of Treatment. Biomedicines 2023; 11:2650. [PMID: 37893023 PMCID: PMC10603875 DOI: 10.3390/biomedicines11102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
In carcinogenesis of the gastrointestinal (GI) tract, the deregulation of fibroblast growth factor receptor (FGFR) signaling plays a critical role. The aberrant activity of this pathway is described in approximately 10% of gastric cancers and its frequency increases in intrahepatic cholangiocarcinomas (iCCAs), with an estimated frequency of 10-16%. Several selective FGFR inhibitors have been developed in the last few years with promising results. For example, targeting the FGFR pathway is now a fundamental part of clinical practice when treating iCCA and many clinical trials are ongoing to test the safety and efficacy of anti-FGFR agents in gastric, colon and pancreatic cancer, with variable results. However, the response rates of anti-FGFR drugs are modest and resistances emerge rapidly, limiting their efficacy and causing disease progression. In this review, we aim to explore the landscape of anti-FGFR inhibitors in relation to GI cancer, with particular focus on selective FGFR inhibitors and drug combinations that may lead to overcoming resistance mechanisms and drug-induced toxicities.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elena Orlandi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Jens Claus Hahne
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Stefano Vecchia
- Pharmacy Unit, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Chiara Citterio
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elisa Anselmi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Ilaria Toscani
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
13
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
14
|
Wu S, Xu P, Zhang F. Advances in targeted therapy for gastric cancer based on tumor driver genes. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 53:73-83. [PMID: 38413217 PMCID: PMC10938109 DOI: 10.3724/zdxbyxb-2023-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
As the understanding of the pathogenic mechanisms of gastric cancer deepens and the identification of gastric cancer driver genes advances, drugs targeting gastric cancer driver genes have been applied in clinical practice. Among them, trastuzumab, as the first targeted drug for gastric cancer, effectively inhibits the proliferation and metastasis of tumor cells by targeting overexpressed human epidermal growth factor receptor 2 (HER2). Trastuzumab has become the standard treatment for HER2-positive gastric cancer patients. Ramucirumab, on the other hand, inhibits tumor angiogenesis by targeting vascular endothelial growth factor receptor 2 (VEGFR2) and has been used as second-line therapy for advanced gastric cancer patients. In addition, bemarituzumab targets overexpressed fibroblast growth factor receptor 2 (FGFR2), while zolbetuximab targets overexpressed claudin 18.2 (CLDN18.2), significantly extending progression-free survival and overall survival in patients with gastric cancer in clinical trials. This article reviews the roles of tumor driver genes in the progression of gastric cancer, and the treatment strategies for gastric cancer primarily based on targeting HER2, VEGF, FGFR2, CLDN18.2 and MET. This provides a reference for clinical application of targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Shiying Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Fei Zhang
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
| |
Collapse
|