1
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Iaiza A, Mazzanti G, Goeman F, Cesaro B, Cortile C, Corleone G, Tito C, Liccardo F, De Angelis L, Petrozza V, Masciarelli S, Blandino G, Fanciulli M, Fatica A, Fontemaggi G, Fazi F. WTAP and m 6A-modified circRNAs modulation during stress response in acute myeloid leukemia progenitor cells. Cell Mol Life Sci 2024; 81:276. [PMID: 38909325 PMCID: PMC11335200 DOI: 10.1007/s00018-024-05299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Oxidative Stress/drug effects
- Bortezomib/pharmacology
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- RNA Splicing Factors/metabolism
- RNA Splicing Factors/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Protein Serine-Threonine Kinases
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Gilla Mazzanti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Frauke Goeman
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bianca Cesaro
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Clelia Cortile
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Francesca Liccardo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
3
|
Bai Y, Huang L, Fan Y, Li Y. Marrow mesenchymal stem cell mediates diabetic nephropathy progression via modulation of Smad2/3/WTAP/m6A/ENO1 axis. FASEB J 2024; 38:e23729. [PMID: 38847786 DOI: 10.1096/fj.202301773r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 11/01/2024]
Abstract
Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-β1 (TGF-β1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.
Collapse
Affiliation(s)
- Yihua Bai
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lilan Huang
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Fan
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaling Li
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Jalilivand S, Izadirad M, Vazifeh Shiran N, Gharehbaghian A, Naserian S. The effect of bone marrow mesenchymal stromal cell exosomes on acute myeloid leukemia's biological functions: a focus on the potential role of LncRNAs. Clin Exp Med 2024; 24:108. [PMID: 38777995 PMCID: PMC11111499 DOI: 10.1007/s10238-024-01364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia represents a group of malignant blood disorders that originate from clonal over-proliferation and the differentiation failure of hematopoietic precursors, resulting in the accumulation of blasts in the bone marrow. Mesenchymal stromal cells (MSCs) have been shown to exert diverse effects on tumor cells through direct and indirect interaction. Exosomes, as one of the means of indirect intercellular communication, are released from different types of cells, including MSCs, and their various contents, such as lncRNAs, enable them to exert significant impacts on target cells. Our study aims to investigate the effects of BM-MSC exosomes on the cellular and molecular characterization of HL-60 AML cells, particularly detecting the alterations in the expression of lncRNAs involved in AML leukemogenesis, cell growth, drug resistance, and poor prognosis. BM-MSCs were cultured with serum-free culture media to isolate exosomes from their supernatants. The validation of exosomes was performed in three stages: morphological analysis using TEM, size evaluation using DLS, and CD marker identification using flow cytometry. Subsequently, the HL-60 AML cells were treated with isolated BM-MSC exosomes to determine the impact of their contents on leukemic cells. Cell metabolic activity was evaluated by the MTT assay, while cell cycle progression, apoptosis, ROS levels, and proliferation were assessed by flow cytometry. Furthermore, RT-qPCR was conducted to determine the expression levels of lncRNAs and apoptosis-, ROS-, and cell cycle-related genes. MTT assay and flow cytometry analysis revealed that BM-MSC exosomes considerably suppressed cell metabolic activity, proliferation, and cell cycle progression. Also, these exosomes could effectively increase apoptosis and ROS levels in HL-60 cells. The expression levels of p53, p21, BAX, and FOXO4 were increased, while the BCL2 and c-Myc levels decreased. MALAT1, HOTAIR, and H19 expression levels were also significantly decreased in treated HL-60 cells compared to their untreated counterparts. BM-MSC exosomes suppress cell cycle progression, proliferation, and metabolic activity while simultaneously elevating the ROS index and apoptosis ratio in HL-60 cells, likely by reducing the expression levels of MALAT1, HOTAIR, and H19. These findings suggest that BM-MSC exosomes might serve as potential supportive therapies for leukemia.
Collapse
Affiliation(s)
- Sahar Jalilivand
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Izadirad
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Vazifeh Shiran
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
5
|
赵 刚, 李 华, 张 鸿, 肖 克, 杨 辉, 李 子, 傅 崇. [m 6A methylase WTAP participates in renal ischemia-reperfusion injury by regulating FOXO1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:2035-2042. [PMID: 38189389 PMCID: PMC10774094 DOI: 10.12122/j.issn.1673-4254.2023.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To investigate the expression of WTAP, a m6A methylase, in a mouse model of renal ischemia-reperfusion (I/R) injury and the effect of WTAP knockdown on biological behavior of renal tubular epithelial cells exposed to I/R injury. METHODS Sixteen C57BL/6 mice with renal I/R injury or sham operation (n=8) were examined for blood urea nitrogen (BUN) and creatinine (Scr) levels to assess renal function, and renal pathologies were observed with HE staining. The expressions of WTAP and FOXO1 proteins in the kidneys of the mice were detected using immunohistochemistry. Human renal tubular epithelial cells (HK-2) were transfected with si-WTAP or si-NC followed by hypoxia-reoxygenation (H/R) exposure, Protein and mRNA expression were assessed by Western blot and qRT-PCR, and changes and changes in cell viability and apoptosis were assessed using CCK8 assay and TUNEL staining, respectively; LDH release level and caspase-3 activity of the cells were measured using commercial assay kits. FOXO1 m6A modification sites were predicted using SRAMP website (http://www.cuilab.cn/sramp/), and the interaction between WTAP and FOXO1 mRNA was analyzed with RIP experiment; the level of FOXO1 modified by m6A was detected by MeRIP-qPCR. RESULTS Compared with sham-operated mice, the mice with renal I/R injury showed significantly increased Scr and BUN levels (P < 0.001) and renal expressions of WTAP mRNA and protein (P < 0.001). In cultured HK-2 cells, H/R exposure significantly decreased the cell viability (P < 0.001) and increased cellular LDH release (P < 0.001) and expressions of WTAP mRNA and protein (P < 0.001). WTAP knockdown obviously reduced the cell damage induced by I/R injury and significantly decreased the mRNA and protein levels of FOXO1 in the cells (P < 0.001). RIP experiment confirmed WTAP binding to FOXO1 mRNA, and inhibition of WTAP expression significantly reduced FOXO1 m6A level in HK-2 cells (P < 0.001). CONCLUSION WTAP expression is up-regulated in the kidneys of mice with renal I/R injury and in HK-2 cells with H/R exposure. Inhibition of WTAP alleviates H/R-induced apoptotic damage in HK-2 cells possibly by inhibiting FOXO1 expression.
Collapse
Affiliation(s)
- 刚刚 赵
- 西安医学院第一附属医院泌尿外科,陕西 西安 710000Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - 华锋 李
- 西安医学院第一附属医院泌尿外科,陕西 西安 710000Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - 鸿毅 张
- 西安医学院第一附属医院泌尿外科,陕西 西安 710000Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - 克兵 肖
- 西安医学院第一附属医院泌尿外科,陕西 西安 710000Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - 辉 杨
- 西安医学院第一附属医院泌尿外科,陕西 西安 710000Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - 子峰 李
- 西安医学院第一附属医院泌尿外科,陕西 西安 710000Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - 崇德 傅
- 西安航天总医院泌尿外科,陕西 西安 710100Department of Urology, Xi'an Aerospace General Hospital, Xi'an 710000, China
| |
Collapse
|
6
|
Khani-Eshratabadi M, Mousavi SH, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:247-56. [PMID: 37873637 PMCID: PMC10707811 DOI: 10.61186/ibj.27.5.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 12/17/2023]
Abstract
Background Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line. Methods The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed using transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression. Results Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.0001), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control. Conclusion Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Collapse
Affiliation(s)
- Mohammad Khani-Eshratabadi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zeinali Bardar
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Yuan Y, Tan S, Wang H, Zhu J, Li J, Zhang P, Wang M, Zhang F. Mesenchymal Stem Cell-Derived Exosomal miRNA-222-3p Increases Th1/Th2 Ratio and Promotes Apoptosis of Acute Myeloid Leukemia Cells. Anal Cell Pathol (Amst) 2023; 2023:4024887. [PMID: 37621743 PMCID: PMC10447000 DOI: 10.1155/2023/4024887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 01/25/2023] [Indexed: 08/26/2023] Open
Abstract
Interferon regulatory factor 2 (IRF2) participates in the differentiation of immune T cells. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes can secret mRNA, miRNAs, and proteins to regulate tumor microenvironment. The present study focused on the miRNA/IRF2 axis in regulating Th1/Th2 ratio and cell apoptosis in acute myeloid leukemia (AML). The flow cytometry analysis was performed to examine the Th1/Th2 ratio and AML apoptosis in vivo and in vitro. The contents of Interferon γ (IFN-γ) and Interleukin-4 (IL-4) were measured using enzyme-linked immunosorbent assay. StarBase was used to predict the potential binding site between miR-222-3p and the 3' untranslated region of IRF2. Luciferase reporter assay was applied for validating the combination of miR-222-3p and IRF2. BM-MSC exosomes were successfully isolated. BM-MSC exosomes increased Th1/Th2 ratio and promoted apoptosis of AML cells. Further analysis showed that IRF2 was targeted by miR-222-3p. Overexpression of miR-222-3p promoted Th1/Th2 ratio and AML cell apoptosis. IRF2 partially reversed the effect that is exerted by miR-222-3p on Th1/Th2 ratio and AML cell apoptosis. Overexpression of miR-222-3p promoted Th1/Th2 ratio and caspase 3 expression in vivo. To sum up, miR-222-3p promotes Th1/Th2 ratio and AML cell apoptosis by regulating IRF2 expression, which provided crucial targets for the treatment of AML.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Shengfen Tan
- Department of Hematology, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Huanhuan Wang
- Department of Hematology, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Junfeng Zhu
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jiajia Li
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Pingping Zhang
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Meng Wang
- Department of Hematology, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Feng Zhang
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| |
Collapse
|
8
|
Chen L, Xie T, Wei B, Di DL. Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 2023; 25:126. [PMID: 36845960 PMCID: PMC9947586 DOI: 10.3892/etm.2023.11825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Exosomes are small vesicles with a diameter of ~40-100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Dr Da-Lin Di, Department of Immunology, Weifang Medical University, 7166 Baotongxi Street, Weifang, Shandong 261053, P.R. China . com
| |
Collapse
|
9
|
Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, Azargoonjahromi A, Nabi-Afjadi M, Payandeh Z, Zalpoor H, Shanehbandi D. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27:74. [PMID: 36064322 PMCID: PMC9446857 DOI: 10.1186/s11658-022-00377-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Dariush Shanehbandi
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
10
|
Wilms tumor 1 associated protein promotes epithelial mesenchymal transition of gastric cancer cells by accelerating TGF-β and enhances chemoradiotherapy resistance. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04320-7. [DOI: 10.1007/s00432-022-04320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|
11
|
Wang G, Ji X, Li P, Wang W. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 2022; 20:107-116. [PMID: 35582707 PMCID: PMC9061616 DOI: 10.1016/j.reth.2022.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 01/23/2023] Open
Abstract
Objective Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) could mediate the malignancy of tumor cells by transmitting targeted cargo. Therein, this study intends to explore the function of BMSC-Exos transmitting microRNA-425 (miR-425)/cytoplasmic polyadenylation binding protein 1 (CPEB1) in lung cancer growth. Methods miR-425 and CPEB1 levels in cancer tissues and cells were measured. BMSCs and their exosomes were collected and identified. After intervention with BMSC-Exos, miR-425 or CPEB1, invasion and migration of A549 and NCI-H1299 cells in vitro, and lung metastasis of A549 cells in vivo were observed. The relationship between miR-425 and CPEB1 was verified. Results miR-425 was highly expressed while CPEB1 was lowly expressed in lung cancer tissues of patients. CPEB1 was the direct target of miR-425. Down-regulating miR-425 or up-regulating CPEB1 decreased cell invasion and migration ability of A549 and NCI-H1299 cells, as well as decreased the number of lung metastasis lesions in vivo. After co-culture with BMSC-Exos, A549 and NCI-H1299 cells showed promoted migration and invasion in vitro and A549 cells demonstrated increased lung metastasis in vivo. Down-regulated miR-425 or up-regulated CPEB1 reversed the promotion of BMSC-Exos on lung cancer cell invasion, migration and lung metastasis. Conclusion BMSC-Exos could deliver miR-425 to inhibit CPEB1 expression in lung cancer cells, thereby promoting the malignant biological properties of lung cancer cells and their metastasis in vivo.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong 251700, PR China
| | - Xiuli Ji
- Department of Respiratory, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Pan Li
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong 251700, PR China
| | - Wei Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
12
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
13
|
Bazzoni R, Tanasi I, Turazzi N, Krampera M. Update on the role and utility of extracellular vesicles in hematological malignancies. Stem Cells 2022; 40:619-629. [PMID: 35442447 DOI: 10.1093/stmcls/sxac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded cellular particles released by virtually any cell type, containing numerous bioactive molecules, including lipids, proteins, and nucleic acids. EVs act as a very efficient intercellular communication system by releasing their content into target cells, thus affecting their fate and influencing several biological processes. EVs are released both in physiological and pathological conditions, including several types of cancers. In hematological malignancies (HM), EVs have emerged as new critical players, contributing to tumor-to-stroma, stroma-to-tumor, and tumor-to-tumor cell communication. Therefore, EVs have been shown to play a crucial role in the pathogenesis and clinical course of several HM, contributing to tumor development, progression, and drug resistance. Furthermore, tumor EVs can reprogram the bone marrow (BM) microenvironment and turn it into a sanctuary, in which cancer cells suppress both the normal hematopoiesis and the immunological anti-tumor activity, conferring a therapy-resistant phenotype. Due to their physicochemical characteristics and pro-tumor properties, EVs have been suggested as new diagnostic biomarkers, therapeutic targets, and pharmacological nanocarriers. This review aims to provide an update on the pathogenetic contribution and the putative therapeutic utility of EVs in hematological diseases.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Nice Turazzi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
14
|
Liang L, Xu H, Dong Q, Qiu L, Lu L, Yang Q, Zhao W, Li Y. WTAP Is Correlated With Unfavorable Prognosis, Tumor Cell Proliferation, and Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2022; 12:852000. [PMID: 35480109 PMCID: PMC9035869 DOI: 10.3389/fonc.2022.852000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
WTAP is involved in various pathological and physiological processes, but its function in hepatocellular carcinoma (HCC) remains elusive. In this study, we investigated the role of WTAP in HCC. Firstly, the mRNA and protein of WTAP were expressed highly in HCC tissue, which reflected clinicopathological characteristics of HCC patients. Then, an interactive analysis of genetic profiles and Kaplan–Meier curves was performed to show that WTAP was an independent predictor of survival of HCC patients. Meanwhile, genes co-expressed with WTAP, potential protein–protein interactions, related signaling pathways, and immune cell infiltration were identified. It was found that high WTAP expression correlated with enhanced interactions between cytokines and their receptors, cell cycle, and chemokine signaling pathways, as well as increased immune cell infiltration. At last, WTAP knockdown experiments in vitro indicate that the WTAP silencing inhibited HCC proliferation and aggressiveness. We conclude that WTAP may be a novel biomarker for prognosis and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Linjun Liang
- Zhuhai Precision Medical Center, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), Zhuhai, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Hongfa Xu
- Zhuhai Precision Medical Center, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), Zhuhai, China
- Department of Oncology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qichao Dong
- Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Lige Qiu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), Zhuhai, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Qing Yang
- Department of Infectious Diseases and Hepatology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
- *Correspondence: Qing Yang, ; Wei Zhao, ; Yong Li,
| | - Wei Zhao
- Department of Oncology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Qing Yang, ; Wei Zhao, ; Yong Li,
| | - Yong Li
- Zhuhai Precision Medical Center, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), Zhuhai, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
- *Correspondence: Qing Yang, ; Wei Zhao, ; Yong Li,
| |
Collapse
|